Journal of Computer Science 10 (10): 1946-1954, 2014

ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.1946.1954 Published Onlih€lD) 2014 (http://www.thescipub.com/jcs.toc)

OPTIMIZED INCIDENT MATCHING AND AUTO-MATED
VERIFICATION OF COMPOSITION PAT-TERNSIN LONG
TERM COMPOSED SERVICES

Thirumaran, M., M. Jannani and *P. Dhavachelvan

L2Department of Computer Science and Engg, Pondiclrgineering College, Puducherry, India
3School of Engineering, Pondicherry University, Pelterry, India

Received 2014-02-05; Revised 2014-02-10; Accepted-D5112
ABSTRACT

With the increase in the need and demand for emglWeb services, the rate at which changes are
made to the services has increased. In case of rimpie change requests, there arise critical
situations where the business analysts are subj¢otenake changes by themselves without the aid of
the developers because of the time and cost fackowever, there are high chances that an analyst
makes a bug introducing change and injects incos®tements into the logic and hence there are fai
chances for the changed service to exhibit an uretébehavior. Though the impact of the changes is
analyzed and recorded every time a change is madeth® bug report is generated, it is often done
many months after the initial injection of the bwbich is time consuming and ultimately resultshe t
failure to meet the business outcome. This protesspeated even when similar change requests are
encountered which is absurd in the current scersrtbacts as a challenge to the success of a lsgsine
which is the motivation behind this study. Thisdtaddress this challenge by focusing on an efficie
prediction system which would analyze the recordeddents, filter the incidents which match with
the current incident and predict the level of réaid accuracy involved in committing the change. The
implication is that the system performs automatedfication of composition patterns and detectidn o
violations in the business policies if any and ardshange management.

Keywords. Service Oriented Architecture, Web Services, WebviBe Change Management, Incident
Matching, Service Composition

1. INTRODUCTION encountered, there arises the necessity to chettieif
choice matches the need. When the analyst is pat in
Consider a business analyst working with Web situation to analyze the services and find outhbst
services in long term composition. It is more liké&br choice by verifying the composition pattern, it
situations which demand making changes immediatelyconsumes a considerable amount of time. This study
without waiting for the software development team. presents a system which would enable the verificati
An analyst with very little knowledge over the code of the composed services automatically and would
and remarkable knowledge over the domain is likely enable the analysts to take steps to make the elsang
to make a bug-introducing change leading to latentimmediately and efficiently. The system enables
issues and eventually to the business failure sinceprediction of the level of accuracy and risk invedyv
bugs in the source code result in undesired externaby estimation of the detection rate, degree of
behavior especially when the change involves theautomation and error rate. This automated verificat
addition or substitution of a required service.\@ten of composition patterns facilitates efficient ineitt
the available choices for service replacement arematching and extraction of highly similar incidents
Corresponding Author: Thirumaran, M.Department of Computer Science and Engg, Pondiglgrgineering College, Puducherry, India

% Science Publications 1946 JCS

Thirumaran, Met al. / Journal of Computer Science 10 (10): 1946-195442

This holds promise for reducing the time required t patterns and optimized incident matching in longnte
make changes to services in long term composition. composed services is elucidated Fig. 1. Once the
change request indicating the resource to which the
2. RELATED WORKS change has to be made and the type of changerntmbe
i is obtained, the request handler performs the ahang
The works pertinent to the focus of our paper aré equest analysis which involves analyzing the ckang

elucidated in this section. Todet al. (2000) have roqest with respect to domain and context in dason
defined code to be aged or decayed if its strushakes .1 the planner and the domain analyzer. It aresyz

it unnecessarily difficult to understand or chaage we and determines the change information such as where

measure the extent of decay by counting the nuraber .4 \yhen the request has originated, who has atiin
faults in code in a period of time. This involves the request, what type of change is requested, hwhic

