Journal of Computer Science 8 (6): 822-827, 2012
ISSN 1549-3636
© 2012 Science Publications

Automatic Specification Evaluator for Effective Migration

Sudhakar, P. and P. Sakthivel
Depatrment of ECE, Faculty of Information and Comination Engineering,
Anna University, Chennai, India

Abstract: Problem statement: Software Reengineering is an effective technigueréuse the older
application in the new environment. Nowadays, Re@®ying techniques are increasing in spite of
many difficulties and issues arise when the olggalieation is converted to newer one. So there is a
need to enhance the new system to satisfy thereqairements and quality aspedgproach: For

this enhancement of new system, we propose a methoekly Automatic Specification Evaluator
(ASE) where the interference and their effectstennew system were identified by their attributes
and modify the interference if necessary. The amuof the migration was further increased by
reimplementation of the same methddesults: After the proposed ASE method, the system
interference was reduced and the efficiency oftees system was improved. In many migration
situations, ASE produces the target system with @gerferenceConclusion: Our proposed method
gives a good performance in the new system andehttiecnew system can adopt the properties of the
legacy system and also satisfies the user requinesme

Key words: Software reengineering, interference, LOC, ASEursive ASE

INTRODUCTION changes in real time situations. There are sontiealri
information and structures which is very difficuth

The main aim of the Software Reengineering (SR)migrate from legacy system. There are some sirtiéari
is reusability. Legacy system is the one where theind distinct between the new one and old ones. So
system is not supported and compatible with the, newmaintaining the balance between the old and new
modern environment. So, there is a need to migrateystem is difficult. Despite of many methods, thire
older system to a new system which is otherwisenkno no perfect and accurate method of bug free migratio
as Forward Engineering. When the componentso we propose a method namely Automatic
migrated to new platform, there are several chglsn Specification Evaluator (ASE) for enhancing the
such as the assembling of new application withrtheimigrated new system considering the efficiency and
requirements is extremely tedious. Consequentlyaccuracy as migration factors. As the name imptrés,
adaptation and integration does not perform effelfi ~ASE method directly retrieves the specification eof
when the SR technique is directly implemented. Bue l|egacy system from the new system and evaluates the
these constraints, it is not possible to implem@t specification for various modules in the proposed
direct reengineering technique in the older systath. approach. This method also didn't give accurateltes
the converted systems need some structuregut it is easy to access and give efficient residts
arrangement to implement the new system to overcomgirget system compared to direct reengineerings Thi
the various issues. Nowadays, reengineering teaBeiq method improves the quality of migrated system by
are widely needed for services like web technolgie reducing the various defects in migrated system.
business and enterprise technologies. In organizsti When we convert the legacy system to new one,
legacy systems are valuable where each and evegje primary problem evolved is interferences. Thaee
module plays a vital role. Direct implementationSR g\ era| reasons for interferences as one of them is

in this legacy system leads to several problem® Th :
entire software products constantly changes because chapges of gpda‘gng between legacy and new system.
hile reengineering changes takes place in the new

update and regularities measures. Because of thegg e
change factors in a system, the new system shald nsysterr_1 and these_ modifications affe_ct the new myste
adopt the legacy system requirements and peciggrit Pehavior semantically and 5_1|50_ n othgr system
To implement a reengineering technique for anmeasures. These changes are indicated as interésren
organization it needs enormous data and schedule®ur proposed approach will reduce these interfeagnc
Apart from these, the method and size also corgtantand enhance the new system performance behavior.
Corresponding Author: Sudhakar, P., Department of EGEculty of Information and Communication Enginegrin

Anna University, Chennai, India
822

J. Computer i, 8 (6): 822-827, 2012

new one. Some work gives about the model checking
process of the migration. There are few works also
available to enhance the reengineering techniqomeS

of the literatures are discussed and reviewed here.

\ 4 Stilkerich et al. (2011) discussed about how to
ASE combine isolated legacy components with the mixed
mode operation.

Jain et al. (2011) propose a method to extract
v information from legacy C++ source code and making
new system without making a new system.

Hwang et al. (2009) focused on improving
reusability and extensibility to legacy system and
proposed an automated approach to migrating legacy
systems.

