
Journal of Computer Science 10 (10): 1946-1954, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1946.1954 Published Online 10 (10) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Thirumaran, M., Department of Computer Science and Engg, Pondicherry Engineering College, Puducherry, India

1946 Science Publications

JCS

OPTIMIZED INCIDENT MATCHING AND AUTO-MATED
VERIFICATION OF COMPOSITION PAT-TERNS IN LONG

TERM COMPOSED SERVICES

1Thirumaran, M., 2M. Jannani and 3P. Dhavachelvan

1,2Department of Computer Science and Engg, Pondicherry Engineering College, Puducherry, India
3School of Engineering, Pondicherry University, Puducherry, India

Received 2014-02-05; Revised 2014-02-10; Accepted 2014-05-12

ABSTRACT

With the increase in the need and demand for evolving Web services, the rate at which changes are
made to the services has increased. In case of importunate change requests, there arise critical
situations where the business analysts are subjected to make changes by themselves without the aid of
the developers because of the time and cost factors. However, there are high chances that an analyst
makes a bug introducing change and injects incorrect statements into the logic and hence there are fair
chances for the changed service to exhibit an undesired behavior. Though the impact of the changes is
analyzed and recorded every time a change is made and the bug report is generated, it is often done
many months after the initial injection of the bug which is time consuming and ultimately results in the
failure to meet the business outcome. This process is repeated even when similar change requests are
encountered which is absurd in the current scenario and acts as a challenge to the success of a business
which is the motivation behind this study. This study address this challenge by focusing on an efficient
prediction system which would analyze the recorded incidents, filter the incidents which match with
the current incident and predict the level of risk and accuracy involved in committing the change. The
implication is that the system performs automated verification of composition patterns and detection of
violations in the business policies if any and aids in change management.

Keywords: Service Oriented Architecture, Web Services, Web Service Change Management, Incident

Matching, Service Composition

1. INTRODUCTION

Consider a business analyst working with Web
services in long term composition. It is more likely for
situations which demand making changes immediately
without waiting for the software development team.
An analyst with very little knowledge over the code
and remarkable knowledge over the domain is likely
to make a bug-introducing change leading to latent
issues and eventually to the business failure since
bugs in the source code result in undesired external
behavior especially when the change involves the
addition or substitution of a required service. So when
the available choices for service replacement are

encountered, there arises the necessity to check if the
choice matches the need. When the analyst is put in a
situation to analyze the services and find out the best
choice by verifying the composition pattern, it
consumes a considerable amount of time. This study
presents a system which would enable the verification
of the composed services automatically and would
enable the analysts to take steps to make the changes
immediately and efficiently. The system enables
prediction of the level of accuracy and risk involved
by estimation of the detection rate, degree of
automation and error rate. This automated verification
of composition patterns facilitates efficient incident
matching and extraction of highly similar incidents.

Thirumaran, M. et al. / Journal of Computer Science 10 (10): 1946-1954, 2014

1947 Science Publications

JCS

This holds promise for reducing the time required to
make changes to services in long term composition.

2. RELATED WORKS

The works pertinent to the focus of our paper are
elucidated in this section. Todd et al. (2000) have
defined code to be aged or decayed if its structure makes
it unnecessarily difficult to understand or change and we
measure the extent of decay by counting the number of
faults in code in a period of time. This involves
predicting false incidents based on software change
history whereas in our work, false incidents refer to the
change incidents which were not successful. A change
propagation model to predict the change propagation on
the downstream activities due to different degrees of
change that might be initiated at different stages during a
design project has been proposed by (David et al., 2012).
Architecture with a QoS based web service clustering
method which helps us to select the best service that
suits user quality preferences has been propounded by
(Wu et al., 2009). Liu et al. (2013) have proposed a
change management framework where managing
changes in Long term Composed Services (LCS) which
deals with both functional and non functional change
requests. But they have not proposed any methodology
for performing emergency changes and they have not
found the various problems that will be caused due to the
sudden changes. Liu et al. (2011a) have presented a
framework where managing changes in LCSs has been
modeled as a dual service query optimization process.
The optimization has been performed by considering
only the non functional factors like reputation and the
Quality of Service (QoS) factors. Akram et al. (2010)
proposed an automatic change management
framework that is based on the Petri net models which
is used to manage triggering changes and reactive
changes. Liu et al. (2011b) have also proposed ideas
about the change management in semantic Web services.
But they have implemented Petri nets for the analysis
whereas in our work, we have implemented Finite State
Machine for analysis. Plebani and Pernici (2009) have
proposed an algorithm which combines the analysis of
the Web Service Description Language (WSDL)
structures and the analysis of the terms used inside them.