E_retdmtlngh false _mmdents kbaflsled _On_dSOfttwa;;[%hangeousiness logic is involved and what operation néeds
IStory whereas in our work, faise incidents r € performed. The Planner automates the process of

change incidents which were not successful. A chang handling the request by diagnosing the nature ef th
propagation model to predict the change propagation request if it is a new one, if a similar requess lheaen
the downstream activities due to different degreés already handled or if the ,request is an alreadgtiegj
change that might be initiated at different stadj@sng a one. It also checks how often the changes occuméiad
design project has been proposed by (Daval., 2012). the 'priority set for the change is. On account afeav
Architecture with a QoS based web service clusterin change request, it proceeds to thé next level dathain

method which helps us to select the best serviaé th . f . dth | ¢ le bo
suits user quality preferences has been propouhged n orm{:\tlon an the Bl.‘ Analyzer performs a rule bou
analysis. This analysis makes sure that the ertact

gw;ngté a .;njr?ggé.mlg;ltet ::Ian%SVJ(-)Sr))k h?/\\//r?erperopr%?;\iigailngbgic is bound to the set of rules. It checks lifsglgments
: : ._-of the extracted logic are bound with the rulesilatate

changes in Long term Composed Services (LCS) Whlchin Rule Set. This is followed by generating the esol

deals with bOt?] fur;]ctional and non ;unctional r::k;nlg by the Schéma Generator whic¥1 ?s XML bgsed and uses

requests. But they have not proposed any methogolog o . L

for performing emergency changes and they have no ar?s forhdescnblng every rule, functlﬁn, reIauknpsr: etc.)

found the various problems that will be caused tdube e schema generator constructs the LCS Schema. The

sudden changes. Ligt al. (2011a) have presented a schema comprises of reference points which camyeso

framework where managing changes in LCSs has beefMmount of knowledge in terms of Meta dgta in the BL
modeled as a dual service query optimization pmaces schema. These reference PO'T“S refer to h'St, (s ,
The optimization has been performed by consideringVNich help to map the existing change incidentshwit
only the non functional factors like reputation ahe 'SSPECt to the current change event. On event of a

Quality of Service (QoS) factors. Akrast al. (2010) change, the reference poinfts are.fine-tuned areftire
proposed an automatic change managementthe number of reference points will be graduallyused.

framework that is based on the Petri net modelswhi Reference points focus on the required businesk log
is used to manage triggering changes and reactivéntity and the knowledge gathered increases grigdual
changes. Liuet al. (2011b) have also proposed ideas Sln(_:e all changes are done at the schema levehdy t _
about the change management in semantic Web servicePusiness analyst, the evaluated change progress is
But they have implemented Petri nets for the ammlys Notified as Meta data in the effect of any changene
whereas in our work, we have implemented FinitdeSta 1he Property Evaluator act as a pre request to
Machine for analysis. Plebani and Pernici (2009)eha incorporate changes over the logic and checks weheth
proposed an algorithm which combines the analysis o the logic is computable, traceable, accessible and
the Web Service Description Language (WSDL) configurable in prior to make the actual changee kay

structures and the analysis of the terms usedeintiem. ~ goal of this Property Evaluator is to provide betten
time support during the course of change progiéss.
3. PROPOSED SYSTEM fact investigates the defects in the logic anddeaés the

quality of business logic by automating various
The working of the proposed system which functional and non-functional assessments to ertbate
guarantees automated verification of composition new changes have not impaired existing functiopalit

///// Science Publications 1947 JCS

Thirumaran, Met al. / Journal of Computer Science 10 (10): 1946-195442

|/Cr.-ange
Raguest
= s G P E C E 1 A
c E‘ RV HV M N 3
Raouast Handlar HN © A A A P oA Error
: > P L M NL D>— a1
E{ ; >— EU > g c ¥ Handler
n ¥ ¥ 5 Pl
I,; L YN N 5
v BL Anslyzer R
by Y 4
N
T Property Change
S e |I'CS 5‘“‘“1 | Set] [Fu:wr Set @
F~ ; ! *
. /_ LCS Storaze Subsystem
» 5 alles S II“‘*‘*”‘ PC,-\Pmer‘: LCS Patm: -«
X w2 | Ragsty [AE
P A L N
€ 1.
B2 [CCS Set[PP CFP[NCFP [0pG[SC | B
1 E =2 R E
TR
% v ¥ N
X 'y 4 lComposiﬁonl | Workflow | | Perfommcgl 4
4 3 v v Jr |
Refersncs _ - o = - Currant
Incidant Sat INCIDENT MATCHING ENGINE | I > LCS Sat

' “ |E-3l3cam:e(‘._.l Flcrwlf)ecid!t] s m-“i

:

Itam Set
Generator

®

Rizk
Assassmant

:
%% of Accoacy :

