Journal of Computer Science 10 (11): 2260-2268, 201

ISSN: 1549-3636

© 2014 S.V. Kasmir Rajat al, This open access article is distributed und@resative Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/jcssp.2014.2260.2268 Published Onlih€ll) 2014 (http://www.thescipub.com/jcs.toc)

COMPUTATIONAL MODEL TO GENERATE CASE-INFLECTED
FORMS OF MASCULINE NOUNS FOR WORD SEARCH IN
SANSKRIT E-TEXT

Kasmir Raja S.V.,?V. Rajitha and *Meenakshi Lakshmanan

!Dean-Research, SRM University, Chennai, India
2Department of Computer Science, Meenakshi CollegéViomen, Chennai, India
Research Scholar, Mother Teresa Women'’s Univetsdgaikanal, India
®Head, Department of Computer Science, Meenakshi @oftr Women, Chennai, India

Received 2014-09-10; Revised 2014-11-19; Accepted-20128

Competing Interests: The authors have declarechthabmpeting interests exist

ABSTRACT

The problem of word search in Sanskrit is insepl@@tom complexities that include those caused by
euphonic conjunctions and case-inflections. Theda#lectional forms of a noun normally number 24
owing to the fact that in Sanskrit there are eigdmes and three numbers-singular, dual and pluha!.
traditional method of generating these inflectioftains is rather elaborate owing to the fact tinerée

are differences in the forms generated between &eey similar words and there are subtle nuances
involved. Further, it would be a cumbersome exerdis generate and search for 24 forms of a word
during a word search in a large text, using theaantty available case-inflectional form generators.
This study presents a new approach to generating-itdlectional forms that is simpler to compute.
Further, an optimized model that is sufficient f@merating only those word forms that are requined

a word search and is more than 80% efficient coegbao the complete case-inflectional forms
generator, is presented in this study for the firse.

Keywords: Sanskrit, Case-Inflection, Panini, E-text, Worca®&, Noun Declension, XML Structure

1. INTRODUCTION A noun or pronoun that is of interest may be

, . , encountered variously in a given text dependingnupo
Word search in Sanskrit E-text is gcom_plex .pmblemwhether it is used in the nominative, accusative,
owing to the phenomena of euphonic conjunctions and.

. : : ~instrumental, dative, genitive, locative or vocatigase
case-inflections. These two phenomena in Sanskrit

transform words into forms quite different from the gnd whether it is .used 'n‘t,he smg.ular‘, dual orajILFor
original word and hence have to be taken into mstarrce, th? basic .nqudw (mganmg _heaven) has the
consideration if a comprehensive word search iesst form ‘dyaus’ when it is used in the singular and as the
has to be accomplished. This study deals with geingy subject _of a sentence; when used in the Iogatnw,ca
search-related case-inflected forms of words andPlural, it has the form dyusu’ (meaning ‘in the
presents a novel schema and computational algorithnheavens’). Thus, a simple search foiv* may yield no
for the same. The authors have already presentedpositive result even though the noun of interesty ma
(Rajaet al., 2014) a solution to the problem with respect figure in the text as the subject of a sentenseaach for

to euphonic conjunctions. ‘dyaur’ would fail to identify all but one of the various
Corresponding Author: Meenakshi Lakshmanan, Department of Computer Sejévieenakshi College for Women, Chennai, India

JCS

////4 Science Publications 2260

Kasmir Raja S.Vet al / Journal of Computer Science 10 (11): 2260-22684

case-inflected forms. Thus, the various case-itétbc
forms of the term of interest need to be generatetiall
of them searched for in the target text.

2. CASE-INFLECTIONS IN SANSKRIT

There are eight types of case inflections in Sanskr
Nominative, accusative, instrumental, dative, abdat
possessive, locative and vocative. In each of thegsart
from the singular and plural forms of a word tha¢ a
encountered in most languages, Sanskrit also has
separate dual form. Thus, a word can have up wag2d-
inflected forms. Further, nouns in Sanskrit (and jost
the objects they indicate) are categorized intceahr
genders, masculine, feminine and neuter.
inflections are defined based on the gender ofatbie.
Different rules for formulating declensions aredldiown
based on the last letter of the word. For instarice,
case-inflections of the wordima (masculine ending in

the lettera) is done differently compared to the case-

inflections of hari (masculine ending in the lette).

