
Journal of Computer Science 9 (6): 749-756, 2013

ISSN: 1549-3636

© 2013 Science Publications

doi:10.3844/jcssp.2013.749.756 Published Online 9 (6) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Jeyaraj Andrews, Department of Computer Science and Engineering, Sathyabama University, Chennai, India

749 Science Publications

JCS

Evaluation of Various Compiler

Optimization Techniques Related

to Mibench Benchmark Applications

1
Jeyaraj Andrews and

2
Thangappan Sasikala

1Department of Computer Science and Engineering, Sathyabama University, Chennai, India

2SRR Engineering College, Chennai, India

Received 2013-01-22, Revised 2013-05-16; Accepted 2013-06-06

ABSTRACT

Tuning compiler optimization for a given application of particular computer architecture is not an easy task,

because modern computer architecture reaches higher levels of compiler optimization. These modern

compilers usually provide a larger number of optimization techniques. By applying all these techniques to a

given application degrade the program performance as well as more time consuming. The performance of

the program measured by time and space depends on the machine architecture, problem domain and the

settings of the compiler. The brute-force method of trying all possible combinations would be infeasible, as

it’s complexity O(2
n
) even for “n” on-off optimizations. Even though many existing techniques are

available to search the space of compiler options to find optimal settings, most of those approaches can be

expensive and time consuming. In this study, machine learning algorithm has been modified and used to

reduce the complexity of selecting suitable compiler options for programs running on a specific hardware

platform. This machine learning algorithm is compared with advanced combined elimination strategy to

determine tuning time and normalized tuning time. The experiment is conducted on core i7 processor. These

algorithms are tested with different mibench benchmark applications. It has been observed that performance

achieved by a machine learning algorithm is better than advanced combined elimination strategy algorithm.

Keywords: Machine Learning, Program Features, Compiler Optimization, Mibench

1. INTRODUCTION

Modern architecture designer strives to bring

satisfactory system level performance by applying

minimal power across a wide range of applications. But

many compilers fail to deliver its performance because

of rate of change in hardware evolution. A compiler

usually provides a larger number of optimization options,

from which users has to pick up best set of available

options for a given application. Those who do not have

in depth understanding of the compiler options and

interactions among compiler options, then it is really

difficult to pickup best set of options. Compilers usually

provide three levels of optimization techniques. They are

-O1, -O2 and -O3. As compiler optimization interacts in

unpredictable manner in different architecture, finding an

effective orchestration algorithm to search for the best

combinations of optimization options is desired.

Automatically selecting the best set of compiler

optimizations for a particular program is a difficult task.

Many existing framework available to select best set of

optimal compiler setting from larger set of options.

Andrews and Sasikala (2012) used a new algorithm called

as Advanced combined elimination which is a modified

combination of batch elimination and combined elimination

which provides the complexity of O(n
2
). Fursin and Temam

(2011) used an algorithm called as Random search strategy

which picks up best set of combinations in quick time.

Park and Cavazos (2011) used different modeling

techniques to find best set of combinations for a given

benchmark applications.Combined elimination gives

better results than other algorithms and only fewer

Jeyaraj Andrews and Thangappan Sasikala / Journal of Computer Science 9 (6): 749-756, 2013

750 Science Publications

JCS

evaluations required to find optimal settings. However,

these pure search or “orchestration” approaches do not

use prior knowledge of the hardware, compiler, or

program and instead attempt to obtain this knowledge

online. Every time a new program is optimized, the

system starts with no prior knowledge. In this study

machine learning has been used in a modified form,

which has the potential of reusing knowledge across

iterative compilation runs, gaining the benefits of

iterative compilation while reducing the number of

executions needed. In this study we have selected GCC

as the compiler infrastructure. GCC is currently the only

production compiler that supports different architectures

and has multiple aggressive optimizations making it a

natural vehicle for our research. GCC provides three

levels of optimization techniques. To obtain the best

performance a user usually applies the highest

optimization level-O3. In this level the compiler perform

the most extensive code analysis and expects the

compiler generated code to deliver the highest

performance. In this study we have proposed an

automated framework to select the compiler options for a

particular problem from large set options. Many previous

works consider only limited set of options. For this

framework, we have implemented compiler optimization

selection algorithm advanced combined elimination

strategy. This algorithm is compared with machine

learning algorithm. Efficiency was evaluated to improve

its tuning time and normalized tuning time. The study is

organized as follows.

1.1. Framework Architecture

The optimization selection algorithm picks up best

set of optimization techniques from ‘n’ available number

of optimization techniques. These techniques applied

for a given benchmark applications and compiled with

GCC compiler. The target code is then analyzed with

performance tools using Intel Vtune performance

analyzer to collect set of program features. The

performance was analyzed for improving the

execution speed up and compilation time. This

information is then given feedback option selector

algorithm to pick up another best set. Figure 1 shows

detailed description of framework architecture.