£ v Chenet al. (2010) developed a method to class
Hecutuon . . .
diagram and sequence diagram from the Java binary
Fig. 1: Mechanism of proposed ASE byte code
Gowthaman et al. (2005) discussed various

The data and some functions didn’t compatibledemerits and limitations of the current reenginegri
with each other and so they get overlapped withh eactechniques. They also identified a method how to
other. This overlapping introduces some seriousasf convert the legacy source code to model driven
in reengineering such as loss of data, securitysmrea. architecture.

Our proposed method identifies the various Nagy et al. (2011) gave a method to technology
interferences also reduces them smartly and thedevelopment and functionality for effective
resultant system is referred as new target sydtethis Reengineering of Legacy systems.

study, we introduce some metrics to ensure theitgual Meng et al. (2011) introduced a method for
of new system performance. ASE method evaluates thefficient migrating of legacy system to web
specification in the low level by introducing some applications.

granules in the new system and gives some brea§poin = zhang et al. (2006) made an attempt for the
in the new system too. In general, a system hasymarpnalysis of extracting reusable object orientecadyg
attributes and pecullarltles. To evaluate the m]lgm code Segments from their |egacy programs through
efficiency, we check these attributes whether thBy \wrappers.

correct as of the legacy system. Our ASE metholyeas zahjet al. (2009) discussed about the business
obtains these data without Compllcatlons. Furthmer t process retrieval from the |egacy information Syste

categorization as positive and negative enhanceofent through functional analysis of stable componentthef
this method as well as the target system. To detea |egacy system.

process we also iterate the process. The below IFig.
gives the overview of the proposed process. MATERIALSAND METHODS

When the legacy system is converted to new
system using any reengineering technique then it The proposed ASE process and their steps are
undergoes our proposed ASE process and finally e w summarized in the Fig. 2. During the operationta$ t
get the desired accurate new system as the tyygfet's ASE process, it ensures the legacy system andttarge
ASE takes place prior to the execution of the ngstesn system memory locations as the execution of the
which is an added advantage of the proposed systerproposed ASE takes place directly to the memory
This ASE process is operated in all environment$ an|gcation. It is easy to setup the desired locatidn
also suited to integrate in any SR technique. fuie execution as of the user criteria. The tools fatbgge
easy to simulate this ASE as a tool by using paekag collection is optional to delete the no longer rieggh
that includes these functions as libraries. memory areas also they help for common errorss It i

Related work: Many existing research works elaborate POSSiPIe to break the proposed ASE in any modues a

how new system or process is extracted from oldelt iS @ linear and conquer approach.
ones. For reusing the existing application, there a ~ When the new system obtained from any
several approaches have been proposed. Most of tfigengineering technique, the first step is to eegithe
applications take a complete legacy system andttributes of those systems. When the new system is
transform into the new one. Moreover these appresch simple, then it is easy to obtain the attributestisans
act as a functionality to convert a legacy systeto i of manual process like debugging.

823

Legacy svstem New svstem

Target svstem

ASE process removes the interference from the
new system but still there are some redundancyirema
in the target system. This situation arises becaidse
overlapping and inter-dependencies of system
components. When we apply our proposed ASE method
again to the system, we further reduce this interfee
as much as possible. In many cases, the ASE diees t
redundant free new system. The mechanism of

recursive ASE is given in Fig. 3.

\g Comparing to the direct reengineering methods,
implementation of this ASE is quite time consuming.
But when we consider some large scale process and
systems, the manual debugging and other corrective
measures should take enormous time to complete the
debugging process successfully. In this connectioa,
proposed ASE is an automated task and it will cetepl
the process successfully with minimum time when
comparing to manual debugging.