Furthermore, there can be different rules of desiten
for subspecies of words of a particular genderremi a
specific letter. For example, the word forms geteztas
case-inflections for the wordatr (meaning giver) are
different from those generated fdshratr (meaning
brother), though both are masculine words ending in

Nouns of all the three genders are generally deal

with, in this context, in two categories: Ordinary
(sadharana-sabdg and specialvisesa-sabdg. A further
categorization within this is that into vowel-engin
words and consonant-ending words. T&#lharana-

sabdaof masculine gender of both the vowel-ending and

consonant-ending types form the subject matterhisf t

study and the schema and algorithms presented helé

generate the case-inflected forms for such words.

A sample declension is given ifable 1, in both
the native Devanigari script of Sanskrit and the
English script, of then-ending masculine word

Tsi/rajan (meaning king).
3. THE PROBLEM COMPLEXITY

A simple search for the word@<H/rajan in a text

would clearly not yield the form&sil/raja or T&i/rdjfie,

which respectively mean ‘the king’ and ‘for/to tkimg’,
which one would normally expect to show up in attex
search. In fact, out of the 24 inflections, onlyeth

////4 Science Publications

Case

vocative singular form matches the original wordhis
case, while the other 23 have a different spelling
altogether; in fact these 23 forms do not even @ont
the original word as a substring. Thus, unlike in
European languages and other Indian languageslas we
case-inflections in Sanskrit effect changes in ey
form of the word, rather than simply providing extr
words to accompany the word or even appending
suffixes or prefixes to a basically unchanged word.
Thus, in order to carry out a comprehensive search
sanskrit text, it is imperative that case-inflecfedms
also be searched for.

The ancient grammarianafini’'s seminal work on
Sanskrit grammar, theAsfadhyayr (work in eight

chapters) (dmana and Jaglitya, 1984), devotes 370

aphorisms to case-inflective forms of nouns, agmiin
the Siddhinta-kaumud (Diksita and Kaumug 1962), an
authoritative commentary on thé\sfadhyayi. The
numerous rules laid down in these terse aphorisms a
used to build the inflection tables of any givernuno
There are thousands of nouns in Sanskrit and they a
categorized according to the inflection patternythe
follow. For instance, then-ending masculines of the
sadharana-sabdaclass are categorized into seven types,
each following different declension rules resultiiig
seven different types of case-inflection tables.

Another aspect of the problem is the redundancy

tinherent in the case inflections. It is clear fr@able 1

that there could be duplicates within the 24 irifelc
forms of the word. These need to be eliminatedust
be stated here that the duplicates occur in diffecases
and numbers for different types of words.

The challenge in designing an algorithm to
generate all the case-inflected forms of a givemdwo
hat are relevant to the word search scenario, thus
nvolves the correct classification of a word irdoe
of the inflection categories and then the efficient
generation of required metamorphosed forms of the
word for the purposes of text search.

4. BASIS OF THIS STUDY

The bookSabdamafijar by Vidyasagar K. L. V. Sastry
and Pandit L. Anantarama Sastri (Vidyasaggaal, 2002),
contains the declension tables for Sanskrit nouns
belonging to the various categories and is acknibgdd
widely as a comprehensive consolidation of theviaié

Paninian rules. This text has been used as a primary
basis for this study, with (Rsita and Kaumui] 1962;

JCS

2261

Kasmir Raja S.Vet al / Journal of Computer Science 10 (11): 2260-22684

Vamana and Jagitya, 1984) being used to glean further
information wherever required.

5. DEVELOPMENT OF THE
COMPUTATIONAL ALGORITHM

The following control abstraction encapsulatesstieps
involved in generating the search-related caseditifins.
Generatelnflectionsq, g
{ll Xis the given word and its gender
Step 1: Lei be the last letter of
Step 2: Find the word categad®@y(if any), usingg andx
Step 3: Compute’, the basic transformation afbased
ongandC

Step 4: Parse the XML structure to retrieve thenfidee
for this combination ok, g andC

Step 5: Perform the operations specified in thenfdae
to generate the inflected formsXgf

The input word is taken from the user along wité th

detail, it was determined that the last part of @ardvis
what changes when an inflectional form is produced,
with only the last letter being affected in mosses
Based on this observation, a list of required basic
operations on the last letter of words was idesifi

For any vowelx, the list of operations defined on
are listed iriTable 2

The consonants of Sanskrit consist of semi-vowels,
mutes, sibilants and aspirate. The mutes are ginen
Table 3 depicting the columns and rows.

