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ABSTRACT 

The classical Dijkstra’s algorithm to find the shortest path in graphs is not applicable to multigraphs. In this 
study the authors generalize the classical Dijkstra’s algorithm to make it applicable to directed multigraphs. 
The modified algorithm is called by Generalized Dijkstra’s algorithm or GD Algorithm (GDA in short). The 
GDA outputs the shortest paths and the corresponding min cost. It is claimed that GDA may play a major 
role in many application areas of computer science, communication, transportation systems, in particular in 
those networks which cannot be modeled into graphs but into multigraphs.  
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1. INTRODUCTION 

 Graph theory has wide applications in several 

branches of Engineering, Science, Social Science, 

Medical Science, to list a few only out of many. Graph is 

also an important non-linear data structure in Computer 

Science. Multigraph (Balakrishnan, 1997; Biswas et al., 

2012) is a generalized concept of graph where multiple 

edges (or arcs) may exist between vertices. Many real 

life situations of communication network, transportation 

network, cannot be modeled into graphs, but can be well 

modeled into multigraphs because of the scope of 

dealing with multiple edges (or arcs) connecting a pair 

of nodes. A huge and rich volume of literature is 

available in the area of ‘Graph Theory’, but 

unfortunately the ‘Theory of Multigraphs’ has not so 

far developed upto that extent to meet the present 

requirements to deal with real life network problems. 

Since the notion of multigraphs (Balakrishnan, 1997; 

Biswas et al., 2012) is an extension of the notion of 

graphs, we cannot take it granted that all the rich 

theories and properties of graphs will be true in case 

of multigraphs too, unless studied rigorously in the 

context of multigraphs. There is a genuine need to 

make algebraic characterization of multigraphs 

(Biswas et al., 2012), to define various fundamental 

operations on multigraphs and then to study the 

various properties of multigraphs. Though Dijkstra’s 

algorithm (Cormen et al., 2009) works well for the 

kind of network model which are graphs, but there is 

also serious need to find out how Dijkstra’s algorithm 

can be modified or generalized so that it can be 

implemented to find out the shortest path in 

multigraphs also. The data structure Multigraph is a 

generalized notion of graph. A multigraph or 

pseudograph is like a graph but it is permitted to have 

multiple edges (also called “parallel edges”) that have 

the same end nodes. Thus two vertices may be 

connected by more than one edge. Some authors also 

allow multigraphs to have loops, i.e., an edge that 

connects a vertex to itself, while others call these 

pseudographs reserving the term multigraph for the 

case with no loops. Throughout in our work here, we 

have worked only with multigraphs, not pseudograph.  

 Obviously, a classical graph is a special case of 

multigraph where between a pair of vertices there are no 
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multi-edges, only single edge (or no edge). The 

following diagram (Fig. 1) shows a multigraph 

consisting of four cities A, B, C and D 2 in a country, 

where the edges denote bus routes and alternative bus-

routes from one city to another, with the distances 

mentioned in miles against each edge.  

 Multigraphs have great implementations in many real 

life situations (Ivanco, 2010; Giasemidis et al., 2012; 

Meszka and Skupien, 2012; Knisley et al., 2012; 

Martschat et al., 2012). For example, two neighboring 

routers in a network topology might share more than 

multiple direct connections between them (instead of just 

one), so as to reduce the bandwidth as compared if a 

single connection is used. If we can find a method to 

implement Dijkstra’s algorithm in this network, we can 

easily deduce the shortest path from a source host to all 

the routers on that network, where many of them might 

be have multiple connections between each other and 

based on this result and as well as the data traffic 

volume on each inter-connections, we can find an 

optimized path between various routers and viz-a-viz, 

between the two end hosts. In this study we have 

modified the Dijkstra’s algorithm to make it applicable 

in multigraphs.  

1.1. Classical Dijkstra’s Algorithm 

 The Classical Dijkstra’s algorithm (Cormen et al., 

2009) is not applicable to multigraphs but to graphs to 

find the shortest path from a source node to a destination 

node, as well as the corresponding cost. Many real life 

applications, such as Link State routing protocol, are 

based on the concepts of Dijkstra’s algorithm. Most of 

these applications were based on the fact that the 

concerned network is a simple directed graph, where 

there is only one arc between any two nodes in a single 

direction, i.e., in a network or a directed graph, between 

any two of its nodes X and Y, there can be maximum 

two arcs, XY and YX.  

1.2. Shortest Path Estimate of a Vertex in a 

Directed Graph  

 Consider a weighted directed graph G = (V, E). 

