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ABSTRACT 

In the last years the development of interactive Computer-based methods for building virtual and 
physical 2.5D models from single shaded images faced with an exponential growth. In particular, a 
wide range of methods based on image processing-based procedures and on Shape From Shading 
(SFS) can be documented. On the basis of the most favorable techniques devised in literature, the 
present work describes an improved interactive method capable of retrieving 2.5D models using image 
shading information. The pro-posed method performs a SFS-based reconstruction where (1) the overall 
geometry of the expected surface is first recovered and (2) the final 2.5D reconstruction is obtained by 
minimizing a suitable functional  using the rough surface as an initialization function. The method 
improves previous interactive works by introducing a novel two-step rough surface recovery and a new 
definition of a functional to be minimized for solving the SFS problem. Tested against a set of case 
studies the proposed method proves to be effective in providing 2.5D models. 
 
Keywords: Shape From Shading, Image Processing, Interactive Reconstruction, 2.5D Model, Minimization 

1. INTRODUCTION 

In recent years a strong improvement of Computer-
based methods for retrieving shapes from single shaded 
images can be documented (Remondino and El-Hakim, 
2006; Stylianou and Lanitis, 2009; Muruganathan et al., 
2014). This is particularly true when dealing with 
simplified 3D models (Algabary et al., 2014; Vani et al., 
2012), such as virtual bas-relief representations (also 
named 2.5D models). A digital bas-relief delivers a 
volumetric projection of shapes into the viewer's space, 
so that it is detached from the two-dimensional 
background (Kerber et al., 2010); as a result, a nearly flat 
surface maintaining as much as possible the perception 
of the full 3D scene can be generated (Weyrich et al., 
2007). A major issue in the retrieval of this “nearly 3D 
shape” is that it results in an ill-posedness of problem as 
stated by (Tsai and Shah, 1994) consequently, relevant 
literature works are typically aimed to solve it under 

certain circumstances, often by means of user interaction. 
Image embossing (Huang et al., 2011; Golchin et al. 2013) 
is one of the most used methods for recovering a 2.5D 
model from single image. It consists of a computer-based 
method where each pixel, for a given image, is replaced 
either by a highlight or a shadow, depending on light/dark 
area boundaries on the original image. The result visually 
resembles a bas-relief but, due to the algorithm based on 
image gradient computation, depth is reconstructed in an 
inconsistent way. Other techniques (e.g., the one 
proposed by Sun et al., 2009)  for improving 
embossing-based methods have been proposed so far, 
mainly based on image pre-processing such as 
histogram equalization and image enhancement. 

Also into commercial software packages, like JD Paint 
(Wang et al., 2010) and Art CAM (www.artcam.com), are 
developed specific tasks for 2.5D reconstruction. However, 
these packages are mainly CAD modelers where user 
interaction is a strongly required in both the pre and post-
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processing phases. Another widely known technique, 
besides implemented in commercial software, is the so-
called “image inflation”. This technique consists in 
constraining the outlines of the object to be virtually 
reconstructed (Igarashi et al., 2007; Repenning, 2005) and, 
subsequently, in inflating the surface. A different 
perspective in 2.5D model reconstruction is provided by 
Shape From Shading (SFS) techniques, a set of compu-
tational approaches whose main aim is to re construct the 
three-dimensional shape of a surface depicted in a single 
grey-level image. In detail, as described by (Durou et al., 
2008), SFS methods are based on the hypothesis that the 
image pixel brightness linearly depends on the angle 
between the surface normal and the direction of scene 
illumination. Even if SFS proves to be effective in 
reconstructing shapes of shaded objects, unfortunately they 
prove to be unsuitable for producing high-quality bas-reliefs 
(Wang et al., 2010) unless a certain degree of human 
interaction is provided. To overcome this drawback, a 
number of interactive methods have been proposed 
(Daniel and Durou, 2000; Wu et al., 2008); as a matter of 
fact, interactive SFS methods may be considered among the 
best candidate techniques for generating high quality 2.5D 
models starting from single images. For this reason, in a 
previous authors’ paper (Governi et al., 2014) a method 
combining image filtering and SFS for retrieving 2.5D 
models starting from single images was proposed. In the 
above cited approach, authors minimize a suitable 
functional (i.e., the so called SFS problem) consisting of 
two terms, namely brightness and smoothness constraints. 
The minimization is carried out using as initialization 
function a surface roughly resembling the shape of the 
image to be reconstructed (i.e., a smoothed version of the 
original shaded image). This is obtained by applying a 
Gaussian low-pass filter. Even if the results of this method 
are quite robust, the use of a Gaussian filter introduces two 
variables to be set: The size of filter kernel and the value of 
Gaussian standard deviation. Moreover, the former method 
requires a manual, optimal, setting of a weight applied on 
smoothness constraint; the greater is the chosen value, the 
smoother is the retrieved solution. Accordingly, with the 
aim of improving the method proposed in (Governi et al., 
2014) the present work describes a 2.5D reconstruction 
method where the smoothed surface used for initializing the 
SFS problem is obtained by using a proper polynomial 
approximation of the (discrete) surface built from theimage 
height map. This allows the definition of a smoothed 
surface without the need of taking into account filter kernel 

