
Journal of Computer Science 10 (7): 1156-1165, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1156.1165 Published Online 10 (7) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: A. Paulin Florence, Research Scholar, Department of CSE, Sathyabama University, Chennai, India and
 Associate Professor, Department of Computer Applications, St. Josephâ€™s College of Engineering,
 Chennai, India

1156 Science Publications

JCS

A LOAD BALANCING MODEL USING
FIREFLY ALGORITHM IN CLOUD COMPUTING

1A. Paulin Florence and 2V. Shanthi

1Research Scholar, Department of CSE, Sathyabama University, Chennai, India and
1,2Department of Computer Applications, St. Josephâ€™s College of Engineering, Chennai, India

Received 2013-10-07; Revised 2014-01-04; Accepted 2014-02-15

ABSTRACT

Cloud computing is a model that points at streamlining the on-demand provisioning of software, hardware
and data as services and providing end-users with flexible and scalable services accessible through the
Internet. The main objective of the proposed approach is to maximize the resource utilization and provide a
good balanced load among all the resources in cloud servers. Initially, a load model of every resource will
be derived based on several factors such as, memory usage, processing time and access rate. Based on the
newly derived load index, the current load will be computed for all the resources shared in virtual machine
of cloud servers. Once the load index is computed for all the resources, load balancing operation will be
initiated to effectively use the resources dynamically with the process of assigning resources to the
corresponding node to reduce the load value. So, assigning of resources to proper nodes is an optimal
distribution problem so that many optimization algorithms such as genetic algorithm and modified
genetic algorithm are utilized for load balancing. These algorithms are not much effective in providing
the neighbour solutions since it does not overcome exploration and exploration problem. So, utilizing the
effective optimization procedure instead of genetic algorithm can lead to better load balancing since it is
a traditional and old algorithm. Accordingly, I have planned to utilize a recent optimization algorithm,
called firefly algorithm to do the load balancing operation in our proposed work. At first, the index table
will be maintained by considering the availability of virtual servers and sequence of request. Then, load
index will be computed based on the newly derived formulae. Based on load index, load balancing
operation will be carried out using firefly algorithm. The performance analysis produced expected results
and thus proved the proposed approach is efficient in optimizing schedules by balancing the loads. The
average time obtained for the proposed approach is 0.934 ms.

Keywords: Cloud Computing, Optimization, Load Balancing, Firefly Algorithm

1. INTRODUCTION

Cloud computing points at the streamlining on the
requiremnt on provisioning of software, hardware and
data as amenities and supplying end-users with supple
and scalable services available through the Internet
(Armbrust et al., 2009). The cloud computing is
assumed to facilitate computing as the value to meet
the everyday needs of the community (Buyya et al.,

2009). A cloud computing is theoretically a dispersed
and flexible system where properties will be spread
through the network (Cloud). The total resources of
the system must be united to reply to a client request,
which requires intercommunication through numerous
components of the system to design a component or
subset of components to deal with the request. This
can lead to tailbacks in the network and an excessive
charge in a distributed system where some modules

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1157 Science Publications

JCS

will be overcharged while others will be not or less
charged (Khiyaita et al., 2012). To solve this problem,
load balancing technique is commonly developed and
used by recent researchers.

However there is a magnificent future of Cloud
Computing, so much of important complications still
need to be solved for the realization of cloud
computing. Load balancing is triggered as one major
problem among those; it shows a very significant role
in the realization of Cloud Computing (Mondal et al.,
2012). Load Balancing is a procedure to mark
operational resource consumption by reallocating the
total load to the discrete nodes of the joint
organization and to recover the response time of the
job. For emerging tactics for load balancing, the
imporatnt points to be considered are approximation of
load, assessment of load, stability of different system,
performance of system, interaction between the nodes,
nature of work to be transferred, selecting of nodes
(Alakeel, 2010). This load measured can be associated
as CPU load, amount of memory used, delay or
Network load (Mondal et al., 2012).