3. PROPOSED SYSTEM

The working of the proposed system which
guarantees automated verification of composition

patterns and optimized incident matching in long term
composed services is elucidated in Fig. 1. Once the
change request indicating the resource to which the
change has to be made and the type of change to be made
is obtained, the request handler performs the change
request analysis which involves analyzing the change
request with respect to domain and context in association
with the planner and the domain analyzer. It analyzes
and determines the change information such as where
and when the request has originated, who has originated
the request, what type of change is requested, which
business logic is involved and what operation needs to be
performed. The Planner automates the process of
handling the request by diagnosing the nature of the
request if it is a new one, if a similar request has been
already handled or if the request is an already existing
one. It also checks how often the changes occur and what
the priority set for the change is. On account of a new
change request, it proceeds to the next level with domain
information and the BL Analyzer performs a rule bound
analysis. This analysis makes sure that the extracted
logic is bound to the set of rules. It checks if all segments
of the extracted logic are bound with the rules available
in Rule Set. This is followed by generating the schema
by the Schema Generator which is XML based and uses
tags for describing every rule, function, relationships etc.
The schema generator constructs the LCS Schema. The
schema comprises of reference points which carry some
amount of knowledge in terms of Meta data in the BL
schema. These reference points refer to historical events
which help to map the existing change incidents with
respect to the current change event. On event of a
change, the reference points are fine-tuned and therefore
the number of reference points will be gradually reduced.
Reference points focus on the required business logic
entity and the knowledge gathered increases gradually.
Since all changes are done at the schema level by the
business analyst, the evaluated change progress is
notified as Meta data in the effect of any change event.
The Property Evaluator act as a pre request to
incorporate changes over the logic and checks whether
the logic is computable, traceable, accessible and
configurable in prior to make the actual change. The key
goal of this Property Evaluator is to provide better run
time support during the course of change progress. It in
fact investigates the defects in the logic and validates the
quality of business logic by automating various
functional and non-functional assessments to ensure that
new changes have not impaired existing functionality.

Thirumaran, M. et al. / Journal of Computer Science 10 (10): 1946-1954, 2014

1948 Science Publications

JCS

Fig. 1. Working of the proposed system performing incident matching

The results of the property evaluator are stored as the
property set. The change evaluator helps in evaluating
whether a change will be meaningful or not. This is very
advantageous since whether a change is manageable or
unmanageable is said well before. When all the run time
support is available, a change is said to be manageable.
Change evaluation provides efficient behavior analysis and
provides the guidance verifying that the right path is
followed. The results of the change evaluator are stored as
the change factor set. With respect to impact analysis, the
history of incidence matters. This is because there is no
use of analyzing the impact when the request is fresh,
occurring for the first time. The extent to which highly
similar incidents are matched indicates the level of
accuracy in impact analysis. This is the core functionality
of the incident matching engine where the current incident
LCS set is compared with the reference incident LCS sets.
Whenever incident matching is done, for every change

