
Journal of Computer Science 8 (5): 656-664, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Angel Latha Mary, S., Department of Information Technology, Information Institute of Engineering,
Coimbatore, Tamil Nadu, India Tel: +919842242882/+91-4222645629

656

A Density Based Dynamic Data

Clustering Algorithm based on Incremental Dataset

1Angel Latha Mary, S., 2K.R. Shankar Kumar

1Department of Information Technology,
Information Institute of Engineering, Coimbatore, Tamilnadu, India

2Department of Electronics and Communication Engineering
Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India

Abstract: Problem statement: Clustering and visualizing high-dimensional dynamic data is a
challenging problem. Most of the existing clustering algorithms are based on the static statistical
relationship among data. Dynamic clustering is a mechanism to adopt and discover clusters in real time
environments. There are many applications such as incremental data mining in data warehousing
applications, sensor network, which relies on dynamic data clustering algorithms. Approach: In this
work, we present a density based dynamic data clustering algorithm for clustering incremental dataset
and compare its performance with full run of normal DBSCAN, Chameleon on the dynamic dataset.
Most of the clustering algorithms perform well and will give ideal performance with good accuracy
measured with clustering accuracy, which is calculated using the original class labels and the
calculated class labels. However, if we measure the performance with a cluster validation metric, then
it will give another kind of result. Results: This study addresses the problems of clustering a dynamic
dataset in which the data set is increasing in size over time by adding more and more data. So to
evaluate the performance of the algorithms, we used Generalized Dunn Index (GDI), Davies-Bouldin
index (DB) as the cluster validation metric and as well as time taken for clustering. Conclusion: In this
study, we have successfully implemented and evaluated the proposed density based dynamic clustering
algorithm. The performance of the algorithm was compared with Chameleon and DBSCAN clustering
algorithms. The proposed algorithm performed significantly well in terms of clustering accuracy as
well as speed.

Key words: Clustering, cluster validation, cluster validation metrics

INTRODUCTION

 Data mining is the process of extracting potentially
useful information from a data set. Clustering is a
popular data mining technique which is intended to help
the user discover and understand the structure or
grouping of the data in the set according to a certain
similarity measure. Clustering is a division of data into
groups of similar objects. Representing the data by
fewer clusters necessarily loses certain fine details, but
achieves simplification. It models data by its clusters.
Data modeling puts clustering in a historical
perspective rooted in mathematics, statistics and
numerical analysis. The search for clusters is
unsupervised learning and the resulting system
represents a data concept. From a practical perspective
clustering plays an outstanding role in data mining
applications such as scientific data exploration,

information retrieval and text mining, spatial database
applications, Web analysis, CRM, marketing, medical
diagnostics, computational biology and many others
(Berkhin, 1988). The existing clustering algorithm
integrates static components. Most of the applications
are converted into real time application. It enforced that
object to be clustered during the process based on its
property. Dynamic clustering is a mechanism to adopt
the clustering in real time environments such as mobile
computing, war-end movement observation (Crespoa
and Weber, 2005). Dynamic data mining is increasingly
attracting attention from the respective research
community. On the other hand, users of installed data
mining systems are also interested in the related
techniques and will be even more, since most of these
installations will need to be updated in the future for
each data mining technique used. We need different
methodologies for dynamic data mining. In this study,

J. Computer Sci., 8 (5): 656-664, 2012

657

we present a methodology for Density Based
Dynamic Data Clustering Algorithm based on
Incremental DBSCAN.

Clustering of dynamic data: Clustering is a field of
active research in data mining. Most of the work has
focused on static data sets (Han and Kamber, 2011).
Traditional clustering algorithms used in data mining
will not perform well on dynamic data sets. A
clustering algorithm must consider the elements' history
in order to efficiently and effectively find clusters in
dynamic data. There has been little work on clustering
of dynamic data. We define a dynamic data set as a set
of elements whose parameters change over time. A
flock of flying birds is an example of a dynamic data
set. We are interested in exploring algorithms are
capable of finding relationships amongst the elements
in a dynamic data set. In this study we evaluate the use
of data clustering techniques developed for static data
sets on dynamic data.