In swift, the load balancing mechanism in cloud
computing settings requires three conditions as follows:
(i) on the condition that the local load case is not hefty, it
can make the local self-organization in order to reduce
the information exchange (ii) The cloud computing
balancing system could be utilized in the heterogeneous
environment. (iii) In order not to affect the system
average response time, cloud computing load balancing
mechanism should increase the system throughput as
much as possible (Yao and He, 2012). To solve those
issues, a substantial amount of work has been
performed recently on load balancing among the nodes
in a dynamic network. load balancer based load
balancing (Ranjan et al., 2010) and optimization
algorithm-based load balancing (Kotoulas et al., 2010;
Mondal et al., 2012; Xin et al., 2012).

In this study, a load balancing based scheduling is
derived for every resource based on several factors such
as, memory usage, processing time and access rate.
Based on the newly derived load index, the current load
will be computed for all the resources shared in virtual
machine of cloud servers. Once the load index is
computed for all the resources, load balancing operation
will be initiated to effectively use the resources
dynamically with the process of assigning resources to
the corresponding node to reduce the load value. So,
assigning of resources to proper nodes is an optimal
distribution problem so that many optimization
algorithms such as genetic algorithm and modified

genetic algorithm are utilized for load balancing.
These algorithms are not much effective in providing
the neighbour solutions since it does not overcome
exploration and exploration problem. So, utilizing the
effective optimization procedure instead of genetic
algorithm can lead to better load balancing since it is a
traditional and old algorithm. Accordingly, I have
planned to utilize a recent optimization algorithm,
called firefly algorithm to do the load balancing
operation in our proposed work. At first, the index
table will be maintained by considering the
availability of virtual servers and sequence of request.
Then, load index will be computed based on the newly
derived formulae. Based on load index, load balancing
operation will be carried out using firefly algorithm.

The main contributions of the approach:

• A scheduling method is designed by giving

importance to balancing loads on nodes
• A firefly algorithm is used to optimize the

scheduling queue

The rest of the study is organized as the second section
contains the literature review of some recent researches on
cloud computing. The problem description is given in the
section three. The fourth section gives the overview of
load balancing in cloud computing and firefly algorithm.
In the fifth section, complete review of the proposed
approach is given and the experimentation conducted on
the proposed approach is plotted in section six. The
conclusion of the research is plotted in the seventh section.

1.1. Related Researchers: A Brief Review

Despite a plenty of works available in the literature, a
handful of significant research works are reviewed here.
Initially, Min et al. (2010) have presented an adaptive
load balancing optimization scheduling, which means
that the cluster system select and distribute the server not
only take the previous performance and the present
performance of the system into account, but also
estimate the future load of the system before these
concurrent requests are distributed. A mathematical
model of load balancing was improved and an adaptive
load balancing optimization scheduling based on genetic
algorithm was presented, analyzed and simulated.
Empirical results showed that the algorithm was reduced
effectively the average execution time of all requests and
speed up the average response time.

Mohamed et al. (2011) have introduced an innovative
method to parallelize file downloads from multiple

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1158 Science Publications

JCS

replicas on Cloud servers without adding high
coordination overhead. DDFTP used the concept of
processing the files two different directions. Consider
there were two replicas of a file on two servers one
server will send blocks strat initially from the file, while
the second will start from the end. They are nonstop until
they met and the client then asked them both to stop.
This basically allowed for automatic load balancing
allowing each server to work based on its conditions yet
both finishing at the same time. The method was
extended to apply to more than two servers and we used
several experiments to show the performance gains of
DDFTP using two, four and eight servers and compared
it to regular FTP, concurrent FTP and DADTM on a
similar number of servers under the same conditions.