and standard deviation. Moreover, the 2.5D model retrieval 
is obtained by minimizing a new, improved and functional 
where both smoothness and brightness constraint are 
weighted. As described below, once the initialization 
function is obtained, the setting of the weights for the two 
constraints results quite easy. 

2. MATERIALS AND METHODS 

The proposed method starts from a given shaded 
digital image of the object to be reconstructed into a 
2.5D representation and consists of the following main 
steps, as described in Fig. 1: 
 
• Definition of a suitable functional E 
• Image Processing-based high frequency details 

removal 
• Retrieval of a rough solution R1 by minimizing a 

modified error functional Ê obtained using as input 
the new starting image 

• Retrieval of a rough solution R2 by minimizing the 
functional E with high smoothness values and using, 
as input, the original image 

• Retrieval of the rough solution R as a linear 
combination of R1 and R2 

• Retrieval of the final surface (digital 2.5D model) 
using R as initialization function for a Gauss-Seidel 
iterative procedure with Successive Over Relaxation 
(SOR) method 

 
2.1. Definition of a Suitable Functional E 

The first step consists in the definition of a suitable 
functional whose minimization allows to recover the 
expected shape of the object. In this work, such a 
functional is obtained under the following specific 
hypothesis, usually adopted in almost all SFS-based 
techniques: The surface to be reconstructed is completely 
diffusive (i.e., Lambertian); the albedo is constant in the 
entire reconstruction domain; the light source is set at 
infinity; image is free from perspective distortion. 

If all the above conditions are fulfilled, it is 
possible to state the historically known SFS problem 
(Horn, 1970) Equation 1: 
 

 
1

L N I
ρ

⋅ =
� �

 (1) 

 
where, is the unit-vector opposed to light direction,   is 
the outward unit-length vec-tor normal to the surface 
(unknown of the problem),  is the albedo and   is the 
image brightness; since starting image is grayscale, this 
term indicates both the image and its brightness. 
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Fig. 1. Original image I. The image is obtained by authors 

start-ing from a sphere properly modelled using a CAD 
software and providing a virtual illumination of the scene 

 
This equation, where the unknown is the vector, is 

usually expressed using surface gradient   as unknown 
term thus resulting in the following non-linear Partial 
Differential Equation 2 (PDE): 
 

21
1 ( , ) 0x y zI z l l z l

ρ
+ ∇ + ⋅ ∇ − =  (2) 

 
Several works are in literature for solving 

Equation1, mainly based on direct methods (Kimmel and 
Bruckstein, 1995; Prados et al., 2006; Rouy and Tourin, 
1992), minimization methods (Frankot and Chellappa, 
1988; Governi et al., 2013; Horn, 1990; Ikeuchi and 
Horn, 1981), local approximation methods (Lee and 
Rosenfeld, 1985) and linear approximation methods 
(Tsai and Shah, 1994). 

