
Journal of Computer Science 10 (9): 1743-1751, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1743.1751 Published Online 10 (9) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Kaviha, V., Department of ECE, Dr.M.G.R Educational and Research Institute University, Chennai, India

1743 Science Publications

JCS

IMPLEMENTATION OF CENTRAL QUEUE BASED REALTIME
SCHEDULER FOR MULTIPLE SOURCE DATA STREAMING

1Kaviha, V., 2V. Kannan and 3S. Ravi

1,3Department of ECE, Dr.M.G.R Educational and Research Institute University, Chennai, India
2Jeppiaar Institute of Technology, Chennai, India

Received 2014-02-11; Revised 2014-02-15; Accepted 2014-04-22

ABSTRACT

Real-time data packet sources are required to remain robust against different security threats. This study
proposes a real-time secure scheduling strategy for data transmission to enhance the communication
throughput and reduce the overheads. The proposed system combines real-time scheduling with security
service enhancement, error detection and realtime scheduler based on EDF algorithm using uc/os-II real
time operating system, implemented on cortex M3 processor. The scheduling unit uses central queue
management model and the security enhancement scheme adopts a blowfish encryption mechanism.

Keywords: Blowfish, Central Queue, EDF, Priority Scheduling, Micro/Os-II

1. INTRODUCTION

Realtime operating systems perform scheduling of
tasks using “priority-based preemptive scheduling.” Each
task in a software application is assigned a priority, with
higher priority values representing the need for quicker
responsiveness. “Preemptive” means that the scheduler is
allowed to stop any task at any point in its execution, if it
determines that another task needs to run immediately. In
modern RTOS’s, multitasking is a technique used for
enabling multiple tasks to share a single processor. It is
simply the ability to run two or more independent tasks
on one CPU what appears to be at the same time and not
actually running concurrently. A realtime kernel like
uc/os-II supports multitasking. It is a priority-based pre-
emptive real-time multitasking operating system
kernel for processors, written mainly in
the C programming language (Abt and Thomas, 2013).
The adoption of uc/os-II allows to quickly create a system
that can do many things at the same time. It has the
provision to automatically adjust the priority of a task
during its runtime for inter task communication using
kernel provided calls and creating true realtime responsive
system.This is desirable feature to have realtime for

avoiding riority inversion. To overcome priority inversion,
uc/os-II supports priority ceiling and semaphore protocol
mechanisms. It also provides priority based scheduler to
improve throughput, enhancing speed and a queue based
scheduler as a compile time option. When a task is
considered, the key parameters include deadline,
memory space required, waiting time, process time, turn-
around time (Keerthika and Kasthuri, 2012).

In realtime applications for data communication,
Priority-based task scheduling strategy which is designed
to avoid important task to be lost in system, divides tasks
into three types: Sending data packet, transmitting data
packet and sensing local data according to the functions
of different tasks in network. Therefore, it guarantees the
more important task to be run in a priority way. Thus,
throughput of the system is improved. The other
important point to mention is that applying appropriate
method of scheduling causes significant enhancement of
fairness in task scheduling (Nojabaei et al., 2012).

Preemptive EDF strategy widely used in real-time
system that is most optimal and dynamic scheduling for
single processor. Undesirable deadline interchanges may
occur with EDF scheduling. When a shared resource is
accessed by tasks using critical sections (to prevent it

Kaviha, V. et al. / Journal of Computer Science 10 (9): 1743-1751, 2014

1744 Science Publications

JCS

from being pre-empted by another task with an earlier
deadline waiting for access to the same shared resource),
it becomes important for the scheduler to temporarily
assign the earliest deadline from amongst the other tasks
waiting for the resource, to the task while it is within its
critical section to prevent the task with earlier deadlines
miss their respective deadline, especially if the task within
its critical section has a much longer time to complete and
its exit from its critical section and subsequent release of
the shared resource may be delayed.