Recent developments of dynamic data mining:
Within the area of data mining various methods have
been developed in order to find useful information in a
set of data. Among the most important ones are
decision trees, neural networks, association rules and
clustering methods (Crespoa and Weber, 2005;
Loganantharaj et al., 2000).
 For each of the above-mentioned data mining
methods, updating has different aspects and some
updating approaches have been proposed, as we will
see next.

Decision trees: Various techniques for incremental
learning and tree restructuring as well as the
identification of concept drift have been proposed in
the literature.

Neural networks: Updating is often used in the sense
of re-learning or improving the net's performance by
learning with new examples presented to the network

Association rules: Raghavan et al. have developed
systems for dynamic data mining for association rules.

Clustering: Below, we describe in more detail
approaches for dynamic data mining using clustering
techniques that can be found in literature.
 Recent developments of clustering systems using
dynamic elements are concerned about modeling the
clustering process dynamically, i.e. adaptations of
the algorithm are performed while applying it to a
static set of data.

MATERIALS AND METHODS

The cluster validation methods:
Major difficulties in cluster validation : The presence
of large variability in cluster geometric shapes and the
number of clusters cannot always be known a priori are
the main reason for validating the quality of the
identified clusters. Different distance measures also
lead to different types of clusters so that deciding the
‘best’ cluster is based on several aspects with respect to
the application. So that the results of a cluster validation
algorithm not always give best result from the
application’s point of view (Bezdek and Pal, 1998).

Cluster validity: In fact, if cluster analysis is to make a
significant contribution to engineering applications,
much more attention must be paid to cluster validity
issues that are concerned with determining the optimal
number of clusters and checking the quality of
clustering results. Many different indices of cluster
validity have been proposed, such as the Bezdek’s
partition coefficient, the Dunn’s separation index, the
Xie-Beni’s separation index, Davies-Bouldin’s index
and the Gath-Geva’s index. Most of these validity
indices usually assume tacitly that data points having
constant density to the clusters. However, it is not sure
of the real problems (Bezdek and Pal, 1998).

Indices of cluster validity: Cluster validation refers to
procedures that evaluate the clustering results in a
quantitative and objective function. Some kinds of
validity indices are usually adopted to measure the
adequacy of a structure recovered through cluster
analysis. Determining the correct number of clusters in
a data set has been, by far, the most common
application of cluster validity. In general, indices of
cluster validity fall into one of three categories. Some
validity indices measure partition validity by evaluating
the properties of the crisp structure imposed on the data
by the clustering algorithm. In the case of fuzzy
clustering algorithms, some validity indices such as
partition coefficient and classification entropy use only
the information of fuzzy membership grades to evaluate
clustering results. The third category consists of validity
indices that make use of not only the fuzzy membership
grades but also the structure of the data.

The cluster validity measures:
Dunn's index vD: This index is used to identify the
compact and well-separated clusters C Eq. 1:

{ }
i j

i c j c,i j
k c k

(C ,C)
vD min min

max (C)∈ ∈ ≠
∈

 δ = ∆
 (1)

J. Computer Sci., 8 (5): 656-664, 2012

658

Where:

{ }i j i j i i j j(C ,C) min d(x ,x) | x C ,x Cδ = ∈ ∈

{ }k i j i j i(C) max d(x ,x) | x ,x C∆ = ∈

δ is a distance function and CI , Cj Ck are the sets whose
elements are the data points assigned to the
corresponding ith, jth and kth clusters respectively. The
main drawback with direct implementation of Dunn’s
index is computational since calculating becomes
computationally very expensive as the number of
clusters and the total point’s increase. Larger values of
vD correspond to good clusters and the number of
clusters that maximizes vD is taken as the optimal
number of clusters.

