
Journal of Computer Science 10 (11): 2260-2268, 2014
ISSN: 1549-3636
© 2014 S.V. Kasmir Raja et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/jcssp.2014.2260.2268 Published Online 10 (11) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Meenakshi Lakshmanan, Department of Computer Science, Meenakshi College for Women, Chennai, India

2260 Science Publications

JCS

COMPUTATIONAL MODEL TO GENERATE CASE-INFLECTED
FORMS OF MASCULINE NOUNS FOR WORD SEARCH IN

SANSKRIT E-TEXT

1Kasmir Raja S.V., 2V. Rajitha and 3Meenakshi Lakshmanan

1Dean-Research, SRM University, Chennai, India
2Department of Computer Science, Meenakshi College for Women, Chennai, India

Research Scholar, Mother Teresa Women’s University, Kodaikanal, India
3Head, Department of Computer Science, Meenakshi College for Women, Chennai, India

Received 2014-09-10; Revised 2014-11-19; Accepted 2014-11-28

Competing Interests: The authors have declared that no competing interests exist

ABSTRACT

The problem of word search in Sanskrit is inseparable from complexities that include those caused by
euphonic conjunctions and case-inflections. The case-inflectional forms of a noun normally number 24
owing to the fact that in Sanskrit there are eight cases and three numbers-singular, dual and plural. The
traditional method of generating these inflectional forms is rather elaborate owing to the fact that there
are differences in the forms generated between even very similar words and there are subtle nuances
involved. Further, it would be a cumbersome exercise to generate and search for 24 forms of a word
during a word search in a large text, using the currently available case-inflectional form generators.
This study presents a new approach to generating case-inflectional forms that is simpler to compute.
Further, an optimized model that is sufficient for generating only those word forms that are required in
a word search and is more than 80% efficient compared to the complete case-inflectional forms
generator, is presented in this study for the first time.

Keywords: Sanskrit, Case-Inflection, Panini, E-text, Word Search, Noun Declension, XML Structure

1. INTRODUCTION

Word search in Sanskrit E-text is a complex problem
owing to the phenomena of euphonic conjunctions and
case-inflections. These two phenomena in Sanskrit
transform words into forms quite different from the
original word and hence have to be taken into
consideration if a comprehensive word search in E-texts
has to be accomplished. This study deals with generating
search-related case-inflected forms of words and
presents a novel schema and computational algorithm
for the same. The authors have already presented
(Raja et al., 2014) a solution to the problem with respect
to euphonic conjunctions.

A noun or pronoun that is of interest may be
encountered variously in a given text depending upon
whether it is used in the nominative, accusative,
instrumental, dative, genitive, locative or vocative case
and whether it is used in the singular, dual or plural. For
instance, the basic noun ‘div’ (meaning ‘heaven’) has the
form ‘dyauḥ’ when it is used in the singular and as the
subject of a sentence; when used in the locative case,
plural, it has the form ‘dyuṣu’ (meaning ‘in the
heavens’). Thus, a simple search for ‘div’ may yield no
positive result even though the noun of interest may
figure in the text as the subject of a sentence; a search for
‘dyauḥ’ would fail to identify all but one of the various

Kasmir Raja S.V. et al. / Journal of Computer Science 10 (11): 2260-2268, 2014

2261 Science Publications

JCS

case-inflected forms. Thus, the various case-inflected
forms of the term of interest need to be generated and all
of them searched for in the target text.

2. CASE-INFLECTIONS IN SANSKRIT

There are eight types of case inflections in Sanskrit:
Nominative, accusative, instrumental, dative, ablative,
possessive, locative and vocative. In each of these, apart
from the singular and plural forms of a word that are
encountered in most languages, Sanskrit also has a
separate dual form. Thus, a word can have up to 24 case-
inflected forms. Further, nouns in Sanskrit (and not just
the objects they indicate) are categorized into three
genders, masculine, feminine and neuter. Case-
inflections are defined based on the gender of the word.
Different rules for formulating declensions are laid down
based on the last letter of the word. For instance, the
case-inflections of the word rāma (masculine ending in
the letter a) is done differently compared to the case-
inflections of hari (masculine ending in the letter i).
Furthermore, there can be different rules of declension
for subspecies of words of a particular gender ending in a
specific letter. For example, the word forms generated as
case-inflections for the word dātṛ (meaning giver) are
different from those generated for bhrātṛ (meaning
brother), though both are masculine words ending in ṛ.