For avoiding this situation, priority ceiling
protocol is implemented in which a task owning the
resource lock running at a higher priority than any
other task that may acquire the resource. Each shared
resource is initialized to a priority ceiling and
whenever a task locks the resource, the priority of the
task is raised to the priority ceiling. It works as long
as the priority ceiling is greater than the priorities of
any another tasks that may lock the resource. These
resources are implemented using semaphores.
Semaphores are added into the resource structure
along with other information like priority ceiling of
the resource and the link to the task that was currently
holding the resource. Basically, a semaphore is a
protocol mechanism for task communication. If a data
item is shared by number tasks, race conditions could
occur if the shared item is not protected properly. The
easiest protection mechanism is a lock. Figure 1
shows the state diagram of mutex referred to as a
mutex for mutual exclusion. For every task, before it
accesses the set of data items, it acquires the lock.
Once the lock is successfully acquired, the task
becomes the owner of that lock and the lock is locked.
Then, the owner can access the protected items. After
this, the owner must release the lock and the lock
becomes unlocked. It is possible that while the owner
is accessing one of the protected data items and
another task comes.

Fig. 1. State diagram of mutex

Of course, this second task must acquire that lock.
However, since the lock is locked, this request is
unsuccessful and the requesting task will be
suspended and queued at the lock. When the lock is
released by its owner, one of the waiting tasks will be
allowed to continue and locks the lock.

2. RELATED WORKS

Jiang (2012) implemented a FCFS scheduler to
schedule best-effort traffic on a dynamic computing
system. For asynchronous best-effort networks, a
scheduler was proposed based on FCFS and a combined
strategy of backfilling and prediction for grid computing.
When different types of data traffics with different QoS
requirements share and congest a single network,
Weighted Fair-Queue (WFQ) scheduler was
implemented to solve the starvation problem. Different
models of WFQ were implemented for networks of
different types. The Generalized Processor-Sharing
(GPS) model was adopted for clustered networks, where
data units are in the forms of divisible tasks (sub-tasks).
For packet switched networks, Packet Weighted-Fair
Queue (PWFQ) scheduler was implemented that does
not terminate the traffic session until it finishes the
current packet. However, it may exceed the allowable
bandwidth of a session. In order to deal with this
problem, the worst-case fair-Weighted Fair-Queuing
(WF2Q) scheduler was implemented, where each packet is
checked whether it can be scheduled within the session’s
time slice. The Standard EDF (SEDF) scheduler was
implemented to serve real-time data flows in an integrated
network (Jiang, 2012). It has optimal efficiency when
dealing with similar data traffics. For data streams with
different QoS requirements, a modified version of the
SEDF with live monitoring strategy was developed. For
heavily loaded traffic, an EDF scheduler was
implemented that has a pre-negotiation phase between
the system and the data generators. Jagbeer Singh
attempted uniform multiprocessor machine characterized
by a speed or computing capacity with the interpretation
that a job executing on a processor with speed s for t
time units completes (s*t) units of execution. The
Earliest-Deadline First (EDF) scheduling of real-time
systems upon uniform multiprocessor machines is
considered. It is known that online algorithms tend to
perform very poorly in scheduling. Such real-time systems
on multiprocessors; resource-augmentation techniques are
presented here that permit online algorithms in general
(EDF in particular) to perform better than may be expected
given these inherent limitations.

Kaviha, V. et al. / Journal of Computer Science 10 (9): 1743-1751, 2014

1745 Science Publications

JCS

Pratap Chandra mantel has shown the superiority of
Blowfish algorithm with others in terms of the
throughput, processing time and power consumption.
More the throughput, more the speed of the algorithm
and less will be the power consumption. Secondly, AES
has advantage over the other 3DES and DES in terms of
throughput and decryption time (Mandal, 2012). Third
point is that 3DES has the least performance among all the
algorithms mentioned here. Finally we can conclude that
Blowfish is the best of all. In future we can perform same
experiments on image, audio and video and developing a
stronger encryption algorithm with high speed and
minimum energy consumption.