Wew Swstem

+

J. Computer Sci., 8 (6): 822-827, 2012
Derive

Generate
model case
atiributes

i -

case case

Detect
interference

v

| Modify l—

Fig. 2: Process of AS

Target Svstem

Target svstem Recursive ASE

Y

l RESULTS
New target
svstem

Our proposed ASE is experimented where CPP
considered as Legacy and JAVA as a new system. So,
we retrieve a JAVA program from a CPP program. The
average errors predicted from various Legacy CPP

If it is of large scale having enormous data, therprograms before ASE is 0.58 which is reduced by ASE
the several tools and metrics are available tdessdr For our experiment, we took many programs in CPP
the attributes of the new system. Each and evelfgrac and ASE generates 18% of program as negative cases
of the old system procedures and components aighich also efficiently removed after implementinGa

e oparn) Moraoo ose aaics STTEe ae vaious ssues arse when the souce o
the main components of the legacy system. We have tcon\r/]er(;ed hto .‘]AVA' Beforfe :dmplerg;ggtatlon of this
ensure that all the available components ardnetnod, the importance of older program was

reengineered to the new system. We apply any g"Cinconsidered and new JAVA functionalities so as tover
a|gorithm or any Checking tools for a reengineeringthe program without loss and corrective measures.
process. By obtaining these attributes, we are &ble The summarized results are discussed in Table 1
detect the interferences in the new system. Thewe aand 2, Fig. 4 and 5. Consider the following CPP
few methods available to identify the interferenaes program where it undergoes reengineering program
the old system but this proposed method ASE with SRyith ASE approach:

is a promising approach. For detecting the interfees

in a system first we analyze the attributes thohbyg
We have to spend sufficient time to analyze the
attributes. By doing so it is easy to find the asmand
redundancy in the new system. When identifying the .) .
redundancy, take the necessary action to modifit asc int mull(int p,int q);
deletion and conversion of new process. After the int main()
modification, we should derive and generate a model {

system so as to perform the migration. Once theeiried It s,w;

Fig. 3: Mechanism of Recursive ASE

#include<iostream.h>
#include<conio.h>
int mul(int p,int g,int r);

generated, allow the model system to undergo aadkch
design cases with positive and negative casesltinith

ASE. The methods like dependency graph or anyieftic
measurement metrics is required to design theiy®sind
negative cases. When the new system falls under the
positive case, then execute this system as tarstens if it
satisfied the user requirements.

824

cout<<’s="<<mul(2,3,5)<<"\n";
cout<<"w="<<mul1(3,2);

}

int mul(int p,int g,int r);

{

ints;

s=p*g*r;

J. Computer i, 8 (6): 822-827, 2012

int mull(int p,int q);
{

int w;

w=p*q;

}

Program P1: Function Overloading

Table 1: Retrieving of attributes

Legacy CPP Derived attributes Recovered in JAVA
Data Al

Methods A2

Statements A3

If....else - Not available

Switch - Not available
Operators A4

Data structures Not available

Table 2: Raw collection of conducted experiments

Programs LOC Non ASE ASE Time Removal rate
(Mins)

P1 1800 158 56 7 3.248

P2 925 89 22 4 2.563

P3 1306 103 28 6.3 3.005

P4 982 76 11 21 2.632

P5 489 37 2 0.56 1.115

| File Edit Search Uiew Uptions Help
- \JDIﬂS\hm\Wmﬂ java

int pul(int p,int q,int »);
int pullCint p,int q);
tic void main(String args(])

Systen.out .printIn(nul(
Systen.out . println(null

)
public static int mul(int p,int q,int »)
{

SEpRE
)
public static int mal(int p,int g}

VEPRG;
H

Fig. 4: New JAVA Program

)\JDKESADin) jawac VORKL jave
H0RK , java .int int) is already defined in UORKI

public static it nnl(mt p,ant g,int)

HORK1, java:3:

g nethod body, or declare abstract
static int mul(int p,int g,int »);

HORKL java:4: nissing nethod hody, ov declare ahstract

static int nuliCing p,int g);
A
) errors

Fig. 5: Execution of JAVA program

For the above program, the derived and the
recovery properties from the respected legacy jrogr
is shown in the Table 1. The program considered fser
based on the function overloading conceept.