Fig. 1. Working of the proposed system performing incideatching

The results of the property evaluator are storethas
property set. The change evaluator helps in ewatuat
whether a change will be meaningful or not. Thisvasy
advantageous since whether a change is manageable
unmanageable is said well before. When all thetime
support is available, a change is said to be mahége
Change evaluation provides efficient behavior aialgnd
provides the guidance verifying that the right pash
followed. The results of the change evaluator teed as
the change factor set. With respect to impact aimlyhe
history of incidence matters. This is because tlienmo
use of analyzing the impact when the request ishfre
occurring for the first time. The extent to whickgly
similar incidents are matched indicates the levél o
accuracy in impact analysis. This is the core fionetity
of the incident matching engine where the currecidient
LCS set is compared with the reference incident k€IS,
Whenever incident matching is done, for every ckang

////4 Science Publications

1948

request, the current incident LCS set and the enter
incident LCS sets differ. The reference incidenSL€et is
populated as a result of pattern matching, item set
matching, similar item set matching and active itest
matching. Since the LCS storage system act asha ric
source of storage comprising of the LCS schemagént
registry, Probabilistic Cellular Automata (PCA) teah,
LCS pattern, Audit log, LCS set, property, changetdt,
non functional change factor patterns, the refexenc
incident set is populated efficiently. The preseateich
source of reference has kindled the need for aciexft,
optimized and automatic incident matching approdtte
LCS scanner performs the vital duty of scanninglt6&
sets, the flow decider functions for checking thoevfof
execution of the services and the rules, the itain s
generator performs the job of generating the ptiedic
incident table which aids in the assessment of Tiks is
elucidated in the following sections.

JCS

Thirumaran, Met al. / Journal of Computer Science 10 (10): 1946-195442

The Audit log is a repository catalog for change
history which stores the exact location along viitle

Respect to service composition:

information about the domain, sub domain, business/red (L) = Pred (3=

process and the service where the change occutrisd.
similar to a log file which comprises of the timadadate
at which the change has occurred, the details atheut
owner who has the authority for that particularchlf
the business logic, the details regarding the obswaond
the information about the business process in wthieh

I
Pred (9 ={r3}
Pred () = {rs, [}
Succ (L) = {$}
Succ (9) = Pred (9 + Succ (9 ={r3, 14, $}
Succ (9) = Pred (9 + Succ (9 ={rs $}

change took place. The entire changes which haveSucc (8) = {$}
occurred and exceptions which have been thrown are

With respect to service composition, the Pred &) i

recorded in audit log for incidence matching in the | ¢ f)
future. Emergency checks are also made to knowSer-vice $and Pred (3 in turn is 5. The Pred (§ is
whether the change is a critical one or not. Tisis i identified to be y and Pred (9 to be §. Likewise, the

performed by the complexity analyzer by comparing t
current request with the previous incidents. Theorer
handler handles the errors and exceptions throwimglu
the change process. The calibration engine extihets

Succ (L) is identified to be $, Succ,}$o be 5, r, and $,
Succ (9 to be j and $ and Succ {Sto be $. With
Respect to Op-eration Composition:

results of the change evaluation and on taking thePred (L) =Pred Succ (L) = {$}

evaluated tuples as input to the cellular autonzatd
probabilistic cellular automata, impact analysisd an
hence decision making is facilitated.

3.1.Methodology for Automated Verification of
Composition Patterns

(S) ={r}Pred Succ (9 ={0}
(S) ={rs} Pred Succ (9 ={e}
(S ={rs, 00} Succ (S) = {$}

With respect to operation composition, the PredigL)
service $ and Pred (g in turn is 5. The Pred (g is

The automated verification of composition patterns identified to be yand Pred (§ to be j and $. Likewise,

which involves checking if a particular composition

the Succ (L) is identified to be $, Sucg)(® bell, Succ

pattern is a part or subset of the given entire(S) to beoand Succ (§to be $.

composition pattern. The methodology proposed is th
study ensures this verification by scanning thesiser

composition pattern and matching it with the entire

composition pattern to identify if it is a part tifie
latter. The verification can be performed for seevi

3.1.1. Rulefor Finding the Pred and Succ Function

If S is any symbol for representing the service@5
grammar, let Pred (S) be the set of rules thatrbdwpe
service derived from S. If S=[0, thenO is also in Pred

composition and operation composition. Consider the(S). Define §(s), for the service S, to be the set of

following LCS grammar where L is the business lggic
S, S, & are the services in composition, Iy, I3, Iy
and g are the rules in the composition:

Lo S0S05;
S - rr,
S 13

Sz r0rs |0

For checking if a particular service or operation *

composition is a part of the given composition, @S
grammar is scanned and the services or operati@is t
begin (Pred) and immediately follow (Succ) eaclviser
or operation in some sentential form are identified

Considering the above grammar, the Pred and Suc¢

functions are identified as follows:

///// Science Publications

1949

services S that can appear immediately followingnS
some sentential form, i.e., the set of rules r stiGtt
there exists a derivation of the form S S, O S, for
some services;&nd S.