Mondal et al. (2012) have developed a soft
computing based load balancing approach. A local
optimization approach Stochastic Hill climbing was
used for allocation of incoming jobs to the servers or
Virtual Machines (VMs). Performance of the
algorithm was analyzed both qualitatively and
quantitatively using Cloud Analyst. Cloud Analyst
was a CloudSim-based Visual Modeller for analyzing
cloud computing environments and applications. A
comparison was also made with Round Robin and
First Come First Serve (FCFS) algorithms.

Dong et al. (2012) have presented a dynamic and
Adaptive Load Balancing algorithm (SALB) which
was totally based on a distributed architecture. In
order to understand the network transmission, SALB
on the one hand assumed an adaptively adjusted load
collection threshold in order to reduce the message
swapped for load collection and on the other hand it
employed an on-line load estimation model with a
view to reducing the decision delay caused by the
network transmission latency. Moreover, SALB
employed an optimization model for selecting the
migration candidates so as to balance the benefits and
the side-effects of each dynamic file migration.

Ardagna et al. (2012) have developed capacity
allocation algorithms able to coordinate multiple
distributed resource controllers operating in
geographically distributed cloud sites. Capacity
allocation solutions were integrated with a load
redirection mechanism which, when necessary,
distributes incoming requests among different sites. The
overall goal was to minimize the costs of allocated
resources in terms of virtual machines, while
guaranteeing SLA constraints expressed as a threshold
on the average response time. They proposed a
distributed solution which integrates workload prediction

and distributed non-linear optimization techniques.
Experiments showed how the proposed solutions
improved other heuristics proposed in literature without
penalizing SLAs and their results were close to the
global optimum which was obtained by an oracle with a
perfect knowledge about the future offered load.

Xin et al. (2012) have developed a model program
which was multi-objective optimization and load
balancing of cloud resource schedule. They have taken
real-time load parameters (CPU occupancy rate, memory
occupancy rate, network bandwidth, the process
occupancy rate, service response time) from the server
cluster nodes as decision variables of resources
scheduling model and used the improved adaptive
genetic algorithm to search the optimal solution, in order
to realize the load balancing scheduling of cloud
resource and make the each index change smoothly. The
experimental result showed that, using the improved load
balancing scheduling strategy to solve the problems of
the load balancing scheduling of cloud resource, not only
makes the each index of the system change smoothly, but
also improved the performance of the system efficiently.

1.2. Problem Description

A cloud computing is conceptually a distributed and
elastic system where resources will be distributed
through the network (Cloud). The full resources of the
system must cooperate to respond to a client request
which requires intercommunication between various
components of the system to design a component or
subset of components to deal with the request. This can
lead to bottlenecks in the network and an imbalanced
charge in a distributed system where some components
will be overcharged while others will be not or light
charged. Among the major challenges faced by the cloud
computing systems, load balancing is one tedious
challenge that plays a very important role in the
realization of Cloud Computing. For developing strategy
for load balancing, the main points to be considered are
estimation of load, comparison of load, stability of
different system, performance of system, interaction
between the nodes, nature of work to be transferred,
selecting of nodes. So, in order to tackle the problems
related to load balancing in the cloud network, an
effective system should be developed.

The primary intention of the proposed approach is
to design a load balancing model using firefly
algorithm. Here, a main objective is to maximize the
resource utilization and provide a good balanced load
among all the resources in cloud servers. Initially, a

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1159 Science Publications

JCS

load model of every resource will be derived based on
several factors such as, memory usage, processing
time and access rate. Based on the newly derived load
index, the current load will be computed for all the
resources shared in virtual machine of cloud servers.
Once the load index is computed for all the resources,
load balancing operation will be initiated to
effectively use the resources dynamically with the
process of assigning resources to the corresponding
node to reduce the load value. So, assigning of
resources to proper nodes is an optimal distribution
problem so that many optimization algorithms such as
genetic algorithm and modified genetic algorithm are
utilized for load balancing. These algorithms are not
much effective in providing the neighbour solutions
since it does not overcome exploration and
exploration problem. So, utilizing the effective
optimization procedure instead of genetic algorithm
can lead to better load balancing since it is a
traditional and old algorithm. Accordingly, I have
planned to utilize a recent optimization algorithm,
called firefly algorithm to do the load balancing
operation in our proposed work. At first, the index
table will be maintained by considering the
availability of virtual servers and sequence of request.
Then, load index will be computed based on the newly
derived formulae. Based on load index, load balancing
operation will be carried out using firefly algorithm.