All letters in Columns 1 and 2 are hard consonants
those in Columns 3 and 4 are soft consonants. Gokim
comprises the nasal consonants. ‘Softening’ a c@mo
means replacing it by its Column 3 equivalent, ithe
Column 3 letter in the same row as the given casofror
instance, softening the lette’ means that it is replaced by
the letter j’. Similarly, ‘hardening’ a consonant means that
it is replaced by its Column 1 equivalent. Thusléteer g
when hardened, yields the lettdt. ‘The operation of
nasalizing converts the letter into the Columnttetdying

specification of its gender. As already stated, thejnthe same row.

computational algorithm consists of two main steps,
which are to identify the category of the given wand
thereby the operations required to generate theirest)
inflectional forms and to then compute the inflenal
forms by performing those operations.

Details of Steps 2-5 are provided in the secti@hsvia

6. WORD CATEGORIZATION

With this prelude, we now present definitions of
functions used in this study. L&t be the given search
word and letx denote its last letter. Kis a vowel, let;
denote the elidinglgpa) of x, x4 the lengthened form

(dirgha) of x, X5 the guna of x, x, the vzddhi of x, x, the
ayayavava equivalent ok, x, theyan equivalent ok, as

defined inTable 2
If x is a consonant, le¢ denote the softened form of

Step 2 of the above control abstraction is achievedy, x, the hardened form of, andx, the corresponding

using a hashing algorithm in order that the prodaess
speeded up considerably. It must be noted heretltbed
is no rule such as one based on letters of the ,vetcd
that can be used to specify the category of thelwbne
hash table here consists of words belonging toeaifp
category organized within the categories of geratet

nasal form ofx. Letx;, i = 1, 2, ... 5 where is a mute,
denote the equivalent letter in rowf the mutes.

Let x. denote the result of changing to n if
required in X. This function is based onaRini's
aphorism, tasabhyam no nah saminapade ||8.4.1]|
and two other related aphorisms, which specify

last letter. The hash value is computed based en thconditions under which the lettarin a word would be

gender of the word and its last letter. The taloletains
word lists and the corresponding category onlytifimse
categories of words that have the same genderastd |
letter but differ in inflected forms. Buckets arsed in
the hash table for each category to handle cafissio
which are inevitable because the input has infaonat
only about the gender of the word and its lasetett

7. TERMINOLOGY

Before the specification of the formulae developed
this study to compute the inflected forms, it isessary
to introduce some terminology developed exclusively
this study. On studying the inflectional word fornms

////4 Science Publications

replaced byn (Rajaet al., 2014).

The operations denoted by the suffixes can be
performed in succession and appropriately dendted.
instance, Xy, indicates that theyurma operation is first
applied tox and then thayayavava operation is applied
to the resultant. If the first operation idapa, then the
subsequent operation such asp implies that the
operation denoted by the suffikis applied to the new
last letterx of X got after the eliding operation.

8. COMPUTATION OF x'

A detailed study and analysis of the declensiofesab
enumerated as pefifni’s rules in (Oksita and Kaumul

JCS

2262

Kasmir Raja S.Vet al / Journal of Computer Science 10 (11): 2260-22684

1962), yielded observations that led to the foromati
of the formulae for computing the inflectional fasm
The formulae were simplified by the introduction of
the pre-processing step of computing the valug' ek
a derivation fromx, depending org and C. This step
constitutes Step 3 of the control abstraction preexk
in Section 5 above.

Table 4 shows howx’ is computed from x for all the

35 masculine word categories in gaglharana-sabdalist.
Identification of thex’ values individually as shown

in Table 4is a unique approach in the literature and as is

clear from the table, enables the option of clugbdrf

word-endings and categories for the same operation

during processing. For instance, the operationstter
word categories shown in rows 2,4,5,6 and 7 apmpdy t
same operatiorn,, to compute’ fromx.

9. DEVELOPMENT OF FORMULAE TO
COMPUTE THE INFLECTIONAL
FORMS

A list of stemsd; that are required to be appended

to words in order to produce the inflectional forms
was identified for each category of words, keepimg
mind the availability of both the form¥X and X'
corresponding tox and x’ respectively. Table 5 lists
the stems identified.