Nouns of all the three genders are generally dealt
with, in this context, in two categories: Ordinary
(sādhāraṇa-śabda) and special (viśeśa-śabda). A further
categorization within this is that into vowel-ending
words and consonant-ending words. The sādhāraṇa-
śabda of masculine gender of both the vowel-ending and
consonant-ending types form the subject matter of this
study and the schema and algorithms presented help
generate the case-inflected forms for such words.

A sample declension is given in Table 1, in both
the native Devanāgarī script of Sanskrit and the
English script, of the n-ending masculine word
राजन ्/rājan (meaning king).

3. THE PROBLEM COMPLEXITY

A simple search for the word राजन ्/rājan in a text

would clearly not yield the forms राजा/rājā or रा
/ेrājñe,

which respectively mean ‘the king’ and ‘for/to the king’,
which one would normally expect to show up in a text
search. In fact, out of the 24 inflections, only the

vocative singular form matches the original word in this
case, while the other 23 have a different spelling
altogether; in fact these 23 forms do not even contain
the original word as a substring. Thus, unlike in
European languages and other Indian languages as well,
case-inflections in Sanskrit effect changes in the very
form of the word, rather than simply providing extra
words to accompany the word or even appending
suffixes or prefixes to a basically unchanged word.
Thus, in order to carry out a comprehensive search on
Sanskrit text, it is imperative that case-inflected forms
also be searched for.

The ancient grammarian Pāṇini’s seminal work on
Sanskrit grammar, the Aṣṭādhyāyī (work in eight
chapters) (Vāmana and Jayāditya, 1984), devotes 370
aphorisms to case-inflective forms of nouns, as given in
the Siddhānta-kaumudī (Dīkṣita and Kaumudī, 1962), an
authoritative commentary on the Aṣṭādhyāyī. The
numerous rules laid down in these terse aphorisms are
used to build the inflection tables of any given noun.
There are thousands of nouns in Sanskrit and they are
categorized according to the inflection pattern they
follow. For instance, the n-ending masculines of the
sādhāraṇa-śabda class are categorized into seven types,
each following different declension rules resulting in
seven different types of case-inflection tables.

Another aspect of the problem is the redundancy
inherent in the case inflections. It is clear from Table 1
that there could be duplicates within the 24 inflected
forms of the word. These need to be eliminated. It must
be stated here that the duplicates occur in different cases
and numbers for different types of words.

The challenge in designing an algorithm to
generate all the case-inflected forms of a given word
that are relevant to the word search scenario, thus
involves the correct classification of a word into one
of the inflection categories and then the efficient
generation of required metamorphosed forms of the
word for the purposes of text search.

4. BASIS OF THIS STUDY

The book Śabdamañjarī by Vidyasagar K. L. V. Sastry
and Pandit L. Anantarama Sastri (Vidyasagar et al., 2002),
contains the declension tables for Sanskrit nouns
belonging to the various categories and is acknowledged
widely as a comprehensive consolidation of the relevant
Pāṇinian rules. This text has been used as a primary

basis for this study, with (Dīkṣita and Kaumudī, 1962;

Kasmir Raja S.V. et al. / Journal of Computer Science 10 (11): 2260-2268, 2014

2262 Science Publications

JCS

Vāmana and Jayāditya, 1984) being used to glean further
information wherever required.