Shortest path estimate d[v]of any vertex v, as shown in 

the diagram (Fig. 2), where vertex v is one of the 

neighboring vertices of the currently traversed vertex u, 

is the distance between the vertex v and vertex u , added 

with the shortest distance between the starting vertex s and 

vertex u , where s, u, v ∈ V[G]: 

∴ d [v] = (shortest distance between s and u) 

+ (weight of arc between v and u) 

1.3. Relaxation of an Arc in Dijkstra’s Algorithm  

 For the relaxation process of an arc to happen, we 

must first initialize the graph along with its starting 

vertex and shortest path estimate for each vertices of 

the graph G.  
 
INITIALIZE-SINGLE-SOURCE (G, s)  

1. FOR each vertex v ∈ V[G]  

2. d[v] = ∞  

3. v.π = NIL  

4. d[s] = 0  
 
 Now on the basis of this initialization process, 

Dijkstra’s algorithm proceeds further and the process of 

relaxation of each arc begins as shown in the diagram 

(Fig. 3). The sub-algorithm RELAX, plays the vital role 

to update d[v] i.e., the shortest distance value between 

the starting vertex s and the vertex v (which is neighbor 

of the current traversed vertex u, ∀ u, v ∈ V[G]) 

 

The RELAX algorithm runs as shown below:  

1. IF d[v] > d[u] + w(u,v) 

2. THEN d[v] ← d[u] + w(u, v) 

3. v.π ← u  

 

where, w(u, v) is the weight of the arc from vertex u and 

vertex v and v.π denotes the parent node of a vertex v, ∀ 

v, v ∈ V[G].  

 Dijkstra’s algorithm solves the single-source 

shortest-path on a weighted directed graph G = (V, E) 

for the case in which all edge weights are non-negative. 

Dijkstra’s algorithm maintains a set S of vertices whose 

final shortest path weights from the source s has 

already been determined. The algorithm repeatedly 

selects the vertex u ∈ V-S with the minimum shortest-

path estimate, adds u to s and relaxes all edges leaving 

u. The algorithm is as follows:  

 
DIJKSTRA (G, w, s) 
1 INITIALIZE-SINGLE-SOURCE (G, s)  
2 S ← ∅  
3 Q ← V[G] 
4 WHILE Q ≠ ∅  
5   DO u ← EXTRACT- MIN( Q)  
6   S ← S ∪ {u}  
7   FOR each vertex v ∈ Adj[u] 
8   DO RELAX(u, v, w) 
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Fig. 1. A multigraph G 
 

 
 

Fig. 2. Diagram showing d[v] in G 
 

 
 

Fig. 3. Diagram showing how RELAX algorithm works 
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1.4. Generalization of Dijkstra’s Algorithm for 

Multigraphs 

 The Classical Dijkstra’s algorithm (Cormen et al., 

2009) is not applicable to multigraphs as multigraph is a 

generalization of graph. The main objective of the work 

in this study is to modify the classical Dijkstra’s 

algorithm, retaining the same philosophy of Dijkstra for 

graph, so as to make it applicable in directed 

multigraphs. Let us name the modified algorithm as 

‘Generalized Dijkstra’s Algorithm’ or ‘GD Algorithm’ 

(or GDA) in short. For this, first of all we need to define 

the terms: Weight multiset, Min-Weight multiset, 

Shortest path estimate (d[v]) of a vertex, relaxing an arc, 

in the context of the multigraphs. 

1.5. Weight Multiset and Min-Weight Multiset of 

a Directed Multigraph  

 Suppose that there are n number of arcs from the 

vertex u to the vertex v in a directed multigraph G, where 

n is a non-negative integer. Let Wuv is the set whose 

elements are the arcs between vertex u and vertex v, 

keyed and sorted in non-descending order by the value of 

their respective weights.  

 

∴ Wuv = {(uv1, w1uv), (uv2, w2uv), 

(uv3, w3uv), ….., (uvn, wnuv)} 

  

where, uvi is the arc-i from vertex u to vertex v and wiuv is 

weight of that arc, for i = 1, 2, 3,.., n. If two or more number 

of weights is equal then they may appear at random at the 

corresponding place of non-descending array of weights 

with no loss of generality in our discussion.  

 Without any confusion, let us denote the multiset 

{w1uv, w2uv, w3uv, ..….. ,wnuv} also by the name Wuv. Let 

wuv be the min value of the multiset Wuv = {w1uv, w2uv, 

w3uv, ..….. ,wnuv}. Clearly, wuv = w1uv, as the multiset 

Wuv is already sorted. The collection of all wuv in a 

directed multigraph forms a multiset which is denoted by 

W and is called by ‘Min Weight Multiset’ of the 

Multigraph. The collection of all wuv in a directed 

multigraph forms a multiset which is denoted by w and is 

called by ‘Min-Weight Multiset’ of the Multigraph.  