Among them, minimization methods are 
acknowledged to afford the right compromise between 
efficiency and flexibility leading to robust results also 
when the starting point consists of a noisy image or 
imprecise illumination settings (e.g., guessed light 
direction when unknown). Minimization methods are 
based on the hypothesis that the expected (reconstructed) 
surface is the one that minimizes a suitable functional, 
composed by the sum of several contributions (called 
“constraints”) and usually representing the error between 
the (iteratively) reconstructed surface and the expected 
one. In the present work, such a functional is built as a 
linear combination of brightness   and smoothness 
constraints, as follows Equation 3 to 5: 
 

1 2( ) ( ) ( )E I B I S Iλ λ= +  (3) 
 
where, 
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and where i is the pixel index, j is the index of a generic 
pixel belonging to the 4-neighbourhood of ith pixel, I is the 
brightness of pixel i (range [0-1]), iN

�

 and   are the unit 
length vectors normal to the surface (unknown) in positions 
i and j, 1λ  is a regularization factor for brightness constraint 
and 1λ is a regularization factor for smoothness constraint. 

Since both of the two constraints -B (I) and S (I)-are 
quadratic, the resulting functional is a quadratic form too. 

Let now  Φ be the array containing the elements of 
all iN
�

defined as follows Equation 6: 

1 2 1 2 1 2[ , ,..., , , ,..., , , ,..., ]y
k k k T

x x x y y z z zn n n n n n n n nΦ =  (6) 

 
where, is the overall number of pixels; as a result, the 
functional can be rewritten in a matrix form Equation 7: 
 

1
( ) ( )

2
T TE I A I b c= Φ Φ + Φ +  (7) 

 
Whose minimization can be carried out by 

minimizing its gradient Equation 8:  
 

bIAIE +Φ=∇ )())((  (8) 
 
where, A(I) (size k×k  ) is a sparse symmetric matrix. 
Depending on values set for regularizing smoothness and 
brightness constraint, the definition of A(I) values changes 
considerably i.e., a different functional can be defined for 
any choice of values 1λ  and 1λ . The indirect minimization 
of the functional expressed in Equation 8 allows to provide 
the final solution of the SFS problem, i.e., the expected 
surface. The minimization can be accomplished by applying 
well known linear methods (e.g., Jacobi, Gauss-Seidel, 
Successive-Over-Relaxation (SOR) etc.) since they provide 
fast convergence to a minimized (optimized) solution. 

2.2. High Frequency Details Removal 

Depending on the values selected for1λ  and 1λ the 

surface reconstruction may differ in terms of higher 
details (using higher values for) or higher smoothness 
(using higher values for1λ ). A correct balancing between 

the two regularizing factors could allow a reliable 
reconstruction by taking into account both contributions. 
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However, unrelatedly of the method used for 
minimizing Equation 8, one of the main drawbacks of 
direct minimization is that it often falls to the nearest 
local minimum (instead of the global ones). 
Consequently, the optimal setting of regularizing factors 
is not sufficient to guarantee a correct reconstruction.  

In order to overcome this shortfall, minimization 
algorithms need to be suitably initialized by imposing an 
initial guess to the solution. A convenient way to provide a 
reliable initial guess of the final solution (i.e., to initialize 
properly the minimization procedure) consists of creating a 
low-frequency version of the desired surface. A known 
method for discarding image high-frequency details is to 
use a convenient low-pass filter; by way of example, in 
(Governi et al., 2014) a Gaussian filter is used as a main 
step for retrieving the rough surface. However, smoothing 
filters are kernel-based operators and, therefore, their 
effectiveness depends on kernel dimension and neighbor 
pixel values. With the aim of retrieving a rough surface 
globally, i.e., regardless of the local pixel values and the 
kernel size, in the present work a surface approximation of 
image height map using polynomial approximation is used. 