1.3. Load Balancing in Cloud Computing Network

In the cloud computing environment, the cloud
resource scheduling controller, through the changing
load of real-time monitor servers nodes, assigns
resources to the corresponding node dynamically to
meet some needs, such as high utilization of
resources, excellent performance and fast response.
The topology of the server group nodes that involved
in the cloud resources scheduling can be described in
the following Fig. 1.

The above topology can be described as an G (V,E)
undirected graph, G represents the node set in the chart,
E represents the set of connection between these nodes.
Ci represents cluster control server node. CNi represents
node controller, which is a separate physical machine.
Each Ci node manages m node controller CNi, you can
run k virtual machines on each CNi and use Vi to
represent virtual machine, So the node which will be
mentioned in this study is Vi. In the cloud service
environment, application, DBMS and other software are
deployed in several Vi nodes to run. Difficult issues of
cloud resource scheduling need to be addressed is, when

the user requests the use of cloud resources services,
cloud resources scheduling controller should adopt what
kind of resources scheduling model and strategy, this
makes each node of the whole system deal with tasks in
load balance way and prevent scheduling tilt of the cloud
services platform system resources.

In the cloud computing system, when the user makes
a request, the cloud controller receives the request and
then it will arrange the request in the queue of the server
cluster. There have more than one cluster controller
below the cloud controller, cluster controllers real-time
monitor the running load parameters of every virtual
resource pool of this cluster, such as CPU occupancy
rate, memory occupancy rate, the network bandwidth
and process occupancy rate and so on, Therefore, this is
a multi-objective problem which searches for the optimal
solution. According to monitoring the multi-objective
parameter, cluster controller will calculate the fitness of
each Vi node, then for the whole cluster, use Improved
Adaptive Genetic Algorithm to search the best solution
in the multi-objective question, which is the „lighter‟
node by use algorithm to solve. Finally, according to
cloud resource scheduling strategy of load balancing,
service resource will be assigned to the best server node.

1.4. Firefly Algorithm

Now we can idealize some of the flashing
characteristics of fireflies so as to develop firefly-
inspired algorithms. For simplicity in describing our
new Firefly Algorithm (FA), we now use the
following three idealized rules: (1) all fireflies are
unisex so that one firefly will be attracted to other
fireflies regardless of their sex; (2) Attractiveness is
proportional to their brightness, thus for any two
flashing fireflies, the less brighter one will move
towards the brighter one. The attractiveness is
proportional to the brightness and they both decrease
as their distance increases. If there is no brighter one
than a particular firefly, it will move randomly; (3)
The brightness of a firefly is affected or determinedby
the landscape of the objective function. For a
maximization problem, the brightness can simply be
proportional to the value of the objective function.
Other forms of brightness can be defined in a similar
way to the fitness function in genetic algorithms.
Based on these three rules, the basic steps of the
Firefly Algorithm (FA) can be summarized as the
pseudo code and shown below. In certain sense, there
is some conceptual similarity between the firefly
algorithms and the Bacterial Foraging Algorithm
(BFA) (Qiao and Bochmann, 2009).

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1160 Science Publications

JCS

Fig. 1. A simple cloud system

In BFA, the attraction among bacteria is based partly on
their fitness and partly on their distance, while in FA, the
attractiveness is linked to their objective function and
monotonic decay of the attractiveness with distance.
However, the agentsin FA have adjustable visibility and
more versatile in attractiveness variations, which usually
leads to higher mobility and thus the search space is
explored more efficiently.