3. IDENTIFIED ENVIRONMENT
DESCRIPTION

In this study, for realtime implementation, ARM
cortex M3 based LPC 1788 processor is chosen as it has
multi-parameter acquisition, multi-level monitoring and
supports networking (Jiang, 2012). It is a general
purpose 32 bit processor which offers high performance
and very low power consumption. The software coding
for the hardware functionality is written in embedded C
language. Features of LPC 1788 include:

• Running at frequencies of up to 100 MHz
• Memory Protection Unit (MPU)
• Nested Vectored Interrupt Controller (NVIC), Non-

Maskable Interrupt (NMI) input
• Wakeup Interrupt Controller (WIC)
• Up to 96 kB on-chip SRAM, Up to 4 kB on-chip

EEPROM
• External Memory Controller (EMC)
• DMA controller (GPDMA)
• JTAG interface, Serial Wire Debug and Serial Wire

Trace Port options
• Four reduced power modes: Sleep, deep-sleep and

power-down, deep power-down
• Clocks: On-chip crystal oscillator (operating range of

1 MHz to 25), 12 MHz Internal RC oscillator (IRC)

Uc/os-II is a hard realtime kernel of an open source
code that has stability, reliability and the selected
software build environment is keil µvision. Features of
uc/os-II include. Very small realtime kernel (Kolhari and
Nithin, 2012):

• Memory footprint is about 20KB for a fully
functional kernel

• Highly portable, ROM able, scalable, preemptive
realtime and deterministic kernel

• Connectivity with uc/GUI platform and uc/file system

• Supports all types of processors from 8bit to 64 bit

4. PROPOSED METHOD

4.1. Data Streaming with Queue Scheduler

This study provides the implementation of central
queue based on EDF priority scheduler for data packet
communication. Earliest Deadline First (EDF) or least
time to go is a dynamic scheduling algorithm used
in real-time operating systems to place tasks in a queue.
As shown in Fig. 2. The i/p streamer consists of an
input packet handler that can accept packets of variable
size from multiple sources into a queue. A data stream
is a sequence of digitally encoded coherent signals
(packets of data or data packets) used to transmit or
receive information that is in the process of being
transmitted and Central queue based EDF scheduler is
implemented for receiving and servicing data packets
available in the FIFO queue.

4.2. Central Queue Based EDF Algorithm

Queuing is a fundamental consequence of the
statistical sharing that occurs in packet networks. One
way to reduce jitter might be to eliminate the statistical
behavior of the sources. The central queue algorithm is
such one that supports true priority scheduling on a
system-wide basis. By definition, it is the only algorithm
to provide such support. The other algorithms only
implement priority scheduling within separate queues
and not on a system-wide basis. The primary benefit of
using Central Queue scheduling is its adherence to pure
priority scheduling, i.e., EDF algorithm, a feature unique
to the algorithm. It is not surprising that the algorithm
provides the best service for high priority tasks, since
the Central Queue algorithm is the only algorithm that
employs system-wide priority scheduling. However, its
handling of low priority tasks can be poor under high
loads, when most of the migration overhead is passed
on to the low priority tasks. Figure 3 shows the model
of data packet networking arriving into the queue

implemented in this study. Here, () ()1 1
1 2src ,src are the

data packets from source1 and source 2 respectively
arriving into the queue in the FIFO manner. In packet-
switched networks, the notion of a scheduling
algorithm is used as an alternative to first-come first-
served queuing (Abhijit and Apte, 2012). In this
implementation, Task 1 is the queue filling rate and
data packets are arriving into the queue and task 2 is
the servicing rate of the queue. Figure 4 Shows the
state diagram of central queue model.