5. DEVELOPMENT OF THE
COMPUTATIONAL ALGORITHM

The following control abstraction encapsulates the steps
involved in generating the search-related case-inflections.
GenerateInflections (X, g)
{// X is the given word and g its gender
Step 1: Let x be the last letter of X
Step 2: Find the word category C (if any), using g and x
Step 3: Compute x’, the basic transformation of x based

on g and C
Step 4: Parse the XML structure to retrieve the formulae

for this combination of x, g and C
Step 5: Perform the operations specified in the formulae

to generate the inflected forms of X}
The input word is taken from the user along with the

specification of its gender. As already stated, the
computational algorithm consists of two main steps,
which are to identify the category of the given word and
thereby the operations required to generate the required
inflectional forms and to then compute the inflectional
forms by performing those operations.

Details of Steps 2-5 are provided in the sections below.

6. WORD CATEGORIZATION

Step 2 of the above control abstraction is achieved
using a hashing algorithm in order that the process be
speeded up considerably. It must be noted here that there
is no rule such as one based on letters of the word, etc.,
that can be used to specify the category of the word. The
hash table here consists of words belonging to a specific
category organized within the categories of gender and
last letter. The hash value is computed based on the
gender of the word and its last letter. The table contains
word lists and the corresponding category only for those
categories of words that have the same gender and last
letter but differ in inflected forms. Buckets are used in
the hash table for each category to handle collisions,
which are inevitable because the input has information
only about the gender of the word and its last letter.

7. TERMINOLOGY

Before the specification of the formulae developed in
this study to compute the inflected forms, it is necessary
to introduce some terminology developed exclusively in
this study. On studying the inflectional word forms in

detail, it was determined that the last part of a word is
what changes when an inflectional form is produced,
with only the last letter being affected in most cases.
Based on this observation, a list of required basic
operations on the last letter of words was identified.

For any vowel x, the list of operations defined on x
are listed in Table 2.

The consonants of Sanskrit consist of semi-vowels,
mutes, sibilants and aspirate. The mutes are given in
Table 3 depicting the columns and rows.

All letters in Columns 1 and 2 are hard consonants and
those in Columns 3 and 4 are soft consonants. Column 5
comprises the nasal consonants. ‘Softening’ a consonant
means replacing it by its Column 3 equivalent, i.e., the
Column 3 letter in the same row as the given consonant. For
instance, softening the letter ‘c’ means that it is replaced by
the letter ‘j’. Similarly, ‘hardening’ a consonant means that
it is replaced by its Column 1 equivalent. Thus the letter ‘g’
when hardened, yields the letter ‘k’. The operation of
nasalizing converts the letter into the Column 5 letter lying
in the same row.

With this prelude, we now present definitions of
functions used in this study. Let X be the given search
word and let x denote its last letter. If x is a vowel, let xi
denote the eliding (lopa) of x, xd the lengthened form
(dīrgha) of x, xg the guṇa of x, xu the vṛddhi of x, xa the

ayāyāvāva equivalent of x, xy the yaṇ equivalent of x, as

defined in Table 2.
If x is a consonant, let xs denote the softened form of

x, xh the hardened form of x, and xn the corresponding
nasal form of x. Let xi, i = 1, 2, … 5 where x is a mute,
denote the equivalent letter in row i of the mutes.

Let xc denote the result of changing n to ṇ if
required in X. This function is based on Pāṇini’s
aphorism, ‘raṣābhyāṁ no ṇaḥ samānapade ||8.4.1||’
and two other related aphorisms, which specify
conditions under which the letter n in a word would be
replaced by ṇ (Raja et al., 2014).

The operations denoted by the suffixes can be
performed in succession and appropriately denoted. For
instance, xga indicates that the guṇa operation is first
applied to x and then the ayāyāvāva operation is applied
to the resultant. If the first operation is a lopa, then the
subsequent operation such as in xid implies that the
operation denoted by the suffix d is applied to the new
last letter x of X got after the eliding operation.

8. COMPUTATION OF x '

A detailed study and analysis of the declension tables
enumerated as per Pāṇini’s rules in (Dīkṣita and Kaumudī,

Kasmir Raja S.V. et al. / Journal of Computer Science 10 (11): 2260-2268, 2014

2263 Science Publications

JCS

1962), yielded observations that led to the formation
of the formulae for computing the inflectional forms.
The formulae were simplified by the introduction of
the pre-processing step of computing the value of x' as
a derivation from x, depending on g and C. This step
constitutes Step 3 of the control abstraction presented
in Section 5 above.

