
Journal of Computer Science 2012, 8 (12), 1940-1945

ISSN 1549-3636
© 2012 Science Publications
doi:10.3844/jcssp.2012.1940.1945 Published Online 8 (12) 2012 (http://www.thescipub.com/jcs.toc)

Corresponding Author: M. Baritha Begum, Department of Electronics and Communication, Saranathan College of Engineering,
Trichy-620012, Tamilnadu, India Tel: 919443677672

1940 Science Publications

JCS

A Novel Multidictionary Based Text Compression

M. Baritha Begum and Y. Venkataramani

Department of Electronics and Communication,
Saranathan College of Engineering, Trichy-620012, Tamilnadu, India

Received 2012-02-24, Revised 2012-09-27; Accepted 2012-11-07

ABSTRACT

The amount of digital contents grows at a faster speed as a result does the demand for communicate
them. On the other hand, the amount of storage and bandwidth increases at a slower rate. Thus powerful
and efficient compression methods are required. The repetition of words and phrases cause the reordered
text much more compressible than the original text. On the whole system is fast and achieves close to the
best result on the test files. In this study a novel fast dictionary based text compression technique MBRH
(Multidictionary with burrows wheeler transforms, Run length coding and Huffman coding) is proposed
for the purpose of obtaining improved performance on various document sizes. MBRH algorithm
comprises of two stages, the first stage is concerned with the conversion of input text into dictionary
based compression .The second stage deals mainly with reduction of the redundancy in multidictionary
based compression by using BWT, RLE and Huffman coding. Bib test files of input size of 111, 261 bytes
achieves compression ratio of 0.192, bit rate of 1.538 and high speed using MBRH algorithm. The
algorithm has attained a good compression ratio, reduction of bit rate and the increase in execution speed.

Keywords: Dictionary Based Encoding (DBE), Burrows-Wheeler Transform (BWT), Run Length

Encoding (RLE)

1. INTRODUCTION

 Data compression is the method representing
information in a compact form. It decreases the number
of bits required to represent a data. Similarly Data
decompression restores compressed data back into an
original form. A Bit is the most fundamental unit of
information in computing and communications and it
possess the value zero or one. The partial redundancy
in uncompressed data paves way for compression; that
is, the same information can be stored using fewer bits.
 Generally compression algorithms require large

execution time, memory size because of the presence

of large number of alphabets in original source code

(Carus and Mesut, 2010).Text compression coding can
be categorized into two groups; statistical based coding

and dictionary based coding.
 Dictionary-based methods are popular in the data
compression domain (Begum and Venkataramani,

2012; Mohan and Govindan, 2005; Sun et al., 2003).
On contrary statistical methods use a statistical model
of the data and encode the symbols using variable-size
code words in accordance with their frequencies of
occurrence, dictionary-based methods opt for strings of
the symbols to set up a dictionary and then encode
them into equal-size tokens using the dictionary (Li et

al., 2003; Carus and Mesut, 2010; Bhadade and
Trivedi, 2011). The dictionary is formed by the strings
and it may be either static or dynamic (Mohan and
Govindan, 2005). The static is permanent, occasionally
allowing for the addition of strings but no deletions,
whereas the latter holds strings formerly found in the
input stream, allowing for additions and deletions of
strings as a new input string is processed.
 Huffman coding, Arithmetic coding and PPM are
examples of statistics based coding. In this coding
scheme the symbols are coded to variable lengths. The
most well known dictionary based coding is LZ
algorithm (Abel and Teahan, 2005).

M. Baritha Begum and Y. Venkataramani / Journal of Computer Science 8 (12) (2012) 1940-1945

41 Science Publications

JCS

Fig. 1. Multidictionary based text compression incorporating a lossless, reversible transformation

 Huffman coding, Arithmetic coding and PPM are

examples of statisticsl based coding (Sayood, 2012). In

this coding scheme variable length of code used for

symbols. These high redundant texts increase the

performance of some text compression algorithms.

Earlier researches (Carus and Mesut, 2010; Bhadade

and Trivedi, 2011; Sun et al., 2003) use enormous

dictionaries of words or phrases and their codes. The

common approach employed is to use a coding scheme

with high redundancy (Tadrat and Boonjing, 2008). On

the other hand, their dictionary sizes make their works

not suitable for embedding in compression algorithms.

This study seeks for an optimal dictionary as well as a

highly redundant coding scheme for such function. In

this study different dictionaries with different coding

schemes are experimentally investigated with various

compression algorithms is apt for redundant texts (Al-

Bahadili and Hussain, 2010; Martinez-Prieto et al.,

2011; Kulekci, 2012). The performance of text

compression is increased by text transformation.

 The words in the input text are transformed with

highly redundant codes by an approach known as

multidictionary based text compression. By this

approach the input file is first transformed into

predefined codes, thereafter it is compressed using

BWT, RLE and Huffman coding. On the receiver side

it is decompressed using same algorithms and extracted

from the compression method as shown in Fig. 1. The

performance in terms of compression ratio is

satisfactory.However a more efficient algorithm will

give still better results.