<Gender G = “masculine™>
<LastLetter L = &">
X408y, X' + 8, X' + 8y X+ 8, X+ 87, (X' +827)c, Xa +
0100 X' + 019 X' + 814, X' + 015 + Oy, Xg + 017 X+ Oy, X
+ 015 (X4 + 87 + Oog)e, X' + 013, X' + 013+ Ops
</LastLetter>
<LastLetter L = ">
Xg+ &7, X + 810, X + 013, X + 1, (X + O19)y, (Xa+ &7
+ O20)cs X + 05
<Category C = “1">
X+ 8y, Xy, X'a+ 03, X + 05, (X + Og)c, X'a+ 013,
X' +8, % +&
</Category>
<Category C = “2">
X'+ 05, X'j, X' + 0, X + 85, Xg
</Category>
<Category C = “3">
X + 8y, X4, X'a+ 83, X + B, (X + Og)y, (X + Bu3)y,
(X + dug)y, (X + By)y
</Category>
</LastLetter>

</Gender>

The forms of the given wordX obtained after
computing the formulae got on parsing the XML
structure, are illustrated ifable 6.

As can be seen from the table, there are 16

Though some of the stems in this list can be transformations for words ending & and a total of 15, 16

constructed by appending two or more other stentisen
list, such compound stems were not eliminated tsxau
they aid in simpler processing. In fact, each tettethe

and 16 transformations for Categories 1, 2 and ®avtls
ending in I’ respectively. This reduction in the number of
transformations from 24 as mentioned in Sectiorb@vea

Sanskrit alphabet could have been given a numb@r anhas been brought about by eliminating repetitiams lay
considered an atomic stem and compound stems formegkaving out the original word if it itself appeass an

from their combinations, but the priority aim of
simplifying the final formulae precluded this pdskty.

Step 4 of the control abstraction presented iniG@ect
5 above is now explained. A simple XML structures ha
been developed, which lists the operations requiced
compute the transformed words for each word cagegor
For example, the following shows the XML structure
developed for masculine words ending & and those
ending in I'. As given in Table 4, there are three
categories for masculine words ending ih and the
XML structure below groups transformations common t
all the three in the higher level of the hierarchihe
transformations are specified as a comma-sepaliated
The operation '+’ in the formulae denote simplangtr
concatenation. A unique feature of this XML struetis
that it represents an algorithm by itself apartfracting
as a hierarchical organization of data.

////4 Science Publications

inflectional form. It has been found that over tBB
categories, a reduction in number of transformatizan be
reduced by about 50-66% by eliminating the reduciéan
that are inherent in the inflectional forms themssl!

10. OPTIMIZATION OF THE
COMPUTATIONAL MODEL

Since the requirement is only to find the infleotb
forms of words that are needed for a comprehensive
word-search and since the ‘+’ operation in the folaa
represents string concatenation, formulae of thesy +
% andx + & + § contain the original word as a
substring. Hence, for the current application ofrdvo
search, it is sufficient to consider only those
transformations that bring about some change in the
word other than appending a string to the word.

JCS

2263

Kasmir Raja S.Vet al / Journal of Computer Science 10 (11): 2260-22684

Table 1. Case inflections of the-ending masculine wondzjan (meaning king)

Case Singular Dual Plural

1. Nominative (subject) U< raja T rajanau USE: rajanah

2. Accusative (object) TSTEH rajanam T rajanau = rajiiah

3. Instrumental (by, with, through) =T rajfia TS rajabhyam e rajabhih

4. Dative (for, to) TS rajiie TS rajabhyam TSR : rajabhyah

5. Ablative (from, than) TR rajfiah TS rajabhyam TSR : rajabhyah

6. Possessive (belongs to, has/havelisi: rajiiah T: rajfioh UM rajfiam

7. Locative (in, on, at) Tl1 /TS rajfii/r ajani T rajfioh T rajasu

8. Vocative (calling out) (&) TeH, (he)rajan (&) TAE (he) rajanau (&) TT: (he) rajanah

Table 2.Operations on vowels

X drgha guna vrddhi ayiyavava yan
1. a a a a - -

2. a a - - - -

3. i T e ai - y

4. T r e ai - y

5. u i o] au - Y

6. i i o] au - Y

7. r F ar ar - r

8. F F ar ar - r

9. / F al al - I

10. e e e ai ay -
11. o] o] o] au av -
12. ai ai - - ay -
13. au au - - av -
Table 3. Table of mute consonants