1.2. Selection Algorithms

Given a set of “n” ON-OFF optimization options {F1,

F2…Fn), find the best combination of flags that minimizes

application execution time and compilation time.

Fig. 1. Optimization selection framework

In this study a novel performance tuning algorithm
advanced combined elimination algorithm is compared with
a machine learning algorithm which picks up best set of
options to improve tuning time and normalized tuning time.

1.3. Advanced Combined Elimination Strategy

Let S be the set of available optimization options:

• Let B represents selected compiler options set
• Find TB, by applying all flags are on
• Compile the program with TB configuration and

measure the program performance
• Calculate Relative Improvement Percentage (RIP)

for each and every optimization options. Relative
improvement percentage is calculated based on
finding the time required by applying particular flag
ON and OFF with respect to TB

• Store all the values in an array based on ascending
order. i.e., the most negative RIP is stored in first
position of the array

• Remove the first two most negative RIP’s from an
array instead of one. Now the value of TB is changed
in this step

Jeyaraj Andrews and Thangappan Sasikala / Journal of Computer Science 9 (6): 749-756, 2013

751 Science Publications

JCS

• Remaining values in an array i.e., i vary from 3 to n,
Calculate RIP and store the negative RIP’s in array

• If all values in an array represent positive values
then set of flags in B represents best set

• Else
• Repeat steps ii until B contains only positive values
• Stop

1.4. Machine Learning Algorithm

The logistic regression model is a machine learning

(Hung et al., 2009) technique used to pick up set of

options from a trained dataset. For a larger benchmark

applications, finding the best set of compiler options will

take more amount of time. To find a best set with less

number of evaluations, we proposed a machine learning

strategy. Collect set of program features for a given

benchmark applications for a specific hardware during

the training stage itself.

For training we have collected more than 1000 set of
combinations. These combinations compiled with gcc or
g++ compiler and record the execution speed up. For
collecting program features Intel Vtune performance
profiler used. For collecting static program features
Milepost GCC machine compiler used (Fursin and
Temam, 2011). The model is evaluated based on leave one
out cross validation procedure. i.e., if we have consider N
= 10 (Where N is number of benchmark applications), i.e.,
the models are trained on N-1 benchmarks and tested on
the N

th
 benchmark. The models were trained with 9000

points. The programs were compiled with 1000 sets of
compiler setting and the performance is measured for a
specific hardware platform. The various information
such as compilation and execution time is stored on the
repository. After training stage if a similar kind of
program arrives by looking database one can who
quickly searches best set of optimal settings.

1.5. Experimental Procedure

In this study we have considered recent version of
GCC compiler. GCC provides different levels of
optimization techniques. Previous work considered only
limited set of optimization techniques. In this study more
number of optimization techniques considered. Table 1
show different levels of optimization techniques from -0
to -o3.o3 is the highest level techniques. Level 1 consists
of important techniques such as floop-optimize, dead
code elimination, ftree-dce, dead store elimination, ftree-
dse and scalar replacement of aggregates. Level 2
consists of important techniques such as global common
sub expression elimination, gcse, peephole optimization,
fpeephole2 and various basic block optimization techniques
and scheduling optimization techniques. Level 3 consists of

inline functions and unrolling. Although optimization level
3 (-O3) can produce faster code, the increase in the size of
the binary image can have adverse effects on its speed.

1.6. Mibenchmark Programs

The Mibench benchmark suite programs are used to
experiment the proposed algorithm. These benchmark
suites are comparable with SPEC benchmark suite.

1.7. Bzip2

 Bzip2 is a free and open source implementation of
the Burrows-Wheeler algorithm. Bzip2 compresses most
files more effectively than the older LZW (.Z) and
Deflate (.zip and .gz) compression algorithms, but is
considerably slower. Bzip2 compresses data in blocks of
size between 100 and 900 kB and uses the Burrows-
Wheeler transform to convert frequently-recurring character
sequences into strings of identical letters.

1.8. Consumer_jpeg_c

The JPEG standard allows “Comment” (COM)
blocks to occur within a JPEG file. Although the
standard doesn't actually define what COM blocks are
for, they are widely used to hold user-supplied text
strings. This lets add annotations, titles, index terms, in
JPEG files and later retrieve them as text. COM blocks
do not interfere with the image stored in the JPEG file.
Maximum size of a COM block is 64K.