Objective function f(x), x(x1,…,xd)T
Generate initial population of fireflies xi (i = 1,2,…,n)
Light intensity Ii at xi si determined by f(xi)
Define light absorption coefficient
while (t< Max_Generation)
fori = 1: n all n fireflies
forj = 1: i all n fireflies
if (Ij>Ii), move firefly i towards j in d-dimension; end if
Attractiveness varies with distance r via exp [-r]
Evaluate solutions and update light intensity
end for j
end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

The peculiar characteristic of the firefly algorithm
is adapted in the proposed approach to consider the
firefly algorithm as a load balance scheduling
algorithm. The attractiveness defined in the firefly
algorithm helps to generate scheduling index and the
distance calculation serves to find the closely
associated nodes in the cloud network.

1.5. Proposed Load Balance Scheduling Based
on Firefly Algorithm

The proposed approach triggers a method for
generating an effective load balancing strategy in the
cloud network to schedule the nodes. The scheduling
process is carried out by the firefly algorithm. The
scheduling process is preferred to the set of nodes with
least amount of load possession. In other words, the
nodes with least load are preferred for engaging extra
process by the cloud network. In the proposed approach,
we consider virtual machine with three servers and each
server contain three nodes. Each node possesses
attributes defined by the scheduling process.

The Fig. 2 shows the basic over view of the virtual
machine considered by the proposed approach. The
proposed approach contains three main step to generate
the scheduling for the proposed virtual machine by
balancing their nodes. The different step can be listed as:

• Population generation
• Scheduling index calculation
• Least node selector

1.6. Population Generation

The term population is termed as the group of nodes
served by the cloud system as per the request from the
users to the server. As the request comes, the server
fetches the node, which is free and severed to the user.
This process is mapped on the basis of the nine nodes
and according to their processing time a scheduling list is
generated. The generated scheduling list is considered as
the initial population for the proposed approach.

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1161 Science Publications

JCS

Fig. 2. Cloud system overview

Fig. 3. Population generation

The Fig. 3 shows the request and response process
of the cloud system to generate the initial scheduling
list. The server on receipt of a request, subjects a
search among the nodes to find the free nodes. Once
the node is obtained it plotted in the schedule list and
when the top element of the queue is processes the
free node is allocated as the response to user’s
request. The initial schedule list constructed by the
virtual machine by processing a complete cycle based
on the processing time of each nodes and their
availability. The nodes list or the schedule list can be
represented as table, with each row contains the nodes
and the columns contains the server name.

The Table 1 represented above contains the node list,
which is considered as the initial population to the firefly
algorithm. The processing in the firefly algorithms are
applied in this particular population to generate an
effective scheduling strategy for the cloud system by
giving priority to load balancing.

Table 1. Initial schedule list
Time Server1 Server2 Server3
(ms) ------------------- ------------------- -------------------
1 N1 N2 N3 N4 N5 N6 N7 N8 N9
2 N1 N3 N2 N9 N6 N7 N5 N4 N8
…
… N3 N9 N1 N4 N7 N6 N5 N8 N2
n … … … … …. … … … …

Table 2. Node and attributes
 Attributes

Node CPU rate Memory rate Processing time
N1 C1 M1 P1
N2 C2 M2 P2
…. C3 M3 P3
Nn Cn Mn Pn

1.7. Scheduling Index Calculation

The scheduling index is one of the prime factors
affecting the scheduling process. So, before going into
the scheduling index calculation, let us discuss about the
decision parameters for the initial population. According
to the definition of the firefly algorithm, there should an
attraction between the fireflies i.e., the nodes. The
attraction is based on the affinity possessed by node to
the request. The attraction is controlled by the decision
parameters defined by the proposed approach. The
proposed approach defines decision parameters for each
node and the parameters are considered as the attributes
for the nodes. The attributes defined by the proposed
approach for each node are listed as follows.