1 2 3 4 5
1 k kh g gh n
2 c ch j jh fi
3 t h d dh n
4 t th d dh n
5 p ph b bh m
This is so because a search for the wdrdri’ in a Now the form har€ is represented as and the form
text, would anyway identify inflectional forms suels ‘haref’ is computed from the formul®’ + &,. WhenX’

‘haribhyam’ and ‘haribhya#’ and hence computing With X as its last letter is searched for, all words pated
such inflectional forms can be discarded. However,]fromgorg?u'?e IOf the typexhw;él andx|d+ 5“]531 V‘fu'd %e
such a search would not yield inflectional formglsu ound. simiarly, a search_foxy would yield all words

o) i computed from formular;+ & and so on.
as haraye, “harr, ‘hare and ‘harefr, whereby the In the light of the above analysis, the XML struetu

corresponding formulae have to be retained. presented in Section 9 above is reduced to thevialg,

It may seem from the above examples that a searchor the same examples of masculine words endirig’in
for the wordX after performing the single operati@an gnd i'.

would suffice, because anywa§is a substring of all <Gender G = “masculine”>

the inflectional forms. For example, all the <LastLetter L = &">
inflectional forms for the wordhari’ have ‘har as a X'+ 8y, Xg, X' + 013, X' + Oy
substring. However, such trivialization is impodsib </LastLetter>

for many words such as those ending in consonasts, <LastLetter L = {">

is clear fromTable 4. The example cited in Section 1 Xdr %

above is also a case in point. <Category C = “1">

,////4 Science Publications 2264 JCS

Kasmir Raja S.Vet al / Journal of Computer Science 10 (11): 2260-22684

X'a X'y X+ O As can be seen from the above XML structure,
</Category> there is a drastic reduction in the number of folaeu
<Category C ="2"> to be computed.Table 7 details the number of

Xa X5 X, X computations required to generate search-relatse-ca
:lccﬁgeggo?;yz _ugrs inflections and the percentage of reduction in the

Co number of computations from the XML structure
Xar X . :
</Category> presented_ in Section 9 above, for all the 35 caiego
</LastLetter> of masculinesadharana-sabdas
Thus, on average, a reduction of more than 81%eof t
</Gender> computations has been achieved through this ogtiioiz
Table 4. Computation ok’ for masculine words
Example
X Category X' X X Operation to get’
1. a - rama ram X
2. i 1 e hari hare ¥
3. 2 y sakhi sakiy Xa
4. 3 e pati pate ¥
5. u - o] guru guro ¥
6. r 1 r pitr pitar Xy
7. 2 r nr nar Xy
8. 3 r datr datar Xy
9. ai - y rai ray Xa
10. o] - au go gau X
11. au - \Y glau gliv Xa
12. c - k jalamuc jalamuk X
13. i 1 k varij vanik X1
14. 2 f raj rat Xha
15. t 1 t marut marud X
16. 2 n pacat pacan X
17. 3 n dhimat dhiman X
18. 4 n mahat mahan X
19. - t suhd sut %h
20. 1 f rajan raji X +i"
21. 2 a atman atma Xid
22. 3 n svan sun i + “un”
23. 4 n yuvan yin Xig + “n”
24, 5 o] maghavan maghon X + “on”
25. 6 a pathin panth X+ “ntha”
26. 7 i karin kari X
27. $ 1 f Vis Vit Xx+“r
28. 2 k tadss tadrk % + K’
29. - f dvis dviz X+
30. 1 0 vedhas vedho X “o”
31. 2 o] sreyas sreyo X +“0”
32. 3 s vidvas vidyg X +us’
33. 4 S pums puna@ms % + “‘mams”
34. 5 s dos de Xx+"s
35. h - ¢ lih li¢ X+
JCS

////4 Science Publications 2265

Kasmir Raja S.Vet al / Journal of Computer Science 10 (11): 2260-22684

Table 5.Index of stems used in creating the inflectioahfs

0 Stem 0 Stem 0 Stem
1 h 14 aya 27 ena
2 au 15 uh 28 na

3 ah 16 bhyah 29 ai

4 ah 17 t 30 y

5 am 18 yoh 31 r

6 m 19 0h 32 u

7 n 20 am 33 naha
8 a 21 sya 34 nau
9 a 22 i 35 an
10 bhyam 23 nam 36 nam
11 bhiA 24 su 37 ams
12 aih 25 su