Table 4 shows how x’ is computed from x for all the
35 masculine word categories in the sādhāraṇa-śabda list.

Identification of the x’ values individually as shown
in Table 4 is a unique approach in the literature and as is
clear from the table, enables the option of clubbing of
word-endings and categories for the same operation
during processing. For instance, the operations for the
word categories shown in rows 2,4,5,6 and 7 apply the
same operation, xg, to compute x’ from x.

9. DEVELOPMENT OF FORMULAE TO
COMPUTE THE INFLECTIONAL

FORMS

A list of stems δi that are required to be appended
to words in order to produce the inflectional forms,
was identified for each category of words, keeping in
mind the availability of both the forms X and X'
corresponding to x and x’ respectively. Table 5 lists
the stems identified.

Though some of the stems in this list can be
constructed by appending two or more other stems in the
list, such compound stems were not eliminated because
they aid in simpler processing. In fact, each letter of the
Sanskrit alphabet could have been given a number and
considered an atomic stem and compound stems formed
from their combinations, but the priority aim of
simplifying the final formulae precluded this possibility.

Step 4 of the control abstraction presented in Section
5 above is now explained. A simple XML structure has
been developed, which lists the operations required to
compute the transformed words for each word category.
For example, the following shows the XML structure
developed for masculine words ending in ‘a’ and those
ending in ‘i ’. As given in Table 4, there are three
categories for masculine words ending in ‘i ’ and the
XML structure below groups transformations common to
all the three in the higher level of the hierarchy. The
transformations are specified as a comma-separated list.
The operation ‘+’ in the formulae denote simple string
concatenation. A unique feature of this XML structure is
that it represents an algorithm by itself apart from acting
as a hierarchical organization of data.

<Gender G = “masculine”>
 <LastLetter L = “a”>
 x + δ1, x’ + δ2, x’ + δ4, x + δ6, xd + δ7, (x’ + δ27)c, xd +

δ10, x’ + δ12, x’ + δ14, x’ + δ12 + δ16, xd + δ17, x + δ21, x
+ δ18, (xd + δ7 + δ20)c, x’ + δ13, x’ + δ13 + δ25

 </LastLetter>
 <LastLetter L = “i”>
 xd + δ7, x + δ10, x + δ11, x + δ16, (x + δ19)y, (xd + δ7

+ δ20)c, x + δ25
 <Category C = “1”>

x + δ1, xd, x’a + δ3, x + δ6, (x + δ28)c, x’a + δ13,
x’ + δ1, xi + δ2

 </Category>
 <Category C = “2”>
 X’ + δ3, x’ i, x’ + δ2, x’ + δ5, xg
 </Category>
 <Category C = “3”>
 x + δ1, xd, x’a + δ3, x + δ6, (x + δ9)y, (x + δ13)y,

(x + δ15)y, (x + δ2)y
 </Category>
 </LastLetter>
 …
</Gender>

The forms of the given word X obtained after
computing the formulae got on parsing the XML
structure, are illustrated in Table 6.

As can be seen from the table, there are 16
transformations for words ending in ‘a’ and a total of 15, 16
and 16 transformations for Categories 1, 2 and 3 of words
ending in ‘i’ respectively. This reduction in the number of
transformations from 24 as mentioned in Section 2 above
has been brought about by eliminating repetitions and by
leaving out the original word if it itself appears as an
inflectional form. It has been found that over the 35
categories, a reduction in number of transformations can be
reduced by about 50-66% by eliminating the redundancies
that are inherent in the inflectional forms themselves.

10. OPTIMIZATION OF THE
COMPUTATIONAL MODEL

Since the requirement is only to find the inflectional
forms of words that are needed for a comprehensive
word-search and since the ‘+’ operation in the formulae
represents string concatenation, formulae of the types x +
δi and x + δi + δj contain the original word X as a
substring. Hence, for the current application of word
search, it is sufficient to consider only those
transformations that bring about some change in the
word other than appending a string to the word.