Let accordingly I be the original image to be 
reconstructed (Fig. 1). Such an image has been obtained 
using a digital object whose virtual illumination has been 
provided under a CAD software environment. Using 
brightness as an elevation factor, it is possible to build a 
height map H for the original image (Fig. 2). Obviously, 
higher values in the height map are located in 
correspondence of the higher brightness values i.e., in 
the areas where scene illumination insists. 

Once H is defined, by means of a least-square 
approximation using a cubic polynomial approximation 
it is possible to discard brightness contribute due to both 
high frequency details and illumination so as to retrieve a 
surface Γ resembling a very smoothed surface. 

In Fig. 3 the surface Γ is over-imposed to the original 
(discrete) set of data. 

The surface Γ strongly differs from the one 
obtainable using, for instance, a smoothing filter (see for 
instance Fig. 4 where a Gaussian filter is applied to the 
original image and a surface is then retrieved using 
brightness as surface height). Figure 5a shows the image 
Î resulting from the application of the proposed method; 
compared with the image obtained using a Gaussian 
filter (Fig. 5b) it can be visually noticed a more uniform 
gray level obviously due to the approximating surface Γ. 

2.3. Retrieval of a Rough Solution R1 

Once the surface is obtained, it is possible to solve 
the SFS problem by minimizing the functional described 

by Equation 3 and using as an initialization function. The 
minimization procedure requires setting a series of 
Boundary Conditions (BCs). In the present work, a user-
based procedure has been adopted for imposing such 
BCs. The description of the best BCs to be imposed for 
solving this kind of minimization problem (beyond the 
scope of the present work) has been extensively 
discussed in (Governi et al., 2013). On the basis of this 
work, the BCs taken into account are the following ones: 
Background, singular points (boundary white and white 
points) and silhouette contour (Fig. 6). 

Such BCs are set by means of an interactive GUI 
(Fig. 7) developed using MATLAB® environment. 

First, the user is required to select a single point in 
the image belonging to the object background. An 
automatic procedure has been implemented for detecting 
the overall background and setting the vertical unit-
normal in all the background points so that they are built 
perfectly horizontal in the final 2.5D model. 

Then, analogously to the BC taken for the 
background points, user has to set a specific unit normal 
vector for all the singular points (i.e., white points in 
image) and their boundaries. 

For such points the brightness level of the image 
reaches its maximum value (equal to 1); as a 
consequence the unit normal is set (by an appositely 
devised procedure) so that it coincides with vector L. 

Finally, again by user interaction, it is necessary to 
set the value of the unit normal around its silhouette (i.e., 
on its outline), as inward or outward-pointing depending 
on the kind of surface, respectively convex or concave. 
This assumption, valid when the object represented may 
be clearly separated from the background (i.e., for all 
real shapes) is meant to determine the coarse volume of 
the shape. Once the BCs are set, the GUI allows 
inspecting (see the histogram positioned upper left in 
the GUI) the number of imposed conditions for each of 
the described BCs. Moreover, the devised interface 
allows to check the possible over-imposition of 
constraints; in case more different conditions are 
imposed to the same point, a procedure for removing 
the redundant BCs starts. Once the user is satisfied by 
the imposed BCs, the procedure provides, as output, a 
modified matrix formulation of the gradient where the 
number of unknown is reduced (since the unit normal 
for each point with imposed BC is obviously solved). 