If S can be the last service in some extended form,
then $ is in Succ (S). To compute Succ (S) for all
services in S, apply the following rules until nioth can
be added to Succ (S) set:

Place $ in Succ (S), where S is the initial service
composition to be invoked and $ indicates the €nd o
service composition set

If there is an LCS production of the form-SS,00S,
then Succ (§ = Succ (9

If there is an LCS production of the form-8S; o

S,, then Succ (§= Pred ($) + Succ (9

JCS

Thirumaran, Met al. / Journal of Computer Science 10 (10): 1946-195442

3.2. Construction of Predictive Incident Table

After the Pred and Succ functions are identified,
the predictive incident table is constructed. The
algorithm for the construction of predictive incide
Table1is given below.

Table 1 and Fig. 2 shows the predictive incident
table constructed based on the above algorithme&oin
and every production in the LCS grammar, a valiglyen
is made into the predictive incident table. It Isserved
that Pred (L) is Therefore, the production L S; O
S, © S has been added to M [Ly].rPred (9) is r, Pred
(S) is 1, Pred (9 is r, and $. Therefore the production
S -nln$S 1% - r,0r5 S -0 have been
added to M [1], M [S,, 1], M [S3, 1] and M [S;, $]
respectively. All other undefined entries of M are
marked as error.

3.3. Composition Structure Validation

To predict the subset;S1 S, from the LCS, the
following procedure is adopted. The procedure fa t
validation of composition structure,Linvolves finding
the Pred (k) and Succ (k) and identifying the actual
LCS set I, and attribute LCS set,L The Predictive
Incident Table is then constructed and the comijposit
structure validation is performed. The composittcee
depicts the view of the services and operationshe
form of the tree as shown kig. 3and 5.

The algorithm for composition structure validation
is given inFig. 4. Table 2 shows the composition

To predict the subset; & S, from the LCS, the input
stack is populated with the entries such that whitke
entry in M is not null and is a production of tharrh
S-a, then is loaded on top of the stack instead of S.
Input LCS set 80 S; which is eventually,rJ 1, o 3, is
loaded in the stack and the productions are tradeasd
the entries on the top of the input stack and iyil6 set
L, are compared. Whenever a match is found, the
matching entries are popped from the stack. Tlosess
is continued till all the entries in the stack gepped
and the service input symbol is null.

Then the service composition tree is constructed as
shown inFig. 5.

Thus LCS set Lis found to be a subset of the actual
LCS set L.

3.3.1. Formulation of the Inference Metrics

The efficiency of the automated verification of
composition patterns can be inferred from the
following identified metrics.

Degree of automation is the measure which indicttes
extent to which the composition patterns are
automatically verified.

This is given by the following formulation:

ChangeReq,

DoAut=) —————
n

i=1
where, DoAut is the degree of automation, ChangeReq
is the change request i where the verification of
composition pattern has been done automaticallynaind

structure validation for the LCS grammar discussed the total number of change requests involving
the above sections. verification of composition patterns.

Table 1. Predictive incident table

& (M) f1 2 3 0 o $ Iy

L Lo SO0S0% E E E E E E

S S - n0r, E E E E E E

S, E E S- 13 E E E E

S E E E E E $-€ S 10 rs

Table 2. Composition structure validation

Input stack Input LCS Set,L Predictive incident table
$L ninor$ ML,) = [L-S0 S0 S
$SeoSOS rndrors$ M(Sy, 1) = [S1— 0 1]

$ S o S0 0 rndrors$ Match

$S0S r;$ M (Sr3) = [Sz— 14
$Sors r;$ Match

$S $ MES$) = [Ss— €]

$e $ Match-Accept

///// Science Publications 1950

JCS

Thirumaran, Met al. / Journal of Computer Science 10 (10): 1946-195442

Algorithin Predictive Incident Table ()

Begin

Input: LCS grammar G.

OQutput: PIT table M.