Table 1 gives the attribute satisfaction between
CPP and JAVA. For a CPP program, ASE
automatically retrieves all the Attributes namedAds
A2, A3 and A4. The different attributes identifiedthe
program P1 are Data, Methods, Statements, Condlition
statements such as if...else, switch, Operators aid D
structures used in the CPP program. Table 1 coeslud
that the retrieved attributes of CPP are migrated
completely. In attribute retrieval module, the iatites
are identified successfully and the interferenadaaeal
module is the next module of our proposed ASE
approach. Consider the following CPP legacy code
from the above P1:

int mul (int p, int g, intr);
int mull (int p, int q);

The above code undergoes some slicing algorithms
and reengineering technique and produces a equotvale
JAVA program which is given below.

The outcome of the above JAVA program is
evaluated as follows:

When we execute the above JAVA program it will
display the error result as follows.

To overcome the above errors, the second module of
our work is implemented. Although the grammar is
checked by the slicing algorithm there are some
complicated tasks. When we analyze the migrating
snippets, there are various issues and requirestiatt
for further process. In the above transformed cdie,
variables p and g affect the value of s and wieetil$ to
interference. In the legacy CPP, the function masting
takes place to evaluate the result of s. But tihgeta
system i.e., JAVA doesn't support the overloading
concepts and will affect the computation. It takesh
the values resulting overlapping of each other by
overlapping of these two values (for p 2, 3 andjf@r, 5)
for a single variable. To overcome this error, pplha
our ASE method. When our proposed ASE is applied to
the above snippet, then the above code is modified

825

J. Computer i, 8 (6): 822-827, 2012

EADA)jawae WORK o

150
R avm WORK 100 = ASE
. I = Non ASE
. 0
1 2 3 4 5

Fig. 6: Successful Execution after ASE

10 Fig. 9: Efficiency of ASE Method
2 Table 2 gives the raw collection of the conducted
& experiments and the results are discussed below.
— ‘We took various CPP programs with many
4 4 attributes and constraints where the corresponding
—— ASE Lines of Code (LOC) of programs is estimated. The
= interferences are computed without ASE is denoted i
o _ . _ the third column. Programs numbered as P1....P5r Afte
applying the ASE method, the interference is redune
Xi Ee EE R 3 the migration system. The time required for evatuat
Fig. 7: Non ASE Vs ASE of this process is given in the next column. Finalle
interference removal rate also computed for several
K = programs. The below Fig. 7 shows the results of the
experiments of ASE.
47 For the various programs P1....P5, the interfarenc
3 — ASE is computed with and without ASE and the above Igrap
concludes that the ASE eradicates the interference
z compared to direct reengineering obtained fromdgga
Recursive i . .
1 ASE system. The interference is very much reduced én th
obtained output and hence it yields an improved new
0+ system. The added advantage of our work is after
1 2 3 4 5 getting the resultant of the method, again givas th
process as input to ASE. By doing this recursive
Fig. 8: ASE Vs Recursive ASE process will give the bug free target system. While

doing this recurrent process, we must ensure tiat t
After evaluates this snippets it evaluates ottatad peculiarities of the original system doesn’t modify
as follows: the target system. The Fig. 8 gives the results of
recursive ASE process.
P=3;
0=2;
W-p*q;

DISCUSSION

When the interference and other abrupt errors are

. . L .overcome by modifying the new system and so the
For this process the execution process is given ”%fficiency and quality are also increased in theyat

Fig. 6. . : :
t th d ASE thod which

By using our ASE the computation of s is done by?ilsscﬁgnse\évzn bé)'lé)rvv Srrggcr)].se method which 15

two separate modules. In migration, the modifiaatio The above graph concludes that the efficiency is

takes place automatically by deleting the snippet4 yery much increased when the ASE is implemented in
in the first module and vice versa. After thethe new system. It is easily verified that the éarg
modification, ASE generates the model case for usegystem will get with requirements and functionastiof
requirements satisfaction to avoid the abrupt ntigna legacy system. Interference Removal Efficiency (IRE
When the forthcoming code comes under positive casg calculated as a percentage of the interferences
then it is ready for execution as the target systdf@ identified and corrected inside ASE process with
repeat the experiments for various programs. respect to the total interference in the complatget

