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ABSTRACT 

Real-time data packet sources are required to remain robust against different security threats. This study 
proposes a real-time secure scheduling strategy for data transmission to enhance the communication 
throughput and reduce the overheads. The proposed system combines real-time scheduling with security 
service enhancement, error detection and realtime scheduler based on EDF algorithm using uc/os-II real 
time operating system, implemented on cortex M3 processor. The scheduling unit uses central queue 
management model and the security enhancement scheme adopts a blowfish encryption mechanism. 
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1. INTRODUCTION 

Realtime operating systems perform scheduling of 
tasks using “priority-based preemptive scheduling.” Each 
task in a software application is assigned a priority, with 
higher priority values representing the need for quicker 
responsiveness. “Preemptive” means that the scheduler is 
allowed to stop any task at any point in its execution, if it 
determines that another task needs to run immediately. In 
modern RTOS’s, multitasking is a technique used for 
enabling multiple tasks to share a single processor. It is 
simply the ability to run two or more independent tasks 
on one CPU what appears to be at the same time and not 
actually running concurrently. A realtime kernel like 
uc/os-II supports multitasking. It is a priority-based pre-
emptive real-time multitasking operating system 
kernel for processors, written mainly in 
the C programming language (Abt and Thomas, 2013). 
The adoption of uc/os-II allows to quickly create a system 
that can do many things at the same time. It has the 
provision to automatically adjust the priority of a task 
during its runtime for inter task communication using 
kernel provided calls and creating true realtime responsive 
system.This is desirable feature to have realtime for 

avoiding riority inversion. To overcome priority inversion, 
uc/os-II supports priority ceiling and semaphore protocol 
mechanisms. It also provides priority based scheduler to 
improve throughput, enhancing speed and a queue based 
scheduler as a compile time option. When a task is 
considered, the key parameters include deadline, 
memory space required, waiting time, process time, turn-
around time (Keerthika and Kasthuri, 2012). 

In realtime applications for data communication, 
Priority-based task scheduling strategy which is designed 
to avoid important task to be lost in system, divides tasks 
into three types: Sending data packet, transmitting data 
packet and sensing local data according to the functions 
of different tasks in network. Therefore, it guarantees the 
more important task to be run in a priority way. Thus, 
throughput of the system is improved. The other 
important point to mention is that applying appropriate 
method of scheduling causes significant enhancement of 
fairness in task scheduling (Nojabaei et al., 2012). 

Preemptive EDF strategy widely used in real-time 
system that is most optimal and dynamic scheduling for 
single processor. Undesirable deadline interchanges may 
occur with EDF scheduling. When a shared resource is 
accessed by tasks using critical sections (to prevent it 
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from being pre-empted by another task with an earlier 
deadline waiting for access to the same shared resource), 
it becomes important for the scheduler to temporarily 
assign the earliest deadline from amongst the other tasks 
waiting for the resource, to the task while it is within its 
critical section to prevent the task with earlier deadlines 
miss their respective deadline, especially if the task within 
its critical section has a much longer time to complete and 
its exit from its critical section and subsequent release of 
the shared resource may be delayed. 

For avoiding this situation, priority ceiling 
protocol is implemented in which a task owning the 
resource lock running at a higher priority than any 
other task that may acquire the resource. Each shared 
resource is initialized to a priority ceiling and 
whenever a task locks the resource, the priority of the 
task is raised to the priority ceiling. It works as long 
as the priority ceiling is greater than the priorities of 
any another tasks that may lock the resource. These 
resources are implemented using semaphores. 
Semaphores are added into the resource structure 
along with other information like priority ceiling of 
the resource and the link to the task that was currently 
holding the resource. Basically, a semaphore is a 
protocol mechanism for task communication. If a data 
item is shared by number tasks, race conditions could 
occur if the shared item is not protected properly. The 
easiest protection mechanism is a lock. Figure 1 
shows the state diagram of mutex referred to as a 
mutex for mutual exclusion. For every task, before it 
accesses the set of data items, it acquires the lock. 
Once the lock is successfully acquired, the task 
becomes the owner of that lock and the lock is locked. 
Then, the owner can access the protected items. After 
this, the owner must release the lock and the lock 
becomes unlocked. It is possible that while the owner 
is accessing one of the protected data items and 
another task comes. 
 