Kasmir Raja S.V. et al. / Journal of Computer Science 10 (11): 2260-2268, 2014

2264 Science Publications

JCS

Table 1. Case inflections of the n-ending masculine word rājan (meaning king)
Case Singular Dual Plural

1. Nominative (subject) राजा rājā राजानौ rājānau राजानः rājānaḥ
2. Accusative (object) राजानम ् rājānam राजानौ rājānau रा
ः rājñaḥ
3. Instrumental (by, with, through) रा
ा rājñā राज�ाम ् rājabhyām राजिभः rājabhiḥ
4. Dative (for, to) रा
 ेrājñe राज�ाम ् rājabhyām राज�ः rājabhyaḥ
5. Ablative (from, than) रा
ः rājñaḥ राज�ाम ् rājabhyām राज�ः rājabhyaḥ
6. Possessive (belongs to, has/have) रा
ः rājñaḥ रा
ोः rājñoḥ रा
ाम ् rājñām
7. Locative (in, on, at) राि
/राजिन rājñi/rājani रा
ोः rājñoḥ राजस ुrājasu
8. Vocative (calling out) (हे)
राजन ् (he)rājan (हे)
राजानौ (he) rājānau (हे)
राजानः (he) rājānaḥ

Table 2. Operations on vowels

x dīrgha guṇa vṛddhi ayāyāvāva yaṇ

1. a ā a ā - -
2. ā ā - - - -
3. i ī e ai - y
4. ī ī e ai - y
5. u ū o au - v
6. ū ū o au - v
7. ṛ ṝ ar ār - r
8. ṝ ṝ ar ār - r
9. ḷ ṝ al āl - l
10. e e e ai ay -
11. o o o au av -
12. ai ai - - āy -
13. au au - - āv -

Table 3. Table of mute consonants
1 2 3 4 5
1 k kh g gh ṅ
2 c ch j jh ñ
3 ṭ ṭh ḍ ḍh ṇ
4 t th d dh n
5 p ph b bh m

This is so because a search for the word ‘hari’ in a
text, would anyway identify inflectional forms such as
‘haribhyām’ and ‘haribhyaḥ’ and hence computing

such inflectional forms can be discarded. However,
such a search would not yield inflectional forms such
as ‘haraye’, ‘ harī’, ‘ hare’ and ‘hareḥ’, whereby the

corresponding formulae have to be retained.
It may seem from the above examples that a search

for the word X after performing the single operation xi
would suffice, because anyway X is a substring of all
the inflectional forms. For example, all the
inflectional forms for the word ‘hari’ have ‘har’ as a
substring. However, such trivialization is impossible
for many words such as those ending in consonants, as
is clear from Table 4. The example cited in Section 1
above is also a case in point.

Now the form ‘hare’ is represented as x’ and the form
‘hareḥ’ is computed from the formula x’ + δ1. When X’
with x’ as its last letter is searched for, all words computed
from formulae of the types x’ + δ1 and x’ + δi + δj would be
found. Similarly, a search for xd would yield all words
computed from formulae xd + δi and so on.

In the light of the above analysis, the XML structure
presented in Section 9 above is reduced to the following,
for the same examples of masculine words ending in ‘a’
and ‘i ’.
<Gender G = “masculine”>
 <LastLetter L = “a”>
 x' + δ2, xd, x’ + δ13, x’ + δ29
 </LastLetter>
 <LastLetter L = “i”>
 xd, xy
 <Category C = “1”>

Kasmir Raja S.V. et al. / Journal of Computer Science 10 (11): 2260-2268, 2014

2265 Science Publications

JCS

 x'a, x’, xi + δ2
 </Category>
 <Category C = “2”>
 x'a, x’, xi, xg
 </Category>
 <Category C = “3”>
 x'a, x’
 </Category>
 </LastLetter>
 …
</Gender>

As can be seen from the above XML structure,
there is a drastic reduction in the number of formulae
to be computed. Table 7 details the number of
computations required to generate search-related case-
inflections and the percentage of reduction in the
number of computations from the XML structure
presented in Section 9 above, for all the 35 categories
of masculine sādhāraṇa-śabdas.