Kaviha, V. et al. / Journal of Computer Science 10 (9): 1743-1751, 2014

1746 Science Publications

JCS

Fig. 2 I/P streamer model

Fig. 3 Queue model

Fig. 4 State diagram

Whenever the queue is full, it is indicated by the event
flag and task 1 will be in the delayed state. Now data
packets are ready to be serviced, task 2 is processed
and whenever the queue is released data packets are
arriving, i.e., task 1 is running.

The EDF scheduling unit uses the above central
queue model in which the queue will be searched for
the new task closest to its deadline whenever a task is
finished or new task is released. This task is the next to
be scheduled for execution. This algorithm is simple
and proved to be optimal when the system is
preemptive, under loaded and there is only one
processor. Earliest Deadline First (EDF) scheduling is a
dynamic priority assignment. The priority of each task

is decided based on the value of its deadline. The task
with nearest deadline is given highest priority and it is
selected for execution. Now task instances always get
assigned a priority inverse proportional to their absolute
deadline i.e., the priority is as higher as the absolute
deadline is shorter (ties are broken in favor of already
running task instances). This means that whenever a
task instance is released the priorities have to be re-
calculated and the priority of a task (i.e., of its
instances) may vary during runtime. At each instance of
time this task instance that currently has the highest
priority among all active task instances is executed.
Therefore EDF is intrinsically preemptive.

5. PERFORMANCE METRICS

5.1. Through put

Throughput is the amount of data packets moved
successfully from one place to another in a given time
period.

5.2. Packet Loss

It is the fraction of packets not successfully received
(i.e., passed CRC check) within some time window.

5.3. Mean Service Rate

It is the ratio between speed of the channel in bits per
second to the mean packet length in bits.

5.4. Queuing Delay

It is the delay between the time the packet is assigned
to the queue for transmission and the time it starts being
transmitted.

5.5. Transmission Delay

It is the delay between the times that the first and last
data bits of a packet are transmitted.

5.6. Packet Arrival Rate

Number of packets arriving into the queue per unit time.

6. IMPLEMENTATION

6.1. Block Diagram Description

In this study, central queue based EDF scheduler is
implemented under realtime environment for receiving
and servicing data packets in a FIFO queue.

Figure 5 show the set up implemented using security
protocol (Blowfish) and error detection coding schemes.
This realtime application has been developed and run on
cortex M3 LPC 1788 processor using uc/os-II.

Kaviha, V. et al. / Journal of Computer Science 10 (9): 1743-1751, 2014

1747 Science Publications

JCS

Fig. 5. Security and error detection concepts

6.2. Encryption Layer

Module I employs blowfish encryption algorithm, a
symmetric block cipher that can be effectively used for
encryption and Safeguarding of data. It is a 64-bit block
cipher that takes a variable-length key from 32 bits to
448 bits making it ideal for securing data. It is the fast
block cipher, except when changing keys. The
algorithm consists of two parts: A key-expansion part
and a data-encryption part. Key expansion converts a
key of at most 448 bits into several sub key arrays
totaling 4168 bytes. Data encryption occurs via a 16-
round Feistel network. Each round consists of a key
dependent permutation and data-dependent substitution.
All operations are XORs and additions on 32-bit words.
The only additional operations are four indexed array
data lookups per round. The Feistel Network that
makes up the body of Blowfish is designed to be as
simple as possible, while still retaining the desirable
cryptographic properties of the structure.

6.3. Scheduler Unit

The encrypted and secured data will be of 1024
bits and is processed in module II for assigning
priority number which is a realtime central queue
based EDF scheduler of uc/os-II.

6.4. Error Detection Module

Cyclic Redundancy Check (CRC) implemented in
module III which is an error-detecting code commonly
used in digital networks and storage devices to detect
accidental changes to raw data. It is based on the
theory of cyclic codes. The use of systematic cyclic
codes, which encode messages by adding a fixed-
length check value is for the purpose of error
detection in communication networks. On retrieval,
the calculation is repeated and corrective action can be
taken against presumed data corruption if the check
values do not match. In this way, all the data packets
are manipulated using the above implementation
(Saleh and Dong, 2013).