 
 
Fig. 1. State diagram of mutex 

Of course, this second task must acquire that lock. 
However, since the lock is locked, this request is 
unsuccessful and the requesting task will be 
suspended and queued at the lock. When the lock is 
released by its owner, one of the waiting tasks will be 
allowed to continue and locks the lock. 

2. RELATED WORKS 

Jiang (2012) implemented a FCFS scheduler to 
schedule best-effort traffic on a dynamic computing 
system. For asynchronous best-effort networks, a 
scheduler was proposed based on FCFS and a combined 
strategy of backfilling and prediction for grid computing. 
When different types of data traffics with different QoS 
requirements share and congest a single network, 
Weighted Fair-Queue (WFQ) scheduler was 
implemented to solve the starvation problem. Different 
models of WFQ were implemented for networks of 
different types. The Generalized Processor-Sharing 
(GPS) model was adopted for clustered networks, where 
data units are in the forms of divisible tasks (sub-tasks). 
For packet switched networks, Packet Weighted-Fair 
Queue (PWFQ) scheduler was implemented that does 
not terminate the traffic session until it finishes the 
current packet. However, it may exceed the allowable 
bandwidth of a session. In order to deal with this 
problem, the worst-case fair-Weighted Fair-Queuing 
(WF2Q) scheduler was implemented, where each packet is 
checked whether it can be scheduled within the session’s 
time slice. The Standard EDF (SEDF) scheduler was 
implemented to serve real-time data flows in an integrated 
network (Jiang, 2012). It has optimal efficiency when 
dealing with similar data traffics. For data streams with 
different QoS requirements, a modified version of the 
SEDF with live monitoring strategy was developed. For 
heavily loaded traffic, an EDF scheduler was 
implemented that has a pre-negotiation phase between 
the system and the data generators. Jagbeer Singh 
attempted uniform multiprocessor machine characterized 
by a speed or computing capacity with the interpretation 
that a job executing on a processor with speed s for t 
time units completes (s*t) units of execution. The 
Earliest-Deadline First (EDF) scheduling of real-time 
systems upon uniform multiprocessor machines is 
considered. It is known that online algorithms tend to 
perform very poorly in scheduling. Such real-time systems 
on multiprocessors; resource-augmentation techniques are 
presented here that permit online algorithms in general 
(EDF in particular) to perform better than may be expected 
given these inherent limitations. 
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Pratap Chandra mantel has shown the superiority of 
Blowfish algorithm with others in terms of the 
throughput, processing time and power consumption. 
More the throughput, more the speed of the algorithm 
and less will be the power consumption. Secondly, AES 
has advantage over the other 3DES and DES in terms of 
throughput and decryption time (Mandal, 2012). Third 
point is that 3DES has the least performance among all the 
algorithms mentioned here. Finally we can conclude that 
Blowfish is the best of all. In future we can perform same 
experiments on image, audio and video and developing a 
stronger encryption algorithm with high speed and 
minimum energy consumption. 

3. IDENTIFIED ENVIRONMENT 
DESCRIPTION 

In this study, for realtime implementation, ARM 
cortex M3 based LPC 1788 processor is chosen as it has 
multi-parameter acquisition, multi-level monitoring and 
supports networking (Jiang, 2012). It is a general 
purpose 32 bit processor which offers high performance 
and very low power consumption. The software coding 
for the hardware functionality is written in embedded C 
language. Features of LPC 1788 include:  

• Running at frequencies of up to 100 MHz 
• Memory Protection Unit (MPU) 
• Nested Vectored Interrupt Controller (NVIC), Non-

Maskable Interrupt (NMI) input 
• Wakeup Interrupt Controller (WIC) 
• Up to 96 kB on-chip SRAM, Up to 4 kB on-chip 

EEPROM 
• External Memory Controller (EMC) 
• DMA controller (GPDMA) 
• JTAG interface, Serial Wire Debug and Serial Wire 

Trace Port options  
• Four reduced power modes: Sleep, deep-sleep and 

power-down, deep power-down 
• Clocks: On-chip crystal oscillator (operating range of 