Method:

1. For each production in S —r of the LCS
grammar G, do Step 2 and 3.

. For each rule r in Pred (S), add S —r to M [S.r].

. If £ is in Pred (8). add S —1” to M [S. 1°] for
each rule r* in Suce (S). If £ is in Pred (S) and S
is in Suce (S). add S —= to M [S, S].

4. Make each undefined entry of M as error.

End

[0]

Fig. 2. Algorithm for Predictive Incident Table

| Stack |
Input LCS set : Tnput |
1
1 1
¢ : Operation Policy :
1 1
le——————= gl My gy ———
Find Pred (L,) l
and Succe (L) Composition
T T free
\ 4 T
Ii:c gL lfiir Attribute | Composition structure
L ® LCSsetL, v validation
Compose predictive | Pgmigl Complete
incident table, M validation validation

Fig. 3. Working of composition structure validation

Detection rate is the rate at which the patterrss ar been successfully detected and n is the total numbe
successfully detected. It is defined as the ratioumnber change requests.
of change requests for which the composition pataave Error rate is the rate at which the patterns haaenb
been successfully detected to the total numberhahge wrongly matched. It is given by the following forhation:
requests. This is given by the following formulatio
z": Fail Reql

i=1

Err Rate =

DetRate = Y’ 84 SJCCReq'

i=1
where, ErrRate is the Error rate, FailReqi is thange
where, DetRate is the detection rate, SuccRedhés t request i where the composition pattern has beengly
change request i where the composition pattern hasnatched and n is the total number of change resjuest

///// Science Publications 1951 JCS

Thirumaran, Met al. / Journal of Computer Science 10 (10): 1946-198442

Algorithm Composition Structure Validation () 0.6 - B wWeek 1
Begin 0.5 - B Week 2
Input: LCS subset L; and actual LCS set L,. 04 . T o Week 3
Output: Service Composition Tree (SCT) 0.3
R
Method: Set input pointer to point to the first service
of input LCS set L, $. 0.2 4
Repeat 0.1-
1. If S be the state on top of the stack and r be the 0
service symbol pointed to by input pointer. then D . D £
find M [S, 1]. etection rate egree 0 Error rate
2. IfM[S, r]1s not NULL and M [S, r] produces a automation
production of the form S —>a. then load o on
the top of the stack in place of S. Fig. 6. Detection rate, degree of automation and error rate
3. If o be the service symbol on the top of the without automated verification of composition
stack and pB be the service symbol pointed by patterns
the input pointer, then
Begin L5
If o=f then ' W Week 1
pop o from the top of the stack and 1- M Week 2
move the input pointer so that it points
to the next service symbol. W Week 3
0.5
End
Until
The stack is empty and service input symbol is 0 :
HULL, Detectionrate Degree of Error rate
Construet Service Composition Tree (SCT). NI
automation
End
Fig. 4. Algorithm for composition structure validation Fig. 7. Detection rate, degree of automation and error rate
with automated verification of composition patterns
L
Table 3 Detection rate which is indicated by the no
of change requests with successful matching results
Degree of automation which is indicated by the fo o
S O S, ® S; change requests handled automatically and the Error
rate which is indicated by the no of change with
I @ L s 1, wrongly matchgd rgsults. -
The graph inFig. 6 shows the detection rate,
] . -~ degree of automation and error rate observed for 3
Fig. 5. Service composition tree weeks without automated verification of composition
patterns.
4. EXPERIMENTAL RESULTS The graph inFig. 7 shows the detection rate,

degree of automation and error rate observed for 3

The experimental results for the automated Weeks with automated verification of composition

verification of composition patterns have been patterns and depicts the significant improvement
elucidated in this section. observed.

% Science Publications 1952 JCS

Thirumaran, Met al. / Journal of Computer Science 10 (10): 1946-195442

Table 3. Experimental results for automated verifica-tidrtomposition patterns

Dura-tion No of arrived change requests No of dearequests No of change No of change re-
under demanding verification of with suc-cessful requests handled quests with wrong
observa-tion composition patterns matching results automatically matching re-sults
Week 1 290 212 267 21
Week 2 250 201 238 35
Week 3 263 226 251 23