request, the current incident LCS set and the reference
incident LCS sets differ. The reference incident LCS set is
populated as a result of pattern matching, item set
matching, similar item set matching and active item set
matching. Since the LCS storage system act as a rich
source of storage comprising of the LCS schema, incident
registry, Probabilistic Cellular Automata (PCA) pattern,
LCS pattern, Audit log, LCS set, property, change factor,
non functional change factor patterns, the reference
incident set is populated efficiently. The presence of rich
source of reference has kindled the need for an efficient,
optimized and automatic incident matching approach. The
LCS scanner performs the vital duty of scanning the LCS
sets, the flow decider functions for checking the flow of
execution of the services and the rules, the item set
generator performs the job of generating the predictive
incident table which aids in the assessment of risk. This is
elucidated in the following sections.

Thirumaran, M. et al. / Journal of Computer Science 10 (10): 1946-1954, 2014

1949 Science Publications

JCS

The Audit log is a repository catalog for change
history which stores the exact location along with the
information about the domain, sub domain, business
process and the service where the change occurred. It is
similar to a log file which comprises of the time and date
at which the change has occurred, the details about the
owner who has the authority for that particular block of
the business logic, the details regarding the changes and
the information about the business process in which the
change took place. The entire changes which have
occurred and exceptions which have been thrown are
recorded in audit log for incidence matching in the
future. Emergency checks are also made to know
whether the change is a critical one or not. This is
performed by the complexity analyzer by comparing the
current request with the previous incidents. The error
handler handles the errors and exceptions thrown during
the change process. The calibration engine extracts the
results of the change evaluation and on taking the
evaluated tuples as input to the cellular automata and
probabilistic cellular automata, impact analysis and
hence decision making is facilitated.

3.1. Methodology for Automated Verification of
Composition Patterns

The automated verification of composition patterns
which involves checking if a particular composition
pattern is a part or subset of the given entire
composition pattern. The methodology proposed in this
study ensures this verification by scanning the service
composition pattern and matching it with the entire
composition pattern to identify if it is a part of the
latter. The verification can be performed for service
composition and operation composition. Consider the
following LCS grammar where L is the business logic,
S1, S2, S3 are the services in composition, r1, r2, r3, r4
and r5 are the rules in the composition:

L→ S1⊕S2 ʘ S3

S1→ r1⊕r2

S2→ r3

S3→ r4⊕r5 |∈

For checking if a particular service or operation
composition is a part of the given composition, the LCS
grammar is scanned and the services or operations that
begin (Pred) and immediately follow (Succ) each service
or operation in some sentential form are identified.
Considering the above grammar, the Pred and Succ
functions are identified as follows:

Respect to service composition:

Pred (L) = Pred (S1) =
 { r1}
Pred (S2) = { r3}
Pred (S3) = { r4, ∈}
 Succ (L) = {$}
Succ (S1) = Pred (S2) + Succ (S2) = { r3, r4, $}
Succ (S2) = Pred (S3) + Succ (S3) = { r4, $}
Succ (S3) = {$}

With respect to service composition, the Pred (L) is
ser-vice S1 and Pred (S1) in turn is r1. The Pred (S2) is
identified to be r3 and Pred (S3) to be r4. Likewise, the
Succ (L) is identified to be $, Succ (S1) to be r3, r4 and $,
Succ (S2) to be r4 and $ and Succ (S3) to be $. With
Respect to Op-eration Composition:

Pred (L) = Pred Succ (L) = {$}
(S1) = { r1} Pred Succ (S1) = {⊕}
(S2) = {r3} Pred Succ (S2) = {ʘ}
(S3) = {r4, ∈} Succ (S3) = {$}

With respect to operation composition, the Pred (L) is
service S1 and Pred (S1) in turn is r1. The Pred (S2) is
identified to be r3 and Pred (S3) to be r4 and $. Likewise,
the Succ (L) is identified to be $, Succ (S1) to be ⊕, Succ
(S2) to be ʘ and Succ (S3) to be $.