1 MHz to 25), 12 MHz Internal RC oscillator (IRC) 

Uc/os-II is a hard realtime kernel of an open source 
code that has stability, reliability and the selected 
software build environment is keil µvision. Features of 
uc/os-II include. Very small realtime kernel (Kolhari and 
Nithin, 2012): 

• Memory footprint is about 20KB for a fully 
functional kernel 

• Highly portable, ROM able, scalable, preemptive 
realtime and deterministic kernel 

• Connectivity with uc/GUI platform and uc/file system 

• Supports all types of processors from 8bit to 64 bit 

4. PROPOSED METHOD 

4.1. Data Streaming with Queue Scheduler 

This study provides the implementation of central 
queue based on EDF priority scheduler for data packet 
communication. Earliest Deadline First (EDF) or least 
time to go is a dynamic scheduling algorithm used 
in real-time operating systems to place tasks in a queue. 
As shown in Fig. 2. The i/p streamer consists of an 
input packet handler that can accept packets of variable 
size from multiple sources into a queue. A data stream 
is a sequence of digitally encoded coherent signals 
(packets of data or data packets) used to transmit or 
receive information that is in the process of being 
transmitted and Central queue based EDF scheduler is 
implemented for receiving and servicing data packets 
available in the FIFO queue. 

4.2. Central Queue Based EDF Algorithm 

Queuing is a fundamental consequence of the 
statistical sharing that occurs in packet networks. One 
way to reduce jitter might be to eliminate the statistical 
behavior of the sources. The central queue algorithm is 
such one that supports true priority scheduling on a 
system-wide basis. By definition, it is the only algorithm 
to provide such support. The other algorithms only 
implement priority scheduling within separate queues 
and not on a system-wide basis. The primary benefit of 
using Central Queue scheduling is its adherence to pure 
priority scheduling, i.e., EDF algorithm, a feature unique 
to the algorithm. It is not surprising that the algorithm 
provides the best service for high priority tasks, since 
the Central Queue algorithm is the only algorithm that 
employs system-wide priority scheduling. However, its 
handling of low priority tasks can be poor under high 
loads, when most of the migration overhead is passed 
on to the low priority tasks. Figure 3 shows the model 
of data packet networking arriving into the queue 

implemented in this study. Here, ( ) ( )1 1
1 2src ,src  are the 

data packets from source1 and source 2 respectively 
arriving into the queue in the FIFO manner. In packet-
switched networks, the notion of a scheduling 
algorithm is used as an alternative to first-come first-
served queuing (Abhijit and Apte, 2012). In this 
implementation, Task 1 is the queue filling rate and 
data packets are arriving into the queue and task 2 is 
the servicing rate of the queue. Figure 4 Shows the 
state diagram of central queue model.  
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Fig. 2 I/P streamer model 
 

 
 
Fig. 3 Queue model 
 

 
 
Fig. 4 State diagram 
 
Whenever the queue is full, it is indicated by the event 
flag and task 1 will be in the delayed state. Now data 
packets are ready to be serviced, task 2 is processed 
and whenever the queue is released data packets are 
arriving, i.e., task 1 is running. 

The EDF scheduling unit uses the above central 
queue model in which the queue will be searched for 
the new task closest to its deadline whenever a task is 
finished or new task is released. This task is the next to 
be scheduled for execution. This algorithm is simple 
and proved to be optimal when the system is 
preemptive, under loaded and there is only one 
processor. Earliest Deadline First (EDF) scheduling is a 
dynamic priority assignment. The priority of each task 

is decided based on the value of its deadline. The task 
with nearest deadline is given highest priority and it is 
selected for execution. Now task instances always get 
assigned a priority inverse proportional to their absolute 
deadline i.e., the priority is as higher as the absolute 
deadline is shorter (ties are broken in favor of already 
running task instances). This means that whenever a 
task instance is released the priorities have to be re-
calculated and the priority of a task (i.e., of its 
instances) may vary during runtime. At each instance of 
time this task instance that currently has the highest 
priority among all active task instances is executed. 
Therefore EDF is intrinsically preemptive. 

5. PERFORMANCE METRICS 

5.1. Through put  

Throughput is the amount of data packets moved 
successfully from one place to another in a given time 
period. 

5.2. Packet Loss 

It is the fraction of packets not successfully received 
(i.e., passed CRC check) within some time window. 

5.3. Mean Service Rate 

It is the ratio between speed of the channel in bits per 
second to the mean packet length in bits. 