826

J. Computer i, 8 (6): 822-827, 2012

system. The Fig. 9 concludes that ASE improves thdain, A., S. Soner, A.S. Rathore and A. Tripatbil 2

efficiency of the migrated system. An approach for extracting business rules from
legacy C++ code. Proceedings of the 3rd
CONCLUSION International Conference on Electronics Computer

Technology (ICECT), Apr. 8-10, IEEE Xplore

This method gives a methodology how to reuse the Press, Kanyakumari, pp: 90-93.

components of the Legacy system effectively with ~ DOI: 10.1109/ICECTECH.2011.5941963

reengineering technique. In our experience, thithoe Meng, X., J. Shi, X. Liu, H. Liu and L. Wang, 2011.

works very well in all environments. This ASE metho Legacy application migration to cloud. Proceedings

identifies the interferences from the new systemaldo cc):fort::utli::]gEf(ECII_nCt)(iJrlg?“gSFI4gorllleeErEn)(zzlo?g Pcﬂaosusd

e e st o o g e LRGSO et
.)) DOI: 10.1109/CLOUD.2011.56

very sophisticated where the older functionalitgsiot

. Nagy, C., L. Vidacs, R. Ferenc, T. Gyimothy and F.
change and make easy for the complex transfornsation Kocsis et al.. 2011. Solutions for reverse

also. This approach is further enhanced by embgddin engineering 4GL applications, recovering the
the method directly to the reengineering proceserd design of a logistical wholesale system.
are some issues have to be discussed such as time. Proceedings of the 15th European Conference on
Although it is an automated process, it occupies Software Maintenance and Reengineering
significant time which is managed in further work. (CSMR), Mar. 1-4, IEEE Xplore Press, Oldenburg,
Future work may need some semantic and syntactic PP: 343-346. DOI: 10.1109/CSMR.2011.66
analysis on the target system. There is no doubtltiis Stilkerich, M., J. Schedel, P. Ulbrich, W. Schroder

process gives a great help to deliver the new groce Ereilgscf}atth ar|1d D. .Lg?man_n, 20111.t_Esc?pin? the
efficiency. The static method libraries are onds of INe legacy. Slep-wise migrafion to a type-

. . safe language in safety-critical embedded systems.
recommended to reduce a time of running a new

) Proceedings of the 14th IEEE International
system. The experimental results conclude thaABie Symposium on Object/Component/Service-

is correct, effective and suited for high level, Oriented Real-Time Distributed Computing
complicated large scale systems. (ISORC), Mar. 28-31, IEEE Xplore Press, Newport
Beach, CA., pp: 163-170. DOI:

REFERENCES 10.1109/ISORC.2011.29

Zahi, A., A. Sarhan, Formalized model of stable
Chen, L., J. Wang, M. Xu and Z. Zeng, 2010. reengineering information system functional
Reengineering of java legacy system based on elements (business processes). J. Comput. Sci., 5:

; : ; 915-921. DOI: 10.3844/jcssp.2009.915.921
aspect-oriented programming. Proceedings of the .
ond International Workshop on Education Zhang, Z., H. Yanf and W.C. Chu, 2006. Extracting

Technology and Computer Science, Mar. 6-7 reusable object-oriented legacy code segments with

EEE xplore Press, Wuhan, pp: 220223, (ot T O e roceedings of
DOI: 10.1109/ETCS.2010.298 '

the 6th International Conference of@uality
Gowthaman, K., K. Mustafa and R.A. Khan, 2005. Software, Oct. 27-28, IEEE Xplore Press, Beijing,

Reer_wgineering Iegacy_ source code to model driven pp: 385-392. DOI: 10.1109/QSIC.2006.29
architecture. Proceedings of the 4th Annual ACIS

International Conference on Computer and
Information Science, (CIS’ 05), IEEE Xplore
Press, pp: 262-267. DOI: 10.1109/ICIS.2005.108
Hwang, K.S., J.F. Cui and H.S. Chae, 200%th

automated approach to componentization of java
source code.Proceedings of the Ninth IEEE
International Conference onComputer and
Information TechnologyQct. 11-14, IEEE Xplore
Press, Xiamen, pp: 205-210.
DOI: 10.1109/CIT.2009.19

827