By implementing security and error detection
schemes, the data structure for packet 1 of source 1 is
shown in Fig. 6 as an example.

6.5. Queuing Implementation

6.5.1. Decomposing Data into Stream of Packets

Figure 7.1 to 7.6 show how user data is decomposed
into stream of packets by undergoing several steps from
non-realtime to realtime implementation.

6.6. Priority Assignment

Table 1 and 2 Provide the information of allocating
priority for source 1, source 2 and its corresponding data
packets.

6.7. Scheduler Implementation

Figure 8 implements EDF scheduling based
central queue algorithm under realtime environment of
uc/os-II.

Table 3 and 4 explain how the scheduler implements
selection of data packets for a particular time period.

6.8. Graphical Implementation

The base values chosen for packet arrival rate and
packet servicing rate in this study are listed in Table 5.

Let task1 corresponding to streaming of src 1 and
src 2 packets. The Packet arrival rate is 5 ms and 20
ms respectively. Task2 be the servicing of all packets in
the queue of size 100 slots. The first task scheduled by
EDF is filling rate of queue because it has shortest (5 ms)
period and therefore it has earliest deadline. When task1
is completed, task2 is scheduled next as it has the
deadline of 8ms which is next to task1. Figure 9.1 to 9.4
show the status of task1, task2, queue retaining packet
status for servicing 25 packets in 200 ms.

Figure 10.1 to 10.4 show the status of task1, task2,
queue retaining packet status for servicing 100
packets in 800 ms.

Kaviha, V. et al. / Journal of Computer Science 10 (9): 1743-1751, 2014

1748 Science Publications

JCS

Fig. 6 Data structure of packet of source 1

Fig 7.1. Separate channel

Fig .7.2. Common channel for src 1 and src 2

Fig. 7.3. Error detection added to data structure

Fig. 7.4. Security and error detection

Fig .7.5. Packet id assignment (Logical channel) (To suit

ATM signaling)

Fig .7.6. Realtime multiple source data structure

The status of serviced packets, queue slot status and
different time instants are shown in Table 6.

Fig. 8. Scheduler and queue realtime implementation

Fig. 9.1. Queue filling rate (ms)

Fig. 9.2. Queue servicing rate (ms)

Fig. 9.3. Queue retention (ms)

Fig .9.4. 25 packets in 200 ms

Kaviha, V. et al. / Journal of Computer Science 10 (9): 1743-1751, 2014

1749 Science Publications

JCS

Fig. 10.1. Queue filling rate (ms)

Fig. 10.2. Queue servicing rate (ms)

Fig. 10.3. Queue retention (ms)

Fig. 10.4. 100 packets in 800ms (ms)

Table 1. Starting priority for multiple source packets
Sources Priority Allocation (Initial)
Src1 65535
Src2 64511

Table 2. Priority of packets for source 1 and source 2
Src1 packet ID Priority number
1 65535
2 65534
3 65533
. .
. .
Src2 packet ID Priority number
1 64511
2 64510
3 64509
. .
. .

Table 3. Arrival of source 1 and source 2 packets into queue
Queue Packet Queue Priority
element number buffer ID number
Src2 1 1 64511
Src1 1 1 65535
Src1 2 1 65534
Src2 2 1 64510
Src1 3 2 65533
Src1 4 3 65532

Table 4. Queue state, packet selected Vs time

 Scheduler implementation

Time (ms) [Multiple packets] Selected packet
16 Src1

2 Src1
2

24 Src2
2 Src1

3
 Src1

3
 Src1

4
32 Src2

2 Src1
4

 Src1
4

 Src1
5

40 Src2
2 Src1

5
 Src1

5
 Src1

3
 Src1

6

Kaviha, V. et al. / Journal of Computer Science 10 (9): 1743-1751, 2014

1750 Science Publications

JCS

Table 5. Base values
 PA (Packet Pse (Packet Buffer size
Source arrival rate) in ms servicing rate) in ms 100 packets