13 e 26 ay

Table 6. Initial inflectional forms computed for sample werd

X

Inflectional forms computed

1 rama

2 hari

3 sakhi

4 pati

[amah, ramau, Emah, ramam, aman, ramena,
ramabhyam, ramaih, ramaya, ramebhya,
ramat, ramasya, émayah, ramanam, rame,@mesu
harih, har, harayah, harim, hain, harina,
haribhyam, haribhih, haraye, haribhya,

hareh, haryah, harinam, harisu, hare

sakh, saklayau, sakhyah, saklwyam,

sakhn, sakhy, sakhibhym, sakhibhh, sakhye,
sakhibhyd, sakhyuh, sakhyd, sakhinam,
sakhyau, sakhu, sakhe

patih, pat, patayah, patim pain, patys,
patibhyam, patibhh, patye, patibhya, patyus,
patyah, patnam, patyau, patu, pate

Table 7. Optimization statistics for masculisedhirana-sabdas

X Category Initial number of computations Reduced remolh computations Extent of reduction (%)
1. a - 16 4 75.00
2. i 1 15 5 66.67
3. 2 16 6 62.50
4, 3 16 4 75.00
5. u - 15 4 73.33
6. r 1 16 3 81.25
7. 2 17 3 82.35
8. 3 16 3 81.25
9. ai - 14 2 85.71
10. 0 - 15 3 80.00
11. au - 14 2 85.71
12. c - 14 2 85.71
13. i 1 14 2 85.71
14. 2 14 2 85.71
15. t 1 12 1 91.67
16. 2 13 2 84.62
17. 3 12 3 75.00
18. 4 12 3 75.00
19. d - 14 2 85.71

,///4 Science Publications 2266

JCS

Kasmir Raja S.Vet al / Journal of Computer Science 10 (11): 2260-22684

Table 7.Continue

20. n 1 15
21. 2 14
22. 3 14
23. 4 14
24. 5 14
25. 6 14
26. 7 16
27. § 1 14
28. 2 13
29. ‘ - 13
30. S 1 14
31. 2 14
32. 3 16
33. 4 16
34. 5 14
35. h - 14
Total 504

86.67
85.71
78.57
78.57
78.57
78.57
81.25
85.71
84.62
84.62

85.71
92.86
81.25
81.25
85.71
85.71
4 81.35

OMNNNWWENDNNNWWWWWNDN

11. CONCLUSION

A new method for computation of case-inflections ha
been designed for this study, which makes thedtidieal
form generation more efficient compared to relatedk in
the literature (Huet, 2004a; 2014b; Gowl al, 2012;

the algorithm is simplified and there are only & feases
that need to be handled.

Moreover, the optimizing scheme presented above
for the sake of generating only those inflectioftaims
that are required in a search algorithm increabes t
efficiency by an average of more than 80% as shown.

Huet, 2005; 2009; Goyal and Huet, 2013; Huet, 2003;This is unprecedented in the literature.

2006; 2008; Bhadrat al., 2009; Jha and Jha, 2005;
Selotet al, 2010; Jhaet al, 2009). The introduction of

functions that carry out some basic operations of

euphonic conjunctions and the appropriate intradaoct
of a basic transformed forid’ of the given word as a
pre-processing step has greatly enhanced the esftigi
of the inflectional form generator.

This efficiency enhancement can be illustrated \gith

couple of examples. The worgstr and datr, though

masculine and ending in the same vowg| produce
different declension tables. The former gives rise
inflectional forms such apitarau, pitaras andpitaram,

while the latter to forms such a&tarau, ditarah and

dataram. However, before going in for computing the
inflectional forms, the algorithm presented in thisdy
generates th¥’ forms, which are, respectivelgitar and
datar as shown ifTable 4. Once this is done, there is no
difference in the declension formulae for the twords.
Similar is the case of formulae with regard to nudise
words ending irc, j, dandh — the formulae are identical
onceX’ is appropriately computed as peable 4. Also,

masculine words ending ihands are also found to have

only one or two dissimilarities with the formulased to
generate the inflectional forms fer j, d andh. Hence

////4 Science Publications

12. ADDITIONAL INFORMATION
12.1. Funding Information
No funding agency involved.
12.2. Author’s Contributions

All authors contributed extensively to the work
presented in the paper. All three authors heldildeta
discussions together in the problem identificatimd
solution conceptualization stages of the work.