The modified formulation is the following Equation 9: 
 
 ˆ( ( ))E I A bγ γ γ∇ = Φ +  (9) 

 
Where Ey (I), Ay, By  and Φ are the “reduced” versions 
of, respectively, E (I), A, B and Φ. Minimizing Equation 
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9 means recovering 2.5D model for the smoothed image. 
For this aim, the regularizing factor   is set equal to 1 
while 2λ  is set equal to 10-2. As already mentioned, 
the main strength in minimizing the functional here is 
the use of the surface as initialization function. 
Minimization is carried out using a Gauss-Seidel 
iterative procedure with Successive Over Relaxation 
(SOR) method (Ikeuchi and Horn, 1981). 
Minimization procedure is stopped after a predefined 
number i of iterations whose value depends on the 
image size n x m. In particular the number of 
iterations is set equal to 0.1 x n x m. The final result of 
this step consists of a normal map Φ from which, using 
the approach described by (Tsai and Shah, 1994), it is 
possible to exactly retrieve the surface R1 that 
generates a low-frequency version of the final, 
desired, surface. In Fig. 8 the surface obtained starting 
from image in Fig. 5a is provided. 

2.4. Retrieval of a Rough Solution 

Despite the rough solution R1 visually resembles the 
overall geometry of the original image, the image filtering 
could have been, generally speaking, removed too much 
details. In order to partially overcome this possible 
drawback, another rough solution (R2) is evaluated. Such a 
surface is retrieved by minimizing the functional of 
Equation 3 using a low value for   (e.g., = 0.2) and a high 
value for   (e.g., = 2). This approach allows to obtain a 
very smoothed surface (see Fig. 9). 

2.5. Retrieval of the Rough Solution R as a 
Linear Combination of R1 and R2   

Since two versions of a smoothed surface visually 
resembling the overall geometry of the original image 
are available, a final rough solution R can be obtained 
as a linear combination of R1 and R2. In this work the 
weights of the linear combination are set equal to 0.5 
so as the surface R coincides with the mean value 
between R1 and R2. 

2.6. Retrieval of the Final Surface 

As already stated, one of the main strength of the 
proposed procedure rely in the fact that the 
minimization procedure can provide a more reliable 
solution if the iterative process is guided by initial 
guess of the final surface. In such terms, the low-
frequency surface R can be an effective initialization 
surface. Accordingly, once the surface R is obtained, 
it is possible to compute its normal map ΦR and to use 
it for initializing Equation 8. Minimization can then 
proceed using again a Gauss-Seidel iterative 
procedure with Successive Over Relaxation (SOR) 
method. The regularizing factors λ1and λ2 are now 
balanced (e.g., both equal to 1). 
The resulting normal map is, eventually, converted in 
the final surface   using the approach proposed by 
(Wu et al., 2008). In Fig. 10 the surface   obtained for 
the exemplificative case of Fig. 1 is shown.

 

 
 

Fig. 2. Height map (H) obtained for image I 
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Fig. 3. Smoothed surface Γ over-imposed on the original data set 

 

 
 

Fig. 4. Surface obtained by filtering original data with a Gaussian filter 
 

 
 (a) (b) 
 
Fig. 5. (a) Image resulting from the application of the proposed method; (b) image resulting from the application of a Gaussian filter 
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 (a) (b) 

 

 
 (a) (b) 

 
Fig. 6. (a) Background BC; (b) Singular point-boundary white BC; (c) Singular point-white points BC; (d) Silhouette contour BC 

 

 
 

Fig. 7. GUI devised under MATLAB® environment. The GUI allows the user to interactively set the BCs 
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Fig. 8. Surface R1 obtained by minimizing Equation 9 
 

 
 

Fig. 9. Surface obtained by applying the SM method [GC1] with high regularizing factor for brightness constraint 
 

 
 

Fig. 10. Final surface obtained by minimizing Equation 8 using the surface as initialization function 
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3. CASE STUDIES 

The devised method has been tested against an 
extensive set of case studies in order to highlight 
strengths and possible weaknesses. In the present paper 
two of them are reported.  

3.1. Case Study 1: Old Man’s Head 

The first case study consists of a grayscale image 
representing an old man’s head detailed with several 
features such as: The wrinkles on the skin and the 
parietal branch of the superficial temporal artery on 
the temple (Fig. 11). 