()1
1src 5 8

()2
1src 10 16

()3
1src 15 24

()1
1src 20 32

()2
2src 40 40

Table 6. Serviced packet status
 Packets in queue (Dynamic)
 Serviced -------------------------------------
Time (ms) packets Src1 Src2
200 ms 25 40 10
1000 ms 125 200 50
800 ms 100 160 40(Queue full)

Table 7. Performance metrics
Delay (ms)
Src1 23805
Src2 82240
Server 71000
Add queue 24900
Get queue 29740

Fig. 11. Transmitted image from Source 1

7. EXPERIMENTAL RESULTS

Figure 11 and 12 show source 1 and source 2 images
transmitted as data packets as per the implemented
Central queue based EDF scheduler.

Figure 13 and 14 show reconstructed packets in
the receiver side after decomposing into data packets
in the source side by implementing security and error
detection protocols.

The implementation is tested with two TCP ports
with one port as send packets and the other as receiver.
The proposed algorithms are run in port 1 and the
received packets along with the metrics such as
throughput, queue related values and
implementation/packet reception time is obtained.

Fig. 12. Transmitted image from Source 2

Fig. 13. Recovered image from source 1

Fig.14. Recovered image from source 2

Fig. 15. Output implentation

Kaviha, V. et al. / Journal of Computer Science 10 (9): 1743-1751, 2014

1751 Science Publications

JCS

The screen captured result is given in Fig. 15 and the
metric values are listed in Table 7.

8. CONCLUSION

 In this study, central queue based EDF algorithm is
implemented because of its optimality, i.e., the processor
can be utilized fully and it has less context switches. At
the same time this algorithm has less predictability and
controllability. Control over the execution is very lesser
and response time cannot be reduced. For future scope,
by properly redesigning the hardware and enhancing
features of scheduler, controllability over the execution
can be easily achieved.

9. REFERENCES

Nojabaei, S., Z. Leman, S.H. Tang and S. Sulaiman,
2012. Development of priority oriented scheduling
method to increase the reliability of manufacturing
systems. Am. J Applied Sci., 9: 1435-1442. DOI:
10.3844/ajassp.2012.1435.1442

Keerthika, P. and N. Kasthuri, 2012. An efficient fault
tolerant scheduling approach for computational grid.
Am. J. Applied Sci., 9: 2046-2051.
DOI: 10.3844/ajassp.2012.2046.2051

Abhijit, A. and S.S. Apte, 2012. A comparative
performance analysis of load balancing algorithms
in distributed systems using qualitative parameters.
Int. J. Recent Techn. Eng., 1: 175-179.

Mandal, P.C., 2012. Superiority of blowfish algorithm. Int.
J. Adv. Res. Comput. Sci. Software Eng., 2: 196-201.

Saleh, M. and L. Dong, 2013. Realtime scheduling with
security enhancement for packet switched networks.
IEEE Trans. Netw. Service Manage., 10: 271-285.
DOI: 10.1109/TNSM.2013.071813.120299

Kolhari, N.R. and I.B. Nithin, 2012. Porting and
implementation of features of uc/os II RTOS on
ARM 7controller LPC 2148 with different IPC
mechanisms. Int. J. Eng. Res. Techn., 1: 2278-0181.

Abt, A.R. and K. Thomas, 2013. ARM based embedded
web servers for industrial applications. Proceeding
of the International Conference on Computing and
Control Engineering, Apr. 12-13. Coimbatore
Institute of Information Technology.

Jiang, W., 2012. Resource Allocation of security-critical
tasks with statistically guaranteed energy constraint
embedded and realtime computing systems and
applications. Proceeding of the 18th IEEE
International Conference, pp: 330-339. DOI:
10.1109/RTCSA.2012.34