3.1.1. Rule for Finding the Pred and Succ Function

If S is any symbol for representing the service in LCS
grammar, let Pred (S) be the set of rules that begin the
service derived from S. If S* ⇒∈, then ∈ is also in Pred
(S). Define S3(s), for the service S, to be the set of
services S that can appear immediately following S1 in
some sentential form, i.e., the set of rules r such that
there exists a derivation of the form S* ⇒ S1 ⊕ S2 for
some services S1 and S2.

If S can be the last service in some extended form,
then $ is in Succ (S). To compute Succ (S) for all
services in S, apply the following rules until nothing can
be added to Succ (S) set:

• Place $ in Succ (S), where S is the initial service

composition to be invoked and $ indicates the end of
service composition set

• If there is an LCS production of the form S1→S1⊕S2
then Succ (S2) = Succ (S1)

• If there is an LCS production of the form S1→S1 ʘ
S2, then Succ (S1)⇒ Pred (S2) + Succ (S2)

Thirumaran, M. et al. / Journal of Computer Science 10 (10): 1946-1954, 2014

1950 Science Publications

JCS

3.2. Construction of Predictive Incident Table

After the Pred and Succ functions are identified,
the predictive incident table is constructed. The
algorithm for the construction of predictive incident
Table 1 is given below.

Table 1 and Fig. 2 shows the predictive incident
table constructed based on the above algorithm. For each
and every production in the LCS grammar, a valid entry
is made into the predictive incident table. It is observed
that Pred (L) is r1. Therefore, the production L → S1 ⊕
S2 ʘ S3 has been added to M [L, r1]. Pred (S1) is r1, Pred
(S2) is r3, Pred (S3) is r4 and $. Therefore the production
S1 → r1 ⊕ r2, S2 → r3, S3 → r4 ⊕ r5, S3 →∈ have been
added to M [S1, r1], M [S2, r3], M [S3, r4] and M [S3, $]
respectively. All other undefined entries of M are
marked as error.

3.3. Composition Structure Validation

To predict the subset S1 ⊕ S2 from the LCS, the
following procedure is adopted. The procedure for the
validation of composition structure L2, involves finding
the Pred (L2) and Succ (L2) and identifying the actual
LCS set L2 and attribute LCS set L2. The Predictive
Incident Table is then constructed and the composition
structure validation is performed. The composition tree
depicts the view of the services and operations in the
form of the tree as shown in Fig. 3 and 5.

The algorithm for composition structure validation
is given in Fig. 4. Table 2 shows the composition
structure validation for the LCS grammar discussed in
the above sections.

To predict the subset S1 ⊕ S2 from the LCS, the input
stack is populated with the entries such that while an
entry in M is not null and is a production of the form
S→α, then is loaded on top of the stack instead of S.
Input LCS set S1 ⊕ S2 which is eventually r1 ⊕ r2 ʘ r3, is
loaded in the stack and the productions are traversed and
the entries on the top of the input stack and input LCS set
L1 are compared. Whenever a match is found, the
matching entries are popped from the stack. This process
is continued till all the entries in the stack are popped
and the service input symbol is null.

Then the service composition tree is constructed as
shown in Fig. 5.

Thus LCS set L1 is found to be a subset of the actual
LCS set L2.

3.3.1. Formulation of the Inference Metrics

The efficiency of the automated verification of
composition patterns can be inferred from the
following identified metrics.
Degree of automation is the measure which indicates the
extent to which the composition patterns are
automatically verified.

This is given by the following formulation:

1

Ren
i

i

Change q
DoAut

n=

=∑

where, DoAut is the degree of automation, ChangeReqi
is the change request i where the verification of
composition pattern has been done automatically and n is
the total number of change requests involving
verification of composition patterns.