5.4. Queuing Delay 

It is the delay between the time the packet is assigned 
to the queue for transmission and the time it starts being 
transmitted. 

5.5. Transmission Delay 

It is the delay between the times that the first and last 
data bits of a packet are transmitted. 

5.6. Packet Arrival Rate 

Number of packets arriving into the queue per unit time. 

6. IMPLEMENTATION 

6.1. Block Diagram Description 

In this study, central queue based EDF scheduler is 
implemented under realtime environment for receiving 
and servicing data packets in a FIFO queue.  

Figure 5 show the set up implemented using security 
protocol (Blowfish) and error detection coding schemes. 
This realtime application has been developed and run on 
cortex M3 LPC 1788 processor using uc/os-II. 
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Fig. 5. Security and error detection concepts 
 
6.2. Encryption Layer 

Module I employs blowfish encryption algorithm, a 
symmetric block cipher that can be effectively used for 
encryption and Safeguarding of data. It is a 64-bit block 
cipher that takes a variable-length key from 32 bits to 
448 bits making it ideal for securing data. It is the fast 
block cipher, except when changing keys. The 
algorithm consists of two parts: A key-expansion part 
and a data-encryption part. Key expansion converts a 
key of at most 448 bits into several sub key arrays 
totaling 4168 bytes. Data encryption occurs via a 16-
round Feistel network. Each round consists of a key 
dependent permutation and data-dependent substitution. 
All operations are XORs and additions on 32-bit words. 
The only additional operations are four indexed array 
data lookups per round. The Feistel Network that 
makes up the body of Blowfish is designed to be as 
simple as possible, while still retaining the desirable 
cryptographic properties of the structure.  

6.3. Scheduler Unit 

The encrypted and secured data will be of 1024 
bits and is processed in module II for assigning 
priority number which is a realtime central queue 
based EDF scheduler of uc/os-II. 

6.4. Error Detection Module 

Cyclic Redundancy Check (CRC) implemented in 
module III which is an error-detecting code commonly 
used in digital networks and storage devices to detect 
accidental changes to raw data. It is based on the 
theory of cyclic codes. The use of systematic cyclic 
codes, which encode messages by adding a fixed-
length check value is for the purpose of error 
detection in communication networks. On retrieval, 
the calculation is repeated and corrective action can be 
taken against presumed data corruption if the check 
values do not match. In this way, all the data packets 
are manipulated using the above implementation 
(Saleh and Dong, 2013). 

By implementing security and error detection 
schemes, the data structure for packet 1 of source 1 is 
shown in Fig. 6 as an example.  

6.5. Queuing Implementation 

6.5.1. Decomposing Data into Stream of Packets  

Figure 7.1 to 7.6 show how user data is decomposed 
into stream of packets by undergoing several steps from 
non-realtime to realtime implementation.  

6.6. Priority Assignment 

Table 1 and 2 Provide the information of allocating 
priority for source 1, source 2 and its corresponding data 
packets. 

6.7. Scheduler Implementation 

Figure 8 implements EDF scheduling based 
central queue algorithm under realtime environment of 
uc/os-II. 

Table 3 and 4 explain how the scheduler implements 
selection of data packets for a particular time period. 

6.8. Graphical Implementation  

The base values chosen for packet arrival rate and 
packet servicing rate in this study are listed in Table 5. 

Let task1 corresponding to streaming of src 1 and 
src 2 packets. The Packet arrival rate is 5 ms and 20 
ms respectively. Task2 be the servicing of all packets in 
the queue of size 100 slots. The first task scheduled by 
EDF is filling rate of queue because it has shortest (5 ms) 
period and therefore it has earliest deadline. When task1 
is completed, task2 is scheduled next as it has the 
deadline of 8ms which is next to task1. Figure 9.1 to 9.4 
show the status of task1, task2, queue retaining packet 
status for servicing 25 packets in 200 ms.  