Thus, on average, a reduction of more than 81% of the
computations has been achieved through this optimization.

Table 4. Computation of x’ for masculine words
 Example
x Category x’ X X’ Operation to get x’
1. a - rāma rām xi
2. i 1 e hari hare xg
3. 2 y sakhi sakhāy xva
4. 3 e pati pate xg
5. u - o guru guro xg
6. ṛ 1 r pitṛ pitar xg

7. 2 r nṛ nar xg

8. 3 r dātṛ dātār xv

9. ai - y rai rāy xa
10. o - au go gau xv
11. au - v glau glāv xa
12. c - k jalamuc jalamuk x1
13. j 1 k vaṇij vaṇik xh1

14. 2 ṭ rāj rāṭ xha

15. t 1 t marut marud xs
16. 2 n pacat pacan xn
17. 3 n dhīmat dhiman xn
18. 4 n mahat mahan xn
19. d - t suhṛd suhṛt xh

20. n 1 ñ rājan rājñ xll +“ñ”
21. 2 ā ātman ātmā xid
22. 3 n śvan śun xlll + “un”
23. 4 n yuvan yūn xllld + “n”
24. 5 o maghavan maghon xllll + “on”
25. 6 ā pathin panthā xlll + “nth ā”
26. 7 i karin kari xl
27. ś 1 ṭ viś viṭ xl + “ ṭ”
28. 2 k tādṛś tādṛk xl + “k”

29. ṣ - ṭ dviṣ dviṭ xl + “ ṭ”
30. s 1 o vedhas vedho xll + “o”
31. 2 o śreyas śreyo xll + “o”
32. 3 ṣ vidvas viduṣ xlll + “u ṣ”
33. 4 s puṁs pumāṁs xll + “māṁs”

34. 5 ṣ dos doṣ xl + “ ṣ”
35. h - ṭ lih li ṭ xll + “ ṭ”

Kasmir Raja S.V. et al. / Journal of Computer Science 10 (11): 2260-2268, 2014

2266 Science Publications

JCS

Table 5. Index of stems used in creating the inflectional forms
δ Stem δ Stem δ Stem

1 ḥ 14 āya 27 ena
2 au 15 uḥ 28 nā
3 aḥ 16 bhyaḥ 29 ai
4 āḥ 17 t 30 y
5 am 18 yoḥ 31 r
6 m 19 oḥ 32 u
7 n 20 ām 33 naḥ
8 a 21 sya 34 nau
9 ā 22 i 35 ān
10 bhyām 23 nām 36 nam
11 bhiḥ 24 su 37 āṁs
12 aiḥ 25 ṣu
13 e 26 āy

Table 6. Initial inflectional forms computed for sample words
X Inflectional forms computed
1 rāma rāmaḥ, rāmau, rāmāḥ, rāmam, rāmān, rāmeṇa,
 rāmābhyām, rāmaiḥ, rāmāya, rāmebhyaḥ,
 rāmāt, rāmasya, rāmayoḥ, rāmāṇām, rāme,rāmeṣu
2 hari hariḥ, harī, harayaḥ, harim, harīn, hariṇā,
 haribhyām, haribhiḥ, haraye, haribhyaḥ,
 hareḥ, haryoḥ, harīṇām, hariṣu, hare
3 sakhi sakhā, sakhāyau, sakhāyaḥ, sakhāyam,
 sakhīn, sakhyā, sakhibhyām, sakhibhiḥ, sakhye,
 sakhibhyaḥ, sakhyuḥ, sakhyoḥ, sakhīnām,
 sakhyau, sakhiṣu, sakhe
4 pati patiḥ, patī, patayaḥ, patim patīn, patyā,
 patibhyām, patibhiḥ, patye, patibhyaḥ, patyuḥ,
 patyoḥ, patīnām, patyau, patiṣu, pate