Dr. Kasmir Raja: Primarily involved in the solution
conceptualization and guided the others in the
formulation of the control abstraction and in deyéhg
the algorithm. He reviewed the work at every stagd
provided guidance and shaped the work. He finally
thoroughly reviewed and vetted the work.

Ms. Rajitha V.. Responsible for formulating the
control abstraction and developing the algorithrhe S
worked out the complete, extensive XML structures,
implemented the algorithms and performed rigorous
testing.

Dr. Meenakshi Lakshmanan: Provided inputs for
the Sanskrit language, analysed the efficiency hef t

JCS

2267

Kasmir Raja S.Vet al / Journal of Computer Science 10 (11): 2260-22684

algorithm and proposed the optimization of the Huet, G., 2006. Shallow syntax analysis in Sanskrit

computational model. She wrote the paper. guided by semantic nets constraints. Proceedings
i of International Workshop on Research Issues in

12.3. Ethics Digital Libraries, (IDL, 06), Kolkata.
There are no ethical issues involved in this aticl Huet, G., 2008. Formal structure of Sanskrit text:
Requirements analysis for a mechanical Sanskrit
13. REFERENCES processor. Proceedings, 2nd International

Symposium on Sanskrit, Computational Linguistics,

Bhadra, M., S.K. Singh, S.K. Subash, M.R. Agrawal (SCL’ 08), Brown University, Providence.
and G.N. Jhaet al, 2009. Sanskrit Analysis Huet, G., 2009. Sanskrit segmentation. South asian

System (SAS), Sanskrit computational linguistics. languages analysis roundtable XXVIIl, Denton, Texas
Lecture Notes Comput. Sci., 5406: 116-133. Jha, S. and G.N. Jha, 2005. Morphological analgis
Diksita, B. and S. Kaumad 1962. Translated bgrisa nominal inflections in Sanskrit. Proceedings of the

Platinum Jubilee International Conference, (JIC’
05), Hyderabad University, Hyderabad, pp: 34-34.

Jha, G.N., M.A. Subash, S.K. Mishra, D. Mani and D.
Ishraet al, 2009. Inflectional morphology analyzer
for Sanskrit, Sanskrit computational linguistics.
Lecture Notes Comput. Sci., 5402: 219-238.

Raja, S.V.K., V. Rajitha and M. Lakshmanan, 2014.
Computational algorithms based on the paninian
system to process euphonic conjunctions for word
searches. Int. J. Comput. Sci. Inform. Security,
12: 64-76.

Selot, S., A.S. Zadgaonkar and N. Tripathi, 2010.
Subanta pada analyzer for Sanskkriental J.
Comput. Sci. Technol., 3: 89-93.

Vamana, and K. Jagitya, 1984. With the
subcommentaries of Jinendrabuddhi. Haradatta
Misra and Dr. Jaya Shankar Lal Tripathi, Tara Book
Agency, Varanasi.

Vidyasagar, K.L., V. Sastry and L. Pandit, 2002.
Anantarama Sastrsabdamarijar R.S. Vadhyar and
Sons Publishers, Palghat, India.

Candra Vasu. Motilal Banarsidas Publishers, Delhi.

Goyal, P. and G. Huet, 2013. Completeness analysi
of a Sanskrit reader. Proceedings of the 5th
International Symposium on Sanskrit
Computational Linguistics, (SCL’ 13), Mumbai.

Goyal, P., G. Huet, A. Kulkarni, P. Scharf and Rinker,
2012. A distributed platform for Sanskrit procegsin
Proceedings of the 24th International Conference on
Computational Linguistics, (CCL’ 12), Mumbai.

Huet, G., 2003. Towards computational processing of
sanskrit, ICON-2003, Mysore, India. Proceedings
of the Central Institute of Indian Languages, (IIL’
03), Mysore, pp: 40-48.

Huet, G., 2004a. Design of a lexical database for
Sanskrit. Proceedings of the Workshop on
Enhancing and Using Electronic Dictionaries,
(UED’ 2004), Stroudsburg, PA, USA, pp: 8-14.

Huet, G., 2004b. Lexicon-directed segmentation and
tagging of Sanskrit. Proceedings of the 12th World
Sanskrit Conference, (WSC’ 04), Helsinki, Finland.

Huet, G., 2005. A functional toolkit for morphologl and
phonological processing, application to a Sanskrit
tagger. J. Functional Programm., 15: 573-614.

////4 Science Publications 2268 JCS