Table 1. Predictive incident table

δ (M) r1 r2 r3 ⊕ ʘ $ r4

L L→ S1⊕ S2 ʘ S3 E E E E E E
S1 S1→ r1⊕ r2 E E E E E E
S2 E E S2→ r3 E E E E
S3 E E E E E S3→ϵ S3→ r4⊕ r5

Table 2. Composition structure validation
Input stack Input LCS Set L1 Predictive incident table

$ L r1⊕r2 ʘ r3 $ M(L, r1) ⇒ [L→S1⊕ S2 ʘ S3]
$ S3 ʘ S2⊕ S1 r1⊕r2 ʘ r3 $ M(S1, r1) ⇒ [S1→ r1⊕ r2]
$ S3 ʘ S2⊕ r2⊕r1 r1⊕r2 ʘ r3 $ Match
$ S3 ʘ S2 r3 $ M (S2, r3) ⇒ [S2→ r3]
$ S3 ʘ r3 r3 $ Match
$ S3 $ M (S3, $) ⇒ [S3→ ϵ]
$ ϵ $ Match-Accept

Thirumaran, M. et al. / Journal of Computer Science 10 (10): 1946-1954, 2014

1951 Science Publications

JCS

Fig. 2. Algorithm for Predictive Incident Table

Fig. 3. Working of composition structure validation

Detection rate is the rate at which the patterns are

successfully detected. It is defined as the ratio of number
of change requests for which the composition patterns have
been successfully detected to the total number of change
requests. This is given by the following formulation:

1

Ren
i

i

Succ q
Det Rate

n=

=∑

where, DetRate is the detection rate, SuccReqi is the
change request i where the composition pattern has

been successfully detected and n is the total number of
change requests.

Error rate is the rate at which the patterns have been
wrongly matched. It is given by the following formulation:

1

Re

=

=∑
n

i

i

Fail q
Err Rate

n

where, ErrRate is the Error rate, FailReqi is the change
request i where the composition pattern has been wrongly
matched and n is the total number of change requests.

Thirumaran, M. et al. / Journal of Computer Science 10 (10): 1946-1954, 2014

1952 Science Publications

JCS

Fig. 4. Algorithm for composition structure validation

Fig. 5. Service composition tree

4. EXPERIMENTAL RESULTS

The experimental results for the automated
verification of composition patterns have been
elucidated in this section.

Fig. 6. Detection rate, degree of automation and error rate

without automated verification of composition
patterns

Fig. 7. Detection rate, degree of automation and error rate

with automated verification of composition patterns

Table 3 Detection rate which is indicated by the no

of change requests with successful matching results,
Degree of automation which is indicated by the no of
change requests handled automatically and the Error
rate which is indicated by the no of change with
wrongly matched results.

The graph in Fig. 6 shows the detection rate,
degree of automation and error rate observed for 3
weeks without automated verification of composition
patterns.

The graph in Fig. 7 shows the detection rate,
degree of automation and error rate observed for 3
weeks with automated verification of composition
patterns and depicts the significant improvement
observed.

Thirumaran, M. et al. / Journal of Computer Science 10 (10): 1946-1954, 2014

1953 Science Publications

JCS

Table 3. Experimental results for automated verifica-tion of composition patterns
Dura-tion No of arrived change requests No of change requests No of change No of change re-
under demanding verification of with suc-cessful requests handled quests with wrong
observa-tion composition patterns matching results automatically matching re-sults
Week 1 290 212 267 21
Week 2 250 201 238 35
Week 3 263 226 251 23