The Table 2 represents the node and attributes defined
by the proposed approach for the scheduling process.

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1162 Science Publications

JCS

Table 3. The updated schedule list
Time Server1 Server2 Server3
(ms) ------------------ ----------------- ------------------ SI
1 N1 N2 N3 N4 N5 N6 N7 N8 N9 SI1
2 N1 N3 N2 N9 N6 N7 N5 N4 N8 …
. … …. …. …. …. …. …. …. …. …
… N3 N9 N1 N4 N7 N6 N5 N8 N2 …
n … … … … …. … … … … SIn

Eventually the CPU rate (represented as C), memory rate
(represented as M) and processing time (Represented as
P) are also considered as the loads to the nodes. So the
scheduling parameter should be designed such a way
that, the node will be selected with least load weightage.
Thus, according to the definitions of firefly algorithm,
the equation to the attraction is defined:

() i
i

i i

p
attr n

cpu mem
=

+

Here, attr(ni) represents the attraction between the

node and the request as the node will be considered for
the request if the attraction is high. Pi represents the
processing time for the particular node, cpui represents
the cpu rate of the node and memi represents the memory
rate of the nodes. The scheduling index is derived from
the above formulae:

n
i

i 1 i i

p
SI

cpu mem=

=
+∑

The SI is the scheduling index and it is the total

sum of the nodes in a particular scheduling queue.
According to the equation all the scheduling queues in
the scheduling list is calculated and again a
scheduling list is formed.

The update schedule list is presented in the above
Table 3. The updated schedule list is formulated in such
way that the scheduling queue with highest scheduling
index will be listed at the top of the list. The next process
of the proposed approach is the calculating of least load
carrying nodes.

1.8. Selection of Node with Minimum Load

The processes of selecting the node with least load are
inspired from the firefly algorithm in such way that, the
least distinct firefly will possess similar characteristics.
Inspired from the theory, we subject a distance calculation
between the nodes in the scheduling queues. Before
proceeding to the calculation, we find the node with least
attr(ni) values. The node with least attr(ni) values is

considered as the pivot point for the queue to calculates
least distinct nodes. The distance values of the node is
calculated based on the Cartesian distance, which is
given by:

()
k 2

i j
j 1

Dist n n
=

= −∑

The distance is presented using the expression Dist

and the ni is the selected node and nj is the comparing
node. Once all the distance values have been calculated
between the node values, the nodes are rearranged
according to the least distinct node to the pivot node. As
we already sorted the schedule list based on their SI
value. The top queue in the schedule list is considered as
the most relevant scheduling queue.

2. EXPERIMENTAL RESULTS

The proposed scheduling algorithm is based on fire
fly algorithm and its application in optimizing the
schedule to process requests to the cloud network. The
proposed approach is also concerned about balancing the
loads in the cloud system. The processing of the
proposed approach is explained in the above sections,
now, in this section, we plot the experimental analysis of
the proposed scheduling methodology by considering a
simulated cloud network through CloudSim tool and java
programming. A cloud simulation is constructed using
the java programming as an application based on
CloudSim. The experiments are conducted in a system
running on core i5 processor, 4GB RAM and 500 HDD.

2.1. Evaluation Criteria

The main evaluation criteria used in the proposed
scheduling method over cloud network is the time for
executing an effective schedule queue. The main decision
parameters that would be taken under consideration are the
CPU utility rate and memory usage rate. The simulated
dataset is evaluated based on the different parameters to
assess the performance of the proposed scheduling
techniques. The time is calculated based on the time
required to generate an effective scheduling process.

2.2. Performance Evaluation
In the performance evaluation, we consider the

simulated cloud network as the evaluation system. The
variable parameters in the proposed evaluation section are
the CPU utility rate and the memory usage rate. Thus the
decision parameters mentioned are considered as the load
for the nodes. So, we have to consider the performance in
generating the schedule by balancing the given loads. In
performance analysis, we give two types of analysis.