Generalized Dunn Index vGD Eq. 2:

{ }
i s t

s c t c,s t
k c j k

(C ,C)
vGD min min

max (C)∈ ∈ ≠
∈

 δ =
∆

 (2)

 Five set distance functions and three diameter
functions are defined in of these, we have used two
combinations δ3 and δ3 (which is recommended in
(Karypis et al., 1999) as being most useful for cluster
validation) in one and combinations δ5 and δ3 in the
other. The three measures viz., combinations δ3, δ3 and
δ5 and are defined as follows:

x S
3

d(x, zS)
(S) 2

S
∈

 ∆ =

∑

3
x S,y T

1
(S,T) d(x, y)

S T ∈ ∈

δ = ∑ and

5
x S y T

1
(S,T) d(x,zT) d(y,zS)

S T ∈ ∈

δ = + +

∑ ∑

here ()
x S

zS 1/ S x
∈

= ∑ and ()
x T

zT 1/ T y
∈

= ∑

 Larger values of vGD correspond to good clusters
and the number of clusters that maximizes vGD is taken
as the optimal number of clusters. In this evaluation, we
used δ3and δ3 as diameter functions during evaluating
the algorithms under consideration.

Davies-bouldin index []: This index (Davies and
Bouldin, 1979) is a function of the ratio of the sum of
within-cluster scatter to between-cluster separation Eq. 3:

n
n i n

i j
i 1 i i

S (Q) S (Qj)1
DBI max

n S(Q ,Q)≠=

 +
=

∑ (3)

where n- number of clusters, Sn - average distance of all
objects from the cluster to their cluster centre, - S(Q,,Qj)
distance between clusters centres. Hence the ratio is
small if the clusters are compact and far from each other.
Consequently, Davies-Bouldin index will have a small
value for a good clustering (Bezdek and Pal, 1998).

The algorithms under evaluation:
Chameleon: Chameleon is a new agglomerative
hierarchical clustering algorithm that overcomes the
limitations of existing agglomerative hierarchical
clustering algorithms. A major limitation of existing
agglomerative hierarchical schemes such as the Group
Averaging Method [JD88], ROCK [GRS99] and CURE
[GRS98] is that the merging decisions are based upon
static modeling of the clusters to be merged. These
schemes fail to take into account special characteristics
of individual clusters and thus can make incorrect
merging decisions when the underlying data does not
follow the assumed model, or when noise is present.
There are two major limitations of the agglomerative
mechanisms used in existing schemes. First, these
schemes do not make use of information about the
nature of individual clusters being merged. Second, one
set of schemes (CURE and related schemes) ignore the
information about the aggregate interconnectivity of
items in two clusters, whereas the other set of schemes
(ROCK, the group averaging method and related
schemes) ignore information about the closeness of
two clusters as defined by the similarity of the closest
items across two clusters (Karypis et al., 1999;
Bezdek and Pal, 1998).
 Its key feature is that it accounts for both
interconnectivity and closeness in identifying the most
similar pair of clusters. Chameleon uses a novel
approach to model the degree of interconnectivity and
closeness between each pair of clusters. This approach
considers the internal characteristics of the clusters
themselves. Thus, it does not depend on a static, user-
supplied model and can automatically adapt to the
internal characteristics of the merged clusters.
Chameleon operates on a sparse graph in which nodes
represent data items and weighted edges represent
similarities among the data items. This sparse-graph
representation allows Chameleon to scale to large data
sets and to successfully use data sets that are available
only in similarity space and not in metric spaces. Data
sets in a metric space have a fixed number of attributes
for each data item, whereas data sets in a similarity
space only provide similarities between data items.
 Chameleon finds the clusters in the data set by
using a two-phase algorithm. During the first phase,
Chameleon uses a graph-partitioning algorithm to

J. Computer Sci., 8 (5): 656-664, 2012

659

cluster the data items into several relatively small subs
to find the genuine clusters by repeatedly combining
these sub-clusters. During the second phase, it uses an
agglomerative hierarchical clustering algorithm to find
the genuine clusters by repeatedly combining together
these sub-clusters (Crespoa and Weber, 2005; Goura
et al., 2011; Goyal et al., 2011).