Consumer_tiff2bw Tiff2bw converts an RGB or
Palette color TIFF image to a grayscale image by
combining percentages of the red, green and blue
channels. By default, output samples are created by
taking 28% of the red channel, 59% of the green channel
and 11% of the blue channel. To alter these percentages,
the -R, -G and -B options may be used.

1.9. Qsort

The sort test sorts a large array of strings into
ascending order using the well known quick sort
algorithm. The small data set is a list of words; the large
data set is a set of three-tuples representing points of data.

1.10. Dijkstra

The Dijkstra benchmark constructs a large graph in
an adjacency matrix representation and then calculates
the shortest path between every pair of nodes using
repeated applications of Dijkstra’s algorithm.

1.11. Patricia

A Patricia tries is a data structure used in place of full
trees with very sparse leaf nodes. Branches with only a
single leaf are collapsed upwards in the tries to reduce
traversal time at the expense of code complexity. Often,

Jeyaraj Andrews and Thangappan Sasikala / Journal of Computer Science 9 (6): 749-756, 2013

752 Science Publications

JCS

Patricia tries are used to represent routing tables in
network applications. The input data for this benchmark
is a list of IP traffic from a highly active web server for a
2 h period. The IP numbers are disguised.

1.12. Security Blowfish

 Blowfish is a keyed, symmetric block cipher, included
in a large number of cipher suites and encryption products.
Blowfish provides a good encryption rate in software and
no effective cryptanalysis of it has been found to date.

1.13. Susan

 SUSAN is an acronym standing for Smallest Univalve
Segment Assimilating Nucleus. For feature detection,
SUSAN places a circular mask over the pixel to be tested
(the nucleus). For corner detection, two further steps are
used. Firstly, the centroid of the SUSAN is found.

1.14. Metrics used for Evaluation

Relative Improvement Percentage (RIP), RIP (Fi),
which is the relative difference of the execution times of
the two versions with and without Fi Equation 1:

RIP(Fi) T(Fi 0) T(Fi 1) T(Fi 1) 100= = − = ÷ = × (1)

If Fi = 1 then Fi is ON, else OFF.
The baseline of this approach switches on all

optimizations.
TB = T(Fi = 1) = T(F1 = 1, F2 = 1,…Fn = 1),Where

TB represents base time Equation 2:

RIP(Fi 0) T(Fi 0) TB TB 100%= = = − ÷ × (2)

If RIP (Fi = 0) <0, the optimization of Fi has a

negative effect, so it is better to turn off the function.

1.15. Tuning Time

It is the time taken by each probe, to determine the

effect of individual options in a set of candidate options.

1.16. Normalized Tuning Time

It is the time taken for computing time needed to
check the effects of individual options. It is calculated
using the following equation.

NTT = tuning time for entire probe/(number of re
executions*total candidates).

2. MATERIALS AND METHODS

Advanced combined elimination algorithm and

machine learning algorithm is implemented. Then the

normalized tuning time is calculated using the above

equation. Architecture used for testing was Intel Corei7 -

2630 QM CPU 2.2 Ghz. With 8GB RAM, using ubuntu

operating system and the compiler was GCC 4.3.2.

3. RESULTS

Table 1 shows list of chosen optimization techniques
for a GCC compiler. Results obtained from the
experiment are tabulated in Table 2. Table 2 represents
Normalized tuning time.

Table 1. List of optimization techniques

Level-o1 techniques Level-o2 techniques Level-o3 techniques

fcprop-registers falign-functions fgcse-after-reload

fdefer-pop falign-jumps finline-functions

fdelayed-branh falign-loops funswitch-loops

fguess-

branch-probability falign-labels

fip-conversion fcaller-saves

fip-conversion2 fcross-jumping

floop-optimize fdelete-null

-pointer-checks

fmerge-constants fexpesive

-optimizations

fomit-

frame-pointer fforce-mem

ftree-ccp fgcse

ftree-ch fgcse-lm

ftree-copy-rename fgcse-sm

ftree-dce foptimize-sibling-calls

ftree-dominator-opts fpeephole2

ftree-dse fregmove

ftree-fre freorder-blocks

ftree-lrs freorder-functions

ftree-sra frerun-cse-after-loop

ftree-ter frerun-loop-opt

 fsched-interblock

 fsched-spec

 fschedule-insns

 fschedule-insns2

 fstrength-reduce

 fstrict-aliasing

 fthread-jumps

 ftree-pre

 fweb

Table 2. Normalized tuning time in seconds
Benchmark Machine
applications Ace learning algorithm

Bzip2 0.000130 0.000020
Consumer_jpeg.c 0.000170 0.000030
Consumer_tiff2bw 0.000190 0.000030
Network_dijkstra 0.000025 0.000010
Network_Patricia 0.000080 0.000020
Qsort 0.000140 0.000030
Security_blowfish 0.000230 0.000035
Susan 0.000170 0.000025

Jeyaraj Andrews and Thangappan Sasikala / Journal of Computer Science 9 (6): 749-756, 2013

753 Science Publications

JCS

4. DISCUSSION

In this stydy, we compare advanced combined

elimination algorithm with a machine learning algorithm

to find tuning time and normalized tuning time. Figure 2

shows comparison of ACE and a machine learning

algorithm. For most of the benchmark applications LRM

gives least tuning time when compared to advanced

combined elimination algorithm, because program

features can be extracted and stored in a database.