Table 7. Optimization statistics for masculine sādhāraṇa-śabdas

x Category Initial number of computations Reduced number of computations Extent of reduction (%)
1. a - 16 4 75.00
2. i 1 15 5 66.67
3. 2 16 6 62.50
4. 3 16 4 75.00
5. u - 15 4 73.33
6. ṛ 1 16 3 81.25

7. 2 17 3 82.35
8. 3 16 3 81.25
9. ai - 14 2 85.71
10. o - 15 3 80.00
11. au - 14 2 85.71
12. c - 14 2 85.71
13. j 1 14 2 85.71
14. 2 14 2 85.71
15. t 1 12 1 91.67
16. 2 13 2 84.62
17. 3 12 3 75.00
18. 4 12 3 75.00
19. d - 14 2 85.71

Kasmir Raja S.V. et al. / Journal of Computer Science 10 (11): 2260-2268, 2014

2267 Science Publications

JCS

Table 7. Continue
20. n 1 15 2 86.67
21. 2 14 2 85.71
22. 3 14 3 78.57
23. 4 14 3 78.57
24. 5 14 3 78.57
25. 6 14 3 78.57
26. 7 16 3 81.25
27. ś 1 14 2 85.71
28. 2 13 2 84.62
29. ṣ - 13 2 84.62

30. s 1 14 2 85.71
31. 2 14 1 92.86
32. 3 16 3 81.25
33. 4 16 3 81.25
34. 5 14 2 85.71
35. h - 14 2 85.71
Total 504 94 81.35

11. CONCLUSION

A new method for computation of case-inflections has
been designed for this study, which makes the inflectional
form generation more efficient compared to related work in
the literature (Huet, 2004a; 2014b; Goyal et al., 2012;
Huet, 2005; 2009; Goyal and Huet, 2013; Huet, 2003;
2006; 2008; Bhadra et al., 2009; Jha and Jha, 2005;
Selot et al., 2010; Jha et al., 2009). The introduction of
functions that carry out some basic operations of
euphonic conjunctions and the appropriate introduction
of a basic transformed form X’ of the given word as a
pre-processing step has greatly enhanced the efficiency
of the inflectional form generator.

This efficiency enhancement can be illustrated with a
couple of examples. The words pitṛ and dātṛ, though

masculine and ending in the same vowel ‘ṛ’, produce

different declension tables. The former gives rise to
inflectional forms such as pitarau, pitaraḥ and pitaram,

while the latter to forms such as dātārau, dātāraḥ and

dātāram. However, before going in for computing the
inflectional forms, the algorithm presented in this study
generates the X’ forms, which are, respectively, pitar and
dātār as shown in Table 4. Once this is done, there is no
difference in the declension formulae for the two words.
Similar is the case of formulae with regard to masculine
words ending in c, j, d and h – the formulae are identical
once X’ is appropriately computed as per Table 4. Also,
masculine words ending in ś and ṣ are also found to have

only one or two dissimilarities with the formulae used to
generate the inflectional forms for c, j, d and h. Hence

the algorithm is simplified and there are only a few cases
that need to be handled.

Moreover, the optimizing scheme presented above
for the sake of generating only those inflectional forms
that are required in a search algorithm increases the
efficiency by an average of more than 80% as shown.
This is unprecedented in the literature.

12. ADDITIONAL INFORMATION

12.1. Funding Information

No funding agency involved.

12.2. Author’s Contributions

All authors contributed extensively to the work
presented in the paper. All three authors held detailed
discussions together in the problem identification and
solution conceptualization stages of the work.

Dr. Kasmir Raja: Primarily involved in the solution
conceptualization and guided the others in the
formulation of the control abstraction and in developing
the algorithm. He reviewed the work at every stage and
provided guidance and shaped the work. He finally
thoroughly reviewed and vetted the work.

Ms. Rajitha V.: Responsible for formulating the
control abstraction and developing the algorithm. She
worked out the complete, extensive XML structures,
implemented the algorithms and performed rigorous
testing.