Figure 10.1 to 10.4 show the status of task1, task2, 
queue retaining packet status for servicing 100 
packets in 800 ms.  
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Fig. 6 Data structure of packet of source 1 
 

 
 
Fig 7.1. Separate channel 
 

 
 
Fig .7.2. Common channel for src 1 and src 2 
 

 
 
Fig. 7.3. Error detection added to data structure 
 

 
 
Fig. 7.4. Security and error detection 
 

 
 
Fig .7.5. Packet id assignment (Logical channel) (To suit 

ATM signaling) 
 

 
 
Fig .7.6. Realtime multiple source data structure 
 

The status of serviced packets, queue slot status and 
different time instants are shown in Table 6. 

 
 
Fig. 8. Scheduler and queue realtime implementation 
 

 
 
Fig. 9.1. Queue filling rate (ms) 
 

 
 
Fig. 9.2. Queue servicing rate (ms) 
 

 
 
Fig. 9.3. Queue retention (ms) 
 

 
 
Fig .9.4. 25 packets in 200 ms 
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Fig. 10.1. Queue filling rate (ms) 
 

 
 

Fig. 10.2. Queue servicing rate (ms) 
 

 
 

Fig. 10.3. Queue retention (ms) 
 

 
 
Fig. 10.4. 100 packets in 800ms (ms) 
 
Table 1. Starting priority for multiple source packets 
Sources Priority Allocation (Initial) 
Src1 65535 
Src2 64511 
 
Table 2. Priority of packets for source 1 and source 2  
Src1 packet ID Priority number 
1 65535 
2 65534 
3 65533 
. . 
. . 
Src2 packet ID Priority number 
1 64511 
2 64510 
3 64509 
. . 
. . 

Table 3. Arrival of source 1 and source 2 packets into queue 
Queue Packet Queue Priority 
element number buffer ID number 
Src2 1 1 64511 
Src1 1 1 65535 
Src1 2 1 65534 
Src2 2 1 64510 
Src1 3 2 65533 
Src1 4 3 65532 

 
Table 4. Queue state, packet selected Vs time 

 Scheduler implementation 
 ------------------------------------------------------- 
Time (ms) [Multiple packets] Selected packet  
16 Src1

2 Src1
2 

24 Src2
2 Src1

3 
 Src1

3 
 Src1

4 
32 Src2

2 Src1
4 

 Src1
4 

 Src1
5 

40 Src2
2 Src1

5 
 Src1

5 
 Src1

3 
 Src1

6 
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Table 5. Base values 
 PA (Packet Pse (Packet  Buffer size 
Source arrival rate) in ms servicing rate) in ms 100 packets 

( )1
1src  5 8 

( )2
1src  10 16 

( )3
1src  15 24 

( )1
1src  20 32 

( )2
2src  40 40 

 
Table 6. Serviced packet status 
  Packets in queue (Dynamic) 
 Serviced ------------------------------------- 
Time (ms) packets Src1 Src2 
200 ms 25 40 10 
1000 ms 125 200 50 
800 ms 100 160 40(Queue full) 
 
Table 7. Performance metrics 
Delay (ms) 
Src1 23805 
Src2 82240 
Server 71000 
Add queue 24900 
Get queue 29740 
 

 
 
Fig. 11. Transmitted image from Source 1 
 

7. EXPERIMENTAL RESULTS 

Figure 11 and 12 show source 1 and source 2 images 
transmitted as data packets as per the implemented 
Central queue based EDF scheduler.  

Figure 13 and 14 show reconstructed packets in 
the receiver side after decomposing into data packets 
in the source side by implementing security and error 
detection protocols. 

The implementation is tested with two TCP ports 
with one port as send packets and the other as receiver. 
The proposed algorithms are run in port 1 and the 
received packets along with the metrics such as 
throughput, queue related values and 
implementation/packet reception time is obtained.  

 
 
Fig. 12. Transmitted image from Source 2 
 

 
 
Fig. 13. Recovered image from source 1 
 

 
 
Fig.14. Recovered image from source 2 
 

 
 
Fig. 15. Output implentation 
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The screen captured result is given in Fig. 15 and the 
metric values are listed in Table 7. 

8. CONCLUSION 

 In this study, central queue based EDF algorithm is 
implemented because of its optimality, i.e., the processor 
can be utilized fully and it has less context switches. At 
the same time this algorithm has less predictability and 
controllability. Control over the execution is very lesser 
and response time cannot be reduced. For future scope, 
by properly redesigning the hardware and enhancing 
features of scheduler, controllability over the execution 
can be easily achieved. 
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