1.6. Shortest Path Estimate (d[v]) of a Vertex in 

a Directed Multigraph  

 Dijkstra’s algorithm works fine if there is a single 

arc between any two vertices. If we consider a 

multigraph (as shown below by an example of 

multigraph G1 in Fig. 4), where there is multiple arcs 

between vertex u and its neighbor vertex v, the RELAX 

sub-algorithm would fail to run as there is no single 

value of weight for arc between vertex u and vertex v, 

rather there are multiple value of weights as there are 

multiple arcs between vertex u and vertex v.  

 In other words, to modify Dijkstra’s algorithm for 

application in directed multigraph, we must upgrade 

the RELAX sub-algorithm so as to enable it to choose 

the minimum value out of all the weights for defined 

for each of the arcs between vertex u and vertex v. 

Using the value of wuv from the min-weight multiset 

w of a directed multigraph, we can now find the 

shortest path estimate i.e., d[v] of any vertex v, in a 

directed multigraph.  

 (Shortest path estimate of vertex v) = (Shortest path 

estimate of vertex v) + (weight of the smallest arc 

between vertex u and vertex v) or, d[v] = d[u] + wuv. 

 

 
 

Fig. 4. Graph G1 
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1.7. The Process of Relaxing an Arc in a 

Directed Multigraph  

 With the revised notion of the multiset w of 

multigraphs, let us now upgrade the RELAX algorithm 

below, which can be used in case of directed multigraph. 

Call this modified algorithm by ‘RELAX.MG’ algorithm. 
 
RELAX.MG (u, v, W)  

1.   IF d[v] > d[u] + wuv 

2.   THEN d[v] ← d[u] + wuv 

3.   v.π ← u  
 
 Now we design the Generalized Dijkstra’s 

Algorithm or GD Algorithm.  

1.8. GD Algorithm (GDA) for Directed 

Multigraphs  

 Dijkstra’s algorithm for finding single source 

shortest path in case of a directed graph has over the 

years found many real life applications, particularly in 

network theory, optimization, transportation. One of the 

reasons for large acceptance of Dijkstra’s algorithm is its 

simplicity. But one shortcoming of this algorithm, in 

its present form is that, it is limited to finding single 

source shortest path in case of simple graph and cannot 

be implemented in case of multigraphs. Here we 

generalize the Dijkstra’s algorithm so that it can be used 

to find single source shortest path in case of multigraphs 

also, we name this by ‘Generalized Dijkstra’s Algorithm’ 

or ‘GD Algorithm’ by the title GDA: 
 
GDA (G, W, s)  

1 INITIALIZE-SINGLE-SOURCE(G, s)  

2 S ← ∅  

3 Q ← V[G]  

4 WHILE Q ≠ ∅  

5   DO u ← EXTRACT- MIN(Q)  

6   S ← S ∪ {u}  

7   FOR each vertex v ∈ Adj[u]  

8   DO RELAX.MG (u, v, W)  
 
 Multigraphs are a generalization of graphs. It cannot 

be taken into granted automatically that all theories or 

tools applicable to graphs can also be applicable to 

multigraphs.The classical Dijkstra’s algorithm returns 

the shortest path (if exists) from a source vertex to a 

destination vertex in a graph and also the corresponding 

cost. The GDA returns the shortest paths (if exist) from a 

source vertex to a destination vertex in a multigraph and 

also the corresponding cost.  

Example 3.1  

 Consider a weighted and directed Multigraph G2, 

(as shown in Fig. 5), in which we want to solve the 

single-source shortest-paths problem, taking the source 

vertex as the vertex A.  

 Clearly The GDA algorithm yields the following 

result: 
 
• S = {A, C, B, D}, i.e., the shortest path from the 

source vertex A is: 
 

A C B D→ → →  
 
• And the d-values i.e., shortest distance values of 

each vertex from the starting vertex A is: 

 

[ ] [ ] [ ] [ ]d A 0,d C 3,d B 7,d D 9= = = =

 

 
 

Fig. 5. Multigraph G2 
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2. CONCLUSION 

 Multigraph is a generalization of graph. There are 

many real life problems of network, transportation, 

circuit systems, which cannot be modeled into graphs but 

into multigraphs. only. The classical Dijkstra’s algorithm 

(to find the shortest path in graphs) is not applicable to 

multigraphs.In this study we have done slight adjustment in 

the classical Dijkstra’s algorithm to make it applicable to 

multigraphs to find the shortest path from a source vertex to 

a destination vertex. The modified algorithm is called as 

Generalized Dijkstra’s algorithm or GD Algorithm (GDA 

in short). The GDA results are shown using a hypothetical 

example of multigraph. 
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