DBSCAN: DBSCAN (Density Based Spatial
Clustering of Applications with Noise) and DENCLUE
((DENsity-based CLUstEring) will be implemented to
represent density based partitioning algorithms.
DBSCAN creates clusters from highly connected
elements while DENCLUE clusters elements in highly
populated areas. Both algorithm handle outliers well
and will not include them in any cluster.

The proposed density based dynamic DBSCAN: We
modeled the proposed Density based Dynamic
DBSCAN algorithm using the ideas mentioned in the
earlier work (Ester et al., 1998; 1996; Ester and
Wittmann, 1998; Su et al., 2009; Sarmah and
Bhattacharyya, 2010; Chakraborty et al., 2011;
Chakraborty and Nagwani, 2011). Our implementation
is slightly different from the standard approach, in our
algorithm, we only considered problems related with
data insertion. Further, we dynamically changed the
epsilon during each batch of insertion. Another most
important variation is, in during each step of batch
insertion, the data points which were classified as noise
or border objects (outliers) were considered as
unclassified points and combined with the new data
which is to be inserted. These small changes made our
algorithm to perform very good and formed good
clusters with the dynamic incremental data set.

The density based dynamic clustering algorithm:
The main aspects of dynamic clustering process:
When inserting an object p into the database D, it
may be treated in one of the following ways:

Noise: If there is no nearby point in the epsilon
neighborhood or the number of neighbors is not
satisfying the density criteria, then, p is also a noise
object and nothing else is changed.

Absorption of point p: If all the nearby points in the
epsilon neighborhood belongs to some cluster, then the
newly inserted point p also belong to the same class ID-
in other words, the new point will simply be absorbed
by that existing cluster.

Merging of clusters: If all the nearby points in the
epsilon neighborhood are members of different

clusters, then the newly inserted point p will connect all
these existing clusters and form one cluster out of these
several clusters.

Creation of a cluster: At the location of insertion, if
there are some nose objects already present and if the
point p can be treated as a core point after insertion by
satisfying the condition of a cluster membership, then
it will lead to form a new cluster in that region.

A dynamic DBSCAN algorithm for clustering
evolving data over time: Let:

• DEx be the Existing dataset which is already cluster

in to Cex number of classes.
• DNew be the New dataset which is to be added in to

DEx cluster in to Cnew number of classes.
• εEx is the previously estimated epsilon value of

Existing dataset DEx

Algorithm: DY N _DBSCAN (DEx, DNew,εEx, MinPts)
// Precondition:
All objects in DEx are classified
All objects in Dnew are unclassified.
εEx The estimated Epsilon of DEx
//Separate Nex, the set of noise object (outliers) (and
border Objects) in DEx according to the previous stage
of clustering)
Nex = Outliers (DEx)

//Assume the previous outliers (and border Objects) as
unclassified
Dnew ← Dnew ∪ Nex

FORALL objects o in DNew DO {
 //Add the object o in DEx
 DEx ← DEx ∪ o
 Re-estimate εnew based on the new DEx

 //find the neighborhood o f o based on�new
 NEps(o)= Eps-neighborhood of o;

 U = Unclassified (NEps(o))

If (NEps(o)==MinPts) {
 // no nearby points, so p is a Noise
 type(o)= Border_Object;
 class(o)= noise;
 }elseif (NEps(o)>1 and NEps(o) <= MinPts) {
 type(o)= unclassified;
class(o)= unclassified;
if(All the object in U are unclassified) {
 //Create a cluster of border and noise objects and
Merge them with nearby clusters if possible