Dr. Meenakshi Lakshmanan: Provided inputs for
the Sanskrit language, analysed the efficiency of the

Kasmir Raja S.V. et al. / Journal of Computer Science 10 (11): 2260-2268, 2014

2268 Science Publications

JCS

algorithm and proposed the optimization of the
computational model. She wrote the paper.

12.3. Ethics

There are no ethical issues involved in this article.

13. REFERENCES

Bhadra, M., S.K. Singh, S.K. Subash, M.R. Agrawal
and G.N. Jha et al., 2009. Sanskrit Analysis
System (SAS), Sanskrit computational linguistics.
Lecture Notes Comput. Sci., 5406: 116-133.

Dīkṣita, B. and S. Kaumudī, 1962. Translated by Śrīśa

Candra Vasu. Motilal Banarsidas Publishers, Delhi.
Goyal, P. and G. Huet, 2013. Completeness analysis

of a Sanskrit reader. Proceedings of the 5th
International Symposium on Sanskrit
Computational Linguistics, (SCL’ 13), Mumbai.

Goyal, P., G. Huet, A. Kulkarni, P. Scharf and R. Bunker,
2012. A distributed platform for Sanskrit processing.
Proceedings of the 24th International Conference on
Computational Linguistics, (CCL’ 12), Mumbai.

Huet, G., 2003. Towards computational processing of
sanskrit, ICON-2003, Mysore, India. Proceedings
of the Central Institute of Indian Languages, (IIL’
03), Mysore, pp: 40-48.

Huet, G., 2004a. Design of a lexical database for
Sanskrit. Proceedings of the Workshop on
Enhancing and Using Electronic Dictionaries,
(UED’ 2004), Stroudsburg, PA, USA, pp: 8-14.

Huet, G., 2004b. Lexicon-directed segmentation and
tagging of Sanskrit. Proceedings of the 12th World
Sanskrit Conference, (WSC’ 04), Helsinki, Finland.

Huet, G., 2005. A functional toolkit for morphological and
phonological processing, application to a Sanskrit
tagger. J. Functional Programm., 15: 573-614.

Huet, G., 2006. Shallow syntax analysis in Sanskrit
guided by semantic nets constraints. Proceedings
of International Workshop on Research Issues in
Digital Libraries, (IDL, 06), Kolkata.

Huet, G., 2008. Formal structure of Sanskrit text:
Requirements analysis for a mechanical Sanskrit
processor. Proceedings, 2nd International
Symposium on Sanskrit, Computational Linguistics,
(SCL’ 08), Brown University, Providence.

Huet, G., 2009. Sanskrit segmentation. South asian
languages analysis roundtable XXVIII, Denton, Texas.

Jha, S. and G.N. Jha, 2005. Morphological analysis of
nominal inflections in Sanskrit. Proceedings of the
Platinum Jubilee International Conference, (JIC’
05), Hyderabad University, Hyderabad, pp: 34-34.

Jha, G.N., M.A. Subash, S.K. Mishra, D. Mani and D.
Ishra et al., 2009. Inflectional morphology analyzer
for Sanskrit, Sanskrit computational linguistics.
Lecture Notes Comput. Sci., 5402: 219-238.

Raja, S.V.K., V. Rajitha and M. Lakshmanan, 2014.
Computational algorithms based on the paninian
system to process euphonic conjunctions for word
searches. Int. J. Comput. Sci. Inform. Security,
12: 64-76.

Selot, S., A.S. Zadgaonkar and N. Tripathi, 2010.
Subanta pada analyzer for Sanskrit. Oriental J.
Comput. Sci. Technol., 3: 89-93.

Vāmana, and K. Jayāditya, 1984. With the
subcommentaries of Jinendrabuddhi. Haradatta
Miśra and Dr. Jaya Shankar Lal Tripathi, Tara Book
Agency, Varanasi.

Vidyasagar, K.L., V. Sastry and L. Pandit, 2002.
Anantarama Sastri. Śabdamañjarī, R.S. Vadhyar and
Sons Publishers, Palghat, India.