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1163 Science Publications

JCS

2.3. Analysis Based on CPU Utility Rate

In this analysis, we set the maximum utilization rate of
the CPU in different credentials to evaluate performance
of the scheduling algorithm. The analysis give an account
of, how efficiently the proposed approach performs under
different load levels of CPU rate.

Here, we set the maximum utilization of the CPU
varying from 60 to 100 and the analysis results are
depicted in the Fig. 4. The time and taken for scheduling
for different CPU rate is represented by the line time and
the memory used for the same in memory rate line. The
memory rate is calculated as the utilization of the memory
per 100 KB. The analysis showed that, the time for
scheduling is uniform for different rate of CPU and the
memory is also balanced as the rate of CPU increases.

2.4. Analysis Based on Memory Rate

Here, we set the maximum memory rate in different
credentials to evaluate performance of the scheduling
algorithm. The analysis give an account of, how
efficiently the proposed approach performs under
different load levels of memory rate.

We set the memory rate varying from 60 to 100 and
the analysis results are plotted in the Fig. 5. The time and
CPU usage for scheduling for different memory rate are
presented by the line time and CPU rate line respectively.
The CPU usage rate is calculated as the utilization of CPU
per 100% utilization of CPU. The analysis showed that,
the time for scheduling is uniform for different rate of
memory and the CPU rate seem balanced.

2.5. Comparative Analysis

The above section give the performance analysis of
the proposed approach based on the load balanced
scheduling through firefly algorithm. To understand
the significance of the proposed approach and it has to
be analysed with an existing method. Here, we chose
the load balancing scheduling method proposed by
Xin et al. (2012) to evaluate the significance of the
proposed approach. The comparative analysis is
subjected over the CPU utility rate and memory rate
of the proposed approach and existing approach. The
analyses are conducted over the nodes in the particular
cloud cluster centre of the simulated cloud network.
The CPU rate and memory rate of a set of nodes are
plotted below.

The Fig. 6 and 7 represents the comparative
analysis of the proposed approach with the existing
approach. The values of the existing approach have
been taken from the load balanced scheduling methods
results from the method proposed by Xin et al. (2012).
The analysis from the Fig. 6 shows that, the proposed
approach utilizes the CPU rate more efficiently than
the existing approach under the load balancing
condition. The analysis for the memory graph shows
that the average memory utilization is less for approach
by Xin et al. (2012) than the proposed approach. So,
considering load balanced condition and the CPU
utility rate the proposed approach has better efficiency
over the existing approach.

Fig. 4. analysis based on CPU rate

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1164 Science Publications

JCS

Fig. 5. Analysis based memory rate

Fig. 6. Comparison on CPU utility rate

Fig. 7. Comparison on memory rate

A. Paulin Florence and V. Shanthi / Journal of Computer Science 10 (7): 1156-1165, 2014

1165 Science Publications

JCS

3. CONCLUSION

In this study, we proposed a scheduling algorithm for
services in a cloud network by concentrating on
balancing the loads. The proposed approach deals with a
simulated cloud network with set of requests and servers.
The servers are associated with nodes and each node is
supplied with some attributes. The attributes are assigned
to control the load in each node. A load balancing based
scheduling is developed for the proposed approach. The
proposed approach is inspired from the firefly algorithm,
because of the attracting features of the firefly algorithm.
The proposed approach is developed in three steps,
initially a population is generated from the cloud
network, then a scheduling index calculation is subjected
and finally, the schedule list is optimized using the
firefly algorithm. The experimentations are conducted on
the same simulated cloud network and the performances
of the proposed approach are evaluated. The
performance analysis produced expected results and thus
proved the proposed approach is efficient in optimizing
schedules by balancing the loads. The average time
obtained for the proposed approach is 0.934 ms.

4. REFERENCES

Alakeel, A.M., 2010. A guide to dynamic load balancing
in distributed computer systems. Int. J. Comput. Sci.
Netw. Security, 10: 153-160.