J. Computer Sci., 8 (5): 656-664, 2012

660

 seeds= NEps(o);
 Update (seeds, Border_Object);
} Elseif(U is empty) {
 // case of Absorption in non core points
 class(o)= TheClassOfTheNeighbors;
}elseif(Some of the object in U are unclassified){
//merge all points and assign a new Class ID
 current_cluster-id=NewID();
 class(o)= current_cluster-id;
 seeds= NEps(o);
 Update (seeds, current_cluster-id);
}
} elseif (NEps(o)>=MinPts) {
 type(o)= core;
if(All the object in U are unclassified) {
 // Merge clusters and assign a common class label
 current_cluster-id=NewID();
 class(o)= current_cluster-id;
 seeds= NEps(o);
 Update (seeds, current_cluster-id);
} Elseif(U is empty) {
 // case of Absorption in existing cluster
 class(o)= cluster-id of the Neighbor;
}elseif(Some of the object in U are unclassified){
 //merge all clusters and assign a common class ID
 current_cluster-id=NewID();
 class(o)= current_cluster-id;
 seeds= NEps(o);
 Update(seeds, current_cluster-id);
}
function Update (seeds, cluster-id){
 WHILE NOT seeds.empty() DO {
 currentObject := seeds.top();
 seeds.pop();
 NEps(currentObject)= Eps-neigh.of

CurrentObject

 IF | NEps(currentObject) ≥ MinPts {

 type(currentObject)=1;
 else |NEps(currentObject)>0
 type(currentObject)=0;
}
If |NEps(currentObject)>0
 FORALL objects obj in NEps(currentObject) DO {

 if class(objects) <> cluster-id {
 class(objects) = cluster-id
 seeds.push(obj);
 }
 }
 }
 }

RESULTS

 The performances of the algorithms are
evaluated using synthetic dataset and real data sets
from UCI Data repository.
 The performance in Terms of Generalized Dunn
Index, Davies-Bouldin Index and clustering time with
the synthetic dataset and real dataset , The proposed
dynamic clustering algorithm was good and almost equal
or little bit better than the normal DBSCAN algorithm.

DISCUSSION

Results with synthetic data set: To evaluate the
performance of clustering in a very controlled manner,
multi dimensional synthetic data sets of were used.
 The following Fig. 1 shows the two dimensional
plot of one of such dataset.
 The parameters of the algorithm used to create
the synthetic spheroid form of data points using
Gaussian distribution:

Number of Classes : 6
Records per Classes : 100
Number of Dimensions : 5
Standard Deviation : 0.50
Total Records : 600.00

 The following Fig. 2 results are the performance of
clustering with dataset of the above mentioned
attributes. The line chart shows the performance of the
algorithm with the increase of data size. The bar chart
shows the average performance of the algorithms.
 The following Fig. 3 shows the performance in
Terms of Generalized Dunn Index with the synthetic
dataset. The performance of the proposed dynamic
clustering algorithm was good and almost equal or little
bit better than the normal DBSCAN algorithm.
 The following Fig. 4 shows the average
performance in Terms of Generalized Dunn Index. The
performance of the proposed dynamic clustering
algorithm equal to the normal DBSCAN algorithm.
 The following Fig. 5 shows the performance in
Terms of Davies-Bouldin Index
 The following Fig. 6 and 7 shows the average
performance in Terms of Davies-Bouldin Index

Performance in terms of time: The following graph
shows the performance in Terms of time. The speed of
the proposed dynamic clustering algorithm was better
than Chameleon as well as DBSCAN algorithm.

The results with UCI data sets: To validate the
performance of the algorithms, we used some of the
real data sets from UCI Data repository.