So if a similar program arrives with help of database one

can quickly select best set of techniques. For some of

the benchmark applications especially bzip2, dijkstra and

qsort advanced combined elimination gives more or least

tuning time when compared to LRM. Figure 3 shows

comparison of execution time of different levels of GCC

compiler optimization techniques with advanced

combined elimination algorithm. GCC compiler consists

of three different levels of optimization techniques.

They are -o1, -o2 and highest level optimization

techniques -o3. If by applying only the set of techniques

from -o1 may reduce the compilation time but not so much

of an performance on the execution time. So by considering

set of techniques from -o2 improves execution time for

most of the benchmark applications. By applying -o3

techniques for a given application may increase compilation

and code size, but improves the program performance.

 A good optimization algorithm should achieve both

program performance and short tuning and short

normalized tuning time. Figure 3 shows when compared

to different levels of optimization techniques, ACE gives

least execution time for all the benchmark applications.

Figure 4 shows comparison of normalized tuning time

between ACE over LRM. Normalized tuning time is

calculated by finding tuning time for each probe divided

by number of re executions multiplied by total

candidates. Table 2 shows normalized tuning time for

every benchmark applications. Figure 5 shows execution

time speed up between different levels of optimization

techniques over LRM. Figure 6 shows combined

execution time between ACE and LRM over different

levels. From Fig. 6 we can conclude that LRM achieves

both program performance and short normalized tuning

time for most of the benchmark applications.

Fig. 2. Comparison of tuning time

Jeyaraj Andrews and Thangappan Sasikala / Journal of Computer Science 9 (6): 749-756, 2013

754 Science Publications

JCS

Fig. 3. Execution time over ACE

Fig. 4. Comparison of normalized tuning time

Jeyaraj Andrews and Thangappan Sasikala / Journal of Computer Science 9 (6): 749-756, 2013

755 Science Publications

JCS

Fig. 5. Execution time over LRM

Fig. 6. Comparison between different levels over ACE and LRM

5. CONCLUSION

In this study, an alternative framework proposed for

finding tuning time and normalized tuning time for

Mibench benchmark applications. In this framework we

have integrated Milepost GCC v2.1 and Intel Vtune

performance analyzer for extracting program features

upon training stage. These in formations are stored in a

Jeyaraj Andrews and Thangappan Sasikala / Journal of Computer Science 9 (6): 749-756, 2013

756 Science Publications

JCS

repository. So with the help of this information one can

find best set of optimization techniques if a similar kind

of program arrives. For this frame work we have

implemented advanced combined elimination strategy.

The results are compared with a machine learning

algorithm. The results show that machine learning

algorithm which improves the program performance,

tuning time and normalized tuning time.

In the future, we incorporate more compiler option

selection algorithms to improve tuning time and

normalized tuning time. In future we incorporate LLVM,

ROSE and path64 and other compilers in our framework.

In future we include simulators in our framework to

enable software and hardware optimization.

6. REFERENCES

Andrews, J. and T. Sasikala, 2012. Performance

enhancement of tuning time in GCC compiler

optimizations using benchmark applications. Int. J.

Artf. Intell. Syst. Mach. Learn., 4: 276-281.

Fursin, G. and O. Temam, 2011. Milepost GCC:

machine learning enabled self-tuning compiler. Int.

J. Parallel Programm., 39: 296-327. DOI:

10.1007/S10766-010-0161

Hung, S.H., C.H. Tu, H.S. Lin and C.M. Chen, 2009. An

automatic compiler optimizations selection

framework for embedded applications. Proceedings

of the International Conference on Embedded

Software and Systems, May 25-27, IEEE Xplore

Press, pp: 381-387. DOI: 10.1109/ICESS.2009.86

Park, E. and J. Cavazos, 2011. An evaluation of different

modeling techniques for iterative compilation.

Proceedings of the 14th International Conference on

Compilers, Architectures and Synthesis for

Embedded Systems, (ES’ 11), ACM Press, New

York, USA., pp: 65-74. DOI:

10.1145/2038698.2038711