5. DISCUSSION

Though there are existing works which have made
considerable research in the area of change management
and composition patterns like the change management
framework proposed by (Liu et al., 2013) where
managing changes in Long Term Composed Services
(LCS) which deals with both functional and non
functional change requests, they have not proposed any
methodology for performing emergency changes and
they have not found the various problems that will be
caused due to the sudden changes. Architecture with a
QoS based web service clustering method which helps us
to select the best service that suits user quality
preferences has been propounded by (Wu et al., 2009).
But the service choice is done based on reputation and
non functional aspects alone. Xiao and Urban (2012)
have presented a recovery algorithm for service
execution failure in the context of concurrent process
execution. This recovery algorithm had been specifically
designed to support a rule-based approach to user-
defined correctness in execution environments that
support a relaxed form of isolation for service execution
(Xiao and Urban, 2012). The proposed system follows
standard methodologies and ensures efficient
composition pattern verification. The experimental
results elucidated in the above section shows the
detection rate, degree of automation and error rate of the
composition pattern detection. This clearly indicates that
the proposed system provides a dynamic and powerful
platform for automatic verification of composition
patterns and provides the scope for optimized incident
matching. The Fig. 6 and 7 indicate the experimental
results observed. The detection rate, degree of
automation and error rate are found to decrease when
automatic verification of composition patterns is done.
The graphs show the results obtained based on the
observation made for a period of three weeks.

6. CONCLUSION

The need for an efficient change management
approach and the increase in importunate change

requests in long term composed services have thus
necessitated the need for an automated way of
verification of composition patterns. The paper has
lime lighted the methodology behind the verification
process and the impact of the prediction made. The
experimental results prove the significance of the
automation process and its role in efficient incident
matching as when verification of composition patterns
is done automatically and efficiently, the extent to
which highly similar incidents are extracted is
eventually enhanced and optimized. The proposal for
verification of composition pattern alone is a
limitation observed in this study as these pattern
verifications are not only applicable for composition.
The future work is to extend the proposed system into
a unified dynamic model which would perform
optimized incident matching not only for composed
services but also for integrated services etc. Equipping
the model with change management aspects by
incorporating predictions based on risk involved can
also be done.

7. REFERENCES

Akram, S., A. Bouguettaya, X. Liu, A. Haller and F.
Rosenberg et al., 2010. A change management
framework for service oriented enterprises. Int. J.
Next-Generat. Comput., 1: 1-25.

David, K., H. Chua and A. Hossain, 2012. Predicting
change propagation and impact on design schedule
due to external changes. IEEE Trans. Eng. Manage.,
59: 483-493. DOI: 10.1109/TEM.2011.2164082

Liu, X., A. Bouguettaya, J. Wu and L. Zhou, 2013. Ev-
LCS: A system for the evolution of long-term
composed services. IEEE Trans. Services Comput.,
6: 102-115. DOI: 10.1109/TSC.2011.40

Liu, X., A. Bouguettaya, Q. Yu and Z. Malik, 2011a.
Efficient change management in long-term
composed services. Springer J. Service Oriented
Comput. Applic., 5: 87-103. DOI: 10.1007/s11761-
010-0074-3

Thirumaran, M. et al. / Journal of Computer Science 10 (10): 1946-1954, 2014

1954 Science Publications

JCS

Liu, X., S. Akram and A. Bouguettaya, 2011b. Change
Management for Semantic Web Services. 1st Edn.,
Springer, New York, ISBN-10: 1441993290, pp: 182.

Plebani, P. and B. Pernici, 2009. URBE: Web service
retrieval based on similarity evaluation. IEEE Trans.
Knowledge Data Eng., 21: 1629-1642. DOI:

10.1109/TKDE.2009.35
Todd, L., A. Graves, F. Karr, J.S. Marron and H. Siy,

2000. Predicting fault incidence using software
change history. IEEE Trans. Software Eng., 26: 653-
661. DOI: 10.1109/32.859533

Wu, Y., J. Wu, J.J. Wang and S. Zhang, 2009. A multi-
agent assistant dynamic resource management model
of composite service. Proceedings of the IEEE
Conference on Computational Intelligence and
Software Engineering, Dec. 11-13, IEEE Xplore Press,
Wuhan, pp: 01-04. DOI: 10.1109/CISE.2009.5364507

Xiao, Y. and S. Urban, 2012. Using rules and data
dependencies for the recovery of concurrent processes
in a service-oriented environment. IEEE Trans.
Services Comput., 1: 59-71. DOI:

10.1109/TSC.2011.25