5. DISCUSSION requests in long term composed services have thus

necessitated the need for an automated way of

Though there are existing works which have madeverification of composition patterns. The paper has
considerable research in the area of change maragem lime lighted the methodology behind the verificatio

and composition patterns like the change managemengrocess and the impact of the prediction made. The

framework proposed by (Livet al., 2013) where experimental results prove the significance of the
managing changes in Long Term Composed Servicegytomation process and its role in efficient incite
(LCS) which deals with both functional and non \5iching as when verification of composition pateer
functional change requests, they have not propasgd 5 jone automatically and efficiently, the extent t
methodology for performing emergency changes andwhich highly similar incidents are extracted is

they have not found the various problems that MI. eventually enhanced and optimized. The proposal for
caused due to the sudden changes. Architecture awith e . ;
verification of composition pattern alone is a

QoS based web service clustering method which hedps .~ "~ ; :

to select the best service that suits user quality“m'_t"_mo_n observed 'in this s_tudy as these pg‘_[tern
preferences has been propounded by @val., 2009). verifications are _not only applicable for compositi _
But the service choice is done based on reputatiah The future work is to extend the proposed systeim in
non functional aspects alone. Xiao and Urban (2012)@ unified dynamic model which would perform
have presented a recovery algorithm for service Optimized incident matching not only for composed
execution failure in the context of concurrent mes Services but also for integrated services etc. fjnjog
execution. This recovery algorithm had been speadlff ~ the model with change management aspects by
designed to support a rule-based approach to userncorporating predictions based on risk involved ca
defined correctness in execution environments thatalso be done.

support a relaxed form of isolation for service @ken

(Xiao and Urban, 2012). The proposed system follows
standard methodologies and ensures efficient

7. REFERENCES

composition pattern verification. The experimental Akram, S., A. Bouguettaya, X. Liu, A. Haller and F.

results elucidated in the above section shows the
detection rate, degree of automation and errorafitee
composition pattern detection. This clearly indésathat

Rosenberget al., 2010. A change management
framework for service oriented enterprises. Int. J.
Next-Generat. Comput., 1: 1-25.

the proposed system provides a dynamic and powerfuDavid, K., H. Chua and A. Hossain, 2012. Predicting

platform for automatic verification of composition
patterns and provides the scope for optimized ewdid
matching. TheFig. 6 and 7 indicate the experimental
results observed. The detection rate, degree of
automation and error rate are found to decreasen whe
automatic verification of composition patterns isnd.
The graphs show the results obtained based on the
observation made for a period of three weeks.

change propagation and impact on design schedule
due to external changes. IEEE Trans. Eng. Manage.,
59:483-493. DOI10.1109/TEM.2011.2164082

Liu, X., A. Bouguettaya, J. Wu and L. Zhou, 201%-E

LCS: A system for the evolution of long-term
composed services. |IEEE Trans. Services Comput.,
6: 102-115. DOI10.1109/TSC.2011.40

Liu, X., A. Bouguettaya, Q. Yu and Z. Malik, 2011a.

6. CONCLUSION

The need for an efficient change management
approach and the increase in importunate change

///// Science Publications 1953

Efficient change management in long-term
composed services. Springer J. Service Oriented
Comput. Applic., 5: 87-103. DOIL0.1007/s11761-
010-0074-3

JCS

Thirumaran, Met al. / Journal of Computer Science 10 (10): 1946-195442

Liu, X., S. Akram and A. Bouguettaya, 2011b. Change Wu, Y., J. Wu, J.J. Wang and S. Zhang, 2009. A imult

Management for Semantic Web Services. 1st Edn.,

SpringerNew York, ISBN-10: 1441993290, pp82.

Plebani, P. and B. Pernici, 2009. URBE: Web service

retrieval based on similarity evaluation. IEEE Tgan

Knowledge Data Eng., 21: 1629-1642. DOI:

10.1109/TKDE.2009.35
Todd, L., A. Graves, F. Karr, J.S. Marron and Hy, Si

2000. Predicting fault incidence using software
change history. IEEE Trans. Software Eng., 26: 653-

661. DOI:10.1109/32.859533

///// Science Publications 1954

agent assistant dynamic resource management model
of composite service. Proceedings of the IEEE
Conference on Computational Intelligence and
Software Engineering, Dec. 11-13, IEEE Xplore Rress
Wuhan, pp: 01-04. DOL0.1109/CISE.2009.5364507

Xiao, Y. and S. Urban, 2012. Using rules and data

dependencies for the recovery of concurrent presess
in a service-oriented environment. IEEE Trans.
Services Comput., 1: 59-71. DOI:
10.1109/TSC.2011.25

JCS