In Fig. 12  the    height  map  of the  original  
image  is  shown. 
 Using the approach described above, the polynomial 
approximation Γ can be easily retrieved (Fig. 13).  

Using Γ as initialization function it is possible to 
retrieve the surface R1 (Fig. 14) using the approach 
described in section 2.3. 

By using the approach described in section 2.4. It is 
possible to retrieve surface R2 (Fig. 15). 

Finally, surface R is evaluated as a linear 
combination of R1 and R2. Such a surface is shown in 
Fig.16. As it is clearly visible in Fig. 17a, the final 
results obtained by minimizing the functional of 
Equation 3 using   as initialization function and 

balancing the regularizing factors closely resembles 
the expected surface. It has to be noticed that even 
finest details, as wrinkles or veins, have been 
correctly reconstructed. Conversely, the result 
obtained using image embossing-based techniques 
(Fig. 17b) is significantly worse thus demonstrating the 
effectiveness of authors’ method with respect to such a 
traditional one. 

3.2. Case Study 2: Darth Vader Helmet 

The second case study is a synthetic image 
representing the legendary Darth Vader helmet (Fig. 
19a). Using the proposed procedure, it is possible to 
retrieve the 2.5D model of Fig. 19b. 

Since the ground truth is available for this case 
study, a color map of the absolute distance between 
the retrieved surface and such a ground truth (Fig. 14) 
has been produced in order to highlight the existing 
differences. The analysis of Fig. 19a and b points out 
that the proposed method provides good results in 
reconstructing 2.5D models from single shaded 
images. In particular, referring to the color map of 
Fig. 20 it can be observed that the final reconstruction 
generally resembles the original image. Moreover an 
absolute error within 10% is obtained for the second 
case study; this can be considered reasonable for this 
kind of representations.

 

 
 

Fig. 11. Old man’s head original image 
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Fig. 12. Old man’s head height map 
 

 
 

Fig. 13. Polynomial approximation Γ of the old man’s head original height map 
 

 
 

Fig. 14. Surface obtained for old man’s head image 
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Fig. 15. Surface obtained for old man’s head image 
 

 
 

Fig. 16. Surface R obtained for old man’s head image 
 

 
 (a) (b) 
 

Fig. 17. (a) 2.5D model obtained with the proposed method; (b) 2.5 D model obtained using a traditional embossing method 
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Fig. 19. (a) Synthetic image representing a shaded version of Darth Vader helmet; (b) 2.5D Model retrieved using the proposed method 
 

 
 

Fig. 20. Color map of the absolute distance between the retrieved surface and such a ground truth 

 
Table 1. Computational time for differently sized images 
Image size [pixels x pixels] Number of iterations Convergence time [s] ([min]) Time per iteration [ms] 
100×100 10000 4.00000 4.00 
200×200 40000 22.00000 5.50 
500×500 25000 326 (5.43) 13.04 
1000×1000 100000 3124 (52.06) 31.24 

 
4. CONCLUSION 

The present work described an improved 
interactive method for single image based surface 
reconstruction obtained by improving the approach 
proposed in (Governi et al., 2014). The reconstruction 

was performed starting from the retrieval of a 
preliminary surface R roughly resembling the desired 
digital 2.5D model. Such a surface, created as a linear 
combination of two surfaces, one obtained by removing 
high frequency details from original image and the 
other one obtained using an interactive SFS-based 



Furferi Rocco et al. / Journal of Computer Science 10 (10): 2141.2154, 2014 

 
2153 Science Publications

 
JCS 

method, was used as to initialize a properly defined 
functional in order to guide the minimization process. 

Minimization has been carried out using an improved 
functional where both smoothness and brightness constraint 
are weighted using appropriate regularizing factors. 

 Results obtained for a set of case studies show that 
the proposed method provides effective results. 