J. Computer Sci., 8 (5): 656-664, 2012

661

Fig. 1: Two dimensional plot of synthetic dataset

Fig. 2: Performance in terms of GDI (Syn.Data)

Fig. 3: The average performance in terms of GDI

(Syn. Data)

Fig. 4: Performance in terms of DBI (Syn.Data)

Fig. 5: Average performance in terms of DBI

(Syn.Data)

Fig. 6: Performance in terms of time (Syn.Data)

Fig. 7: Average performance in terms of time

(Syn.Data)

 We used the following datasets:

• Zoo Data
• Wine Data
• TIC2000 Data (The Insurance Company Data)
• Wisconsin Breast Cancer Dataset

J. Computer Sci., 8 (5): 656-664, 2012

662

Fig. 8: Average performance in terms of GDI (Wine data)

Fig. 9: Performance in terms of GDI (Wine data)

Fig. 10: Performance in terms of DBI (Wine data)

Fig. 11: Average performance in terms of DBI (Wine data)

Fig. 12: Performance in terms of time (Wine data)

Fig. 13: Average performance in terms of time (Wine data)

 The performance of the algorithms with “UCI
Wine Data” with different size of incremental data.
 The following Fig. 8-15 shows the performance in
Terms of Generalized Dunn Index, Davies-Bouldin
Index and clustering time. The performance of the
proposed dynamic clustering algorithm was good. And
in most cases, the accuracy in terms of validation
metrics is little bit better than the normal DBSCAN
algorithm and Chemeleon:

• Performance in terms of Generalized Dunn Index

(Wine Data)
• The Average performance interms of Generalized

Dunn Index (Wine Data)
• Performance in terms of Davies-Bouldin Index

(Wine Data)
• The Average performance interms of Davies-

Bouldin Index (Wine Data)
• Performance in terms of Time (Wine Data)
• Average Performance in terms of Time (Wine

Data)

The performance with different UCI datasets: The
following graph shows the Average performance of the
algorithm with different UCI data sets.

J. Computer Sci., 8 (5): 656-664, 2012

663

Fig. 14: Average performance in terms of DBI (4 UDI

Data)

Fig. 15: Average performance in terms of time (4 UDI

Data)

The performance was measured in terms of Generalized
Dunn Index, Davies-Bouldin Index and clustering time.
The performance of the proposed dynamic clustering
algorithm was good. And in most cases, the accuracy in
terms of validation metrics is little bit better than the
normal DBSCAN algorithm and Chameleon.
 The average performance of the algorithms in
terms of Generalized Dunn Index with different size of
incremental data was good and almost equal in with all
the four evaluated datasets.

Average performance in terms of Davies-Bouldin
index: The average performance of the algorithms in
terms of, Davies-Bouldin Index is almost equal or little
bit higher than the normal DBSCAN.

Average performance in terms of time: The average
performance of the algorithms in terms of, clustering
time is almost very minimum in the proposed dynamic
clustering algorithm. The performance of the proposed
algorithm was very good on all the data sets.

CONCLUSION

 In this study, we have successfully implemented
and evaluated the proposed density based dynamic

clustering algorithm. The algorithm was able to insert
data objects one by one and then re-estimate the cluster
IDs during each and every point which was inserted.
The algorithm is capable of create, modify and insert
clusters over time. The performance of the algorithm
was compared with Chameleon and DBSCAN
clustering algorithms. As shown in the results of the
previous section, the proposed algorithm performed
significantly well in terms of clustering accuracy as
well as speed.
 There are possibilities to handle batch insertion by
which we can reduce the run time of the algorithm. So
the future work will address the ways to improve the
performance of the algorithm in terms of speed and
accuracy. This work only addressed the problem of
clustering incremental data set in which only data is
added over time.
 The future work may address all the other
possibilities of dynamic operations like deletions and
modifications of data points and remodel the algorithm
to cluster the data during this dynamically changing
dataset. Even though, the performance of Chameleon
was poor in terms of speed, it also posses the
capabilities of becoming a dynamic clustering
algorithm. Future works may explore these possibilities
and address hybrid dynamic clustering algorithms.