Ardagna, D., S. Casolari, M. Colajanni and B. Panicucci,
2012. Dual time-scale distributed capacity allocation
and load redirect algorithms for cloud systems. J.
Parallel Distribut. Comput., 72: 796-808. DOI:
10.1016/j.jpdc.2012.02.014

Armbrust, M., A. Fox, R. Griffith, A.D. Joseph and R.H.
Katz et al., 2009. Above the clouds: A Berkeley view
of cloud computing. University of California,
Berkeley.

Buyya, R., C. Yeo, S. Venugopal, J. Broberg and I.
Brandic, 2009. Cloud computing and emerging it
platforms: Vision, hype and reality for delivering
computing as the 5th utility. Future Generat.
Comput. Syst., 25: 599-616. DOI:
10.1016/j.future.2008.12.001

Dong, B., X. Li, Q. Wu, L. Xiao and L. Ruan, 2012. A
dynamic and adaptive load balancing strategy for
parallel file system with large-scale I/O servers. J.
Parallel Distribut. Comput., 72: 1254-1268. DOI:
10.1016/j.jpdc.2012.05.006

Khiyaita, A., M. Zbakh, H. El Bakkali and D. El Kettani,
2012. Load balancing cloud computing: State of art.
Proceedings of the National Days of Network
Security and Systems, Apr. 20-21, IEEE Xplore
Press, Marrakech, pp: 106-109. DOI:
10.1109/JNS2.2012.6249253

Kotoulas, S., E. Oren and F.V. Harmelen, 2010. Mind
the data skew: Distributed inferencing by
speeddating in elastic regions. Proceedings of the
19th International Conference on World Wide Web,
Apr. 26-30, ACM Press, New York, USA., pp: 531-
540. DOI: 10.1145/1772690.1772745

Min, J., H. Liu, A. Deng and J. Ding, 2010. Adaptive
load balancing optimization scheduling based on
genetic algorithm. Proceedings of the 3rd IEEE
International Conference on Computer Science and
Information Technology, Jul. 9-11, IEEE Xplore
Press, Chengdu, pp: 81-85. DOI:
10.1109/ICCSIT.2010.5564114

Mohamed, N., J. Al-Jaroodi and A. Eid, 2011. A dual-
direction technique for fast file downloads with
dynamic load balancing in the cloud. Proceedings of
the 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, (CGC’ 11),
Newport Beach, California, USA.

Mondal, B., K. Dasgupta and P. Dutta, 2012. Load
balancing in cloud computing using stochastic hill
climbing-a soft computing approach. Proc. Technol.,
4: 783-789. DOI: 10.1016/j.protcy.2012.05.128

Qiao, Y. and G.V. Bochmann, 2009. A diffusive load
balancing scheme for clustered peer-to-peer
systems. Proceedings of 15th International
Conference on Parallel and Distributed Systems,
Dec. 8-11, IEEE Xplore Press, Shenzhen, pp: 842-
847. DOI: 10.1109/ICPADS.2009.119

Ranjan, R., L. Zhao, X. Wu, A. Liu and A. Quiroz et al.,
2010. Peer-to-Peer Cloud Provisioning: Service
Discovery and Load Balancing. In: Cloud
Computing: Principles, Systems and Applications,
Antonopoulos, N. and L. Gillam (Eds.), Springer,
London, ISBN-10: 1849962413, pp: 195-217.

Xin, L.U., J. Zhou and D. Liu, 2012. A method of cloud
resource load balancing schedulingbased on
improved adaptive genetic algorithm. J. Inform.
Comput. Sci., 9: 4801-4809.

Yao, J. and J.H. He, 2012. Load balancing strategy of
cloud computing based on artificial bee algorithm.
Proceedings of the 8th International Conference on
Computing Technology and Information
Management, Apr. 24-26, IEEE Xplore Press, Seoul,
pp: 185-189.