Once the user has set the boundary conditions 
using the devised GUI, the time the minimization 
algorithm takes to converge depends on the image size 
and on PC architecture. In order to provide an 
estimate of process time let’s consider a PC with Intel 
Core i7 processor at 2.6 GHz and 16 Gb RAM. 
Results, in terms of convergence time, for differently 
sized images are shown in Table 1. As already 
mentioned, the number of iterations itself depends on 
image size and this is one of the main reasons while 
time increases exponentially. Moreover, 
computational time for each iteration increases due to 
the fact that the number of variables to take into 
account increases linearly with the number of 
unknowns. Nonetheless, for practical uses, since an 
image sized 500×500 can be considered a good 
starting point for 2.5D model reconstruction, about 6 
minutes is a more than acceptable computational time. 

Future works will be addressed in testing the 
procedure on more natural images and in implementing 
different minimization techniques also taking into 
account possible improvements in reducing 
computational time. 

5. ACKNOWLEDGMENT 

Authors  wish  to  thank  Prof.  Alessandra  Papini 
and Prof.  Stefania Bellavia  for  giving  us  some  
hints about  implementation  strategies to be  used in 
minimization  techniques. 

6. REFERENCES 

Algabary, K.M.S., K. Omar and M.J. Nordin, 2014. 3-
Dimensional ear recognition based iterative closest 
point with stochas-tic clustering matching. J. 
Comput. Sci., 10: 477-483. DOI: 
10.3844/jcssp.2014.477.483 

Daniel, P. and J.D. Durou, 2000. From deterministic to 
stochastic methods for shape from shading. 
Proceedings of the 4th Asian Conference on 
Computer Vision, (CCV’ 00), Pennsylvania State 
University, pp: 187-192. 

Durou, J.D., M. Falcone and M. Sagona, 2008. 
Numerical me-thods for shape-from-shading: A new 
survey with benchmarks. Comput. Vision Image 
Understand., 109: 22-43.  DOI: 
10.1016/j.cviu.2007.09.003 

Frankot, R.T. and R.A. Chellappa, 1988. A Method for 
enforcing integrability in shape from shading 
algorithms. IEEE Trans.  Pattern Anal. Mach. 
Intelligence, 10: 439-451. DOI: 10.1109/34.3909 

Golchin, M., F. Khalid, L.N. Abdullah and S.H. 
Davarpanah, 2013. Shadow detection using color 
and edge information. J. Comput. Sci., 9: 1575-
1588. DOI: 10.3844/jcssp.2013.1575.1588 

Governi, L., R. Furferi, L. Puggelli and Y. Volpe, 2013. 
Improv-ing surface reconstruction in shape from 
shading using easy-to-set boundary conditions. Int. 
J. Comput. Vision Robotics, 3: 225-247. DOI: 
10.1504/IJCVR.2013.056041 

Governi, L., M. Carfagni, R. Furferi, L. Puggelli and Y. 
Volpe, 2014. Digital bas-relief design: A novel 
shape from shading-based method. Comput. Aided 
Design Appled, 11: 153-164. DOI: 
10.1080/16864360.2014.846073 

Horn, B.K., 1970. Shape from shading: A method for 
obtaining the shape of a smooth opaque object from 
one view. MIT Artificial Intelligence Laboratory 
Technical Report no. 232. 

Horn, B.K., 1990. Height and gradient from shading. Int. 
J. Comput. Vision, 5: 37-75. DOI: 
10.1007/BF00056771 

Huang, Z.K., X.W. Zhang, W.Z. Zhang and L.Y. Hou, 
2011. A, New embossing method for gray images 
using Kalman filter. Applic. Mech. Mater., 39: 488-
491. DOI: 10.4028/www.scientific.net/AMM.39.488 

Igarashi, T., S. Matsuoka and H. Tanaka, 2007. Teddy: A 
sketching interface for 3D freeform design. ACM, 
SIGGRAPH. DOI: 10.1145/1281500.1281532 