ACKNOWLEDGEMENT

 We thank to Management, Principal and Secretary
of Info Institute of Engineering for providing facility to
implement this study.

REFERENCES

Berkhin, P., 1988. Survey of Clustering Data Mining

Techniques. Accrue Software, Inc., San Jose, CA.
Bezdek, J.C. and N.R. Pal, 1998. Some new indexes of

cluster validity. IEEE Trans. Syst., Man, Cybern.
B, 28: 301-315. DOI: 10.1109/3477.678624

Chakraborty, S. and N.K. Nagwani, 2011. Analysis and
study of incremental DBSCAN clustering
algorithm. Int. J. Enterprise Comput. Bus. Syst.

Chakraborty, S., N.K. Nagwani and L. Dey, 2011.
performance comparison of incremental k-means
and incremental DBSCAN algorithms. Int. J.
Comput. Appli., 27: 14-18. DOI: 10.5120/3346-
4611

Crespoa, F. and R. Weber, 2005. A methodology for
dynamic data mining based on fuzzy clustering,
Fuzzy Sets Syst., 150: 267-284. DOI:
1016/j.fss.2004.03.028

J. Computer Sci., 8 (5): 656-664, 2012

664

Davies, D.L. and D.W. Bouldin, 1979. A cluster
separation measure. IEEE Trans. Patt. Anal.
Machine Intell., 1: 224-227.

Ester M. and R. Wittmann, 1998. Incremental
generalization for mining in a data warehousing
environment. Adv. Database Technol. Lecture
Notes Comput. Sci., 1377: 135-149. DOI:
10.1007/BFb0100982

Ester M., H.P. Kriegel, J. Sander, X. Xu, 1996. A
density-based algorithm for discovering clusters in
large spatial databases with noise. Proceedings of
the 2nd International Conference on Knowledge
Discovery and Data Mining (KDD’ 96), Portland.

Ester, M., H.P. Kriegel, J. Sander, M. Wimmer and
X. Xu, 1998. Incremental clustering for mining in
a data warehousing environment. Proceedings of
the 24th VLDB Conference, Institute for
Computer Science, University of Munich,
Germany, New York, USA.

Goura, V.M.K.P., N.M. Rao and M.R. Reddy, 2011. A
dynamic clustering technique using
minimumspanning tree. Proceedings of the 2nd
International Conference on Biotechnology and
Food Science (IPCBEE’ 11), IACSIT Press,
Singapore, pp: 66-70.

Goyal, N., P. Goyal, K. Venkatramaiah, P.C. Deepak
and P.S. Sanoop, 2011. An efficient density based
incremental clustering algorithm in data
warehousing environment. Proceedings of the
International Conference on Computer Engineering
and Applications, (IPCSIT’ 11), IACSIT Press,
Singapore, pp: 482-486.

Han, J. and M. Kamber, 2011. Data Mining: Concepts
and Techniques. 3rd Edn., Elsevier, Burlington,
ISBN-10: 9780123814791, pp: 744.

Karypis, G., E.H.S. Han and V. Kumar, 1999.
Chameleon: Hierarchical clustering using dynamic
modeling. IEEE Comput., 32: 68-75. DOI:
10.1109/2.781637

Loganantharaj, R., G. Palm and M. Ali, 2000.
Intelligent Problem Solving: Methodologies and
Approaches. 1st Edn., Springer, Berlin, ISBN:
3540676899, pp: 751.

Sarmah, S. and D.K. Bhattacharyya, 2010. An effective
technique for clustering incremental gene
expression data. IJCSI Int. J. Comput. Sci., 7: 26-
41.

Su, X., Y. Lan, R. Wan and Y. Qin, 2009. A fast
incremental clustering algorithm. Proceedings of
the 2009 International Symposium on Information
Processing, Aug. 21-23, Huangshan, P. R. China,
pp: 175-178.