Ikeuchi, K. and B.K. Horn, 1981. Numerical shape from 
shading and occluding boundaries. Artificial 
Intelligence, 17: 141-184, DOI: 10.1016/0004-
3702(81)90023-0 

Kerber, J., A. Tevs, A. Belyaev, R. Zayer and H. Seidel, 
2010. Real-time generation of digital bas-reliefs. 
Compu. Aided Design Applic., 7: 465-478.  DOI: 
10.3722/cadaps.2010.465-478 

Kimmel, R. and A.M. Bruckstein, 1995. Tracking level 
sets by level sets: A method for solving the shape 
from shading problem. Comput. Vision Image 
Understand., 62: 45-78.  DOI: 
10.1006/cviu.1995.1040 



Furferi Rocco et al. / Journal of Computer Science 10 (10): 2141.2154, 2014 

 
2154 Science Publications

 
JCS 

Lee, C.H. and A. Rosenfeld, 1985. Improved methods of 
estimating shape from shading using the light source 
coordi-nate system. Artificial Intelligence, 26: 125-
143. DOI: 10.1016/0004-3702(85)90026-8 

Muruganathan, S., N. Devarajan, D. Chitra, T. Manigan-
dan, 2014. Shape retrieval through mahalanobis 
distance with shortest augmenting path algorithm.  J. 
Comput. Sci., 10: 552-562.  DOI: 
10.3844/jcssp.2014.552.562 

Prados, E., F. Camilli and O. Faugeras, 2006. A viscosity 
solu-tion method for shape-from-shading without 
image boundary data. ESAIM: Math. Mod. 
Numerical Anal., 40: 393-412. 

Remondino, F. and S. El-Hakim, 2006. Image-based 3D 
Modelling: A review. Photogrammetric Record, 21: 
269-291. DOI: 10.1111/j.1477-9730.2006.00383.x 

Repenning, A., 2005. Inflatable icons: Diffusion-based 
interac-tive extrusion of 2d images into 3d models. 
J. Graphics GPU Game Tools, 10: 1-15. DOI: 
10.1080/2151237X.2005.10129187 

Rouy, E. and A. Tourin, 1992. A viscosity solutions 
approach to shape-from-shading. SIAM J. 
Numerical Anal., 29: 867-884. DOI: 
10.1137/0729053 

Stylianou, G. and A. Lanitis, 2009. Image based 3d face 
recon-struction: A survey. Int. J. Image Graph., 9: 
217-25. DOI: 10.1142/S0219467809003411 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sun, X., P.L. Rosin, R.R. Martin and F.C. Langbein, 
2009. Bas-relief generation using adaptive 
histogram equalization. IEEE Trans. Visualizat. 
Comput. Graph., 15: 642-653. DOI: 
10.1109/TVCG.2009.21 

Tsai, P.S. and M. Shah, 1994. Shape from shading using 
linear approximation. Image Vision Comput., 12: 
487-498. DOI: 10.1016/0262-8856(94)90002-7 

Vani, V., R.P. Kumar and S. Mohan, 2012. 3D mesh 
streaming based on predictive modeling. J. Comput. 
Sci., 8: 1123-1133. DOI: 
10.3844/jcssp.2012.1123.1133 

Wang, M., J. Chang and J.J. Zhang, 2010. A review of 
digital relief generation techniques. Proceedings of 
the 2nd International Conference on Computer 
Engineering and Technology, Apr. 16-18, IEEE 
Xplore Press, Chengdu, DOI: 
10.1109/ICCET.2010.5485636 

Weyrich, T., J. Deng, C. Barnes, S. Rusinkiewicz and A. 
Finkelstein, 2007. Digital bas-relief from 3D scenes. 
ACM Trans. Graph., DOI: 
10.1145/1275808.1276417 

Wu, T.P., J. Sun, C.K. Tang and H.Y. Shum, 2008. 
Interactive normal reconstruction from a single 
image, ACM Trans. Graph., 27: 119-119. DOI: 
10.1145/1457515.1409072 