2. MATERIALS AND METHODS

2.1. Dictionary Formation

• The words are extracted from the input test file
and a table is formed. The first letter in the words
which is in the upper case is converted into the
lower case letter

• The frequency of occurrence of the word is
calculated, sorted out and the words from the table
are arranged in the descending order

• Each word is assigned with an ASCII code .The
respective number (33-255) of the each ASCII
character is assigned as code except small letters
(a...z) and capital letters (A...Z) .So totally 170
character becomes as code

• ASCII character is assigned as code to every word.
In table 170 single ASCII character is assigned as
a code for first 170 words

!@#$%^&*()_+......... upto ASCII character of 255

• For the next 170 words the same 170 ASCII

character with a prefix of character ’a’. Thus it
becomes two character codes

a! a@ a# a$ a% a^ a& a* a(a) a_ a+……upto ASCII
character of 255

• The remaining words will have the combination of

(b….z) and the single 170 ASCII characters. The
remaining words will have the combination of
(A….Z) and the single 170 ASCII characters

b! b@ b# b$ b% b^ b& b* b(b) b_ b+……upto ASCII
character of 255.…………..

M. Baritha Begum and Y. Venkataramani / Journal of Computer Science 8 (12) (2012) 1940-1945

42 Science Publications

JCS

z! z@ z# z$ z% z^ z& z* z(z) z_ z+……upto ASCII
character of 255.

A! A@ A# A$ A% A^ A& A* A (A) A_ A+……upto
ASCII character of 255

B! B@ B# B$ B% B^ B& B* B (B) B_
B+……….upto ASCII character of 255................

Z! Z@ Z# Z$ Z% Z^ Z& Z* Z (Z) Z_ Z+ …….. ..Upto
ASCII character of 255

• N*170 = Number of words assign as a code for

two character combination.

 N = Number of alphabetic characters [(a...z) +
(A...Z) = 52]

• Further words will have the combination of 170*N

codes with prefix of ’a’, thus becoming three
character code. Similarly each character of (b...z)
is the prefix of two character combination.

aa! aa@ aa# aa$ aa% aa^ aa& aa* aa(aa) aa_
aa+……upto ASCII character of 255.

ab! ab@ ab# ab$ ab% ab^ ab& ab* ab(ab) ab_
ab+……upto ASCII character of 255.

AA! AA@ AA# AA% AA^ AA& AA* AA (AA)
AA_ AA+ …. Upto ASCII character of 255

• Same coding format followed for (A...Z).

AA! AA@ AA# AA% AA^ AA& AA* AA (AA) AA_
AA+…. Upto ASCII character of 255
BB! BB@ BB# BB$ BB% BB^ BB& BB* BB (BB)
BB_ BB+…. upto ASCII character of 255 ……
ZZ! ZZ@ ZZ# ZZ$ ZZ% ZZ^ ZZ& ZZ* ZZ (ZZ) ZZ_
ZZ+ ……. upto ASCII character of 255

• M*N*170 = Number of words assign as a code for

three character combination.

M = N = Number of alphabetic characters [(a...z) +
(A...Z) = 52].
 The shortest code is assigned to most frequently
used words. The longest code is assigned to less
frequently used words.

2.2. Multidictionary Generation

 Multidictionary method helps in extracting the
words in the dictionary rapidly and easily:

• Words starting with the letter ‘a’ are converted
into a dictionary similarly remaining alphabets are
converted into respective dictionaries

• Codes are assigned to the words in various
dictionaries.

• The characters apart from the alphabets such as
words starting with ASCII characters are also
grouped into separate dictionary

2.3. Encoding Algorithm

2.2.1. BWT Algorithm

 The data encoded by multidictionary method is
given as input to the BWT transform algorithm:

• The block of data is taken and is rearranged by

sorting algorithm. The output of the BWT block
will contain the same number of data element;
however the order may be different

• In the reverse transform the original order will be
sorted without the loss of data

• The BWT is performed on the entire block of data
elements at once

• The lossless compressions algorithms operate in
streaming mode, reading single byte or few bytes
at a time. BWT transform operates on large chunks
of data. It further operates on data in the memory
and encounters files that are too big to process in
one swoop. In those cases the file must be split up
and processed as blocks and termed as parallel
BWT transform

• The files that are divided into n number of blocks
are given as input to BWT transform

• Finally on the other side the output blocks are
combined and obtained as single output block. This
parallel BWT transform method increases the speed
is rapidly. The output of this method is given as input
to the run length coding (Sayood, 2012)

2.4. Run Length Coding

• Run length coding is widely used data
compression algorithm. The main feature of the
algorithm is to replace the long sequence of the
same symbol by a short sequence. The output of
the BWT generally has runs

• Runs refer to the continual occurring of same

symbols. The RLE has a specific role in

conversion of such long sequences into a short

sequence by substituting the number of repetition

of that particular symbol before the special

character ‘@‘ and the repeated symbol is followed

by this special character (Salomon, 2007)

M. Baritha Begum and Y. Venkataramani / Journal of Computer Science 8 (12) (2012) 1940-1945

43 Science Publications

JCS

2.5. Huffman Coding

• The output of the RLE coding is a given as an
input to the Huffman coding

• The number of occurrence is determined and a
code is generated using Huffman coding. This
leads to further compression of the input file.
Huffman coding has a unique method for choosing
the representation for each symbol, resulting in
a prefix code. No other mapping of individual
source symbols to unique strings of bits will
produce a smaller average output size. Huffman
coding is an extensive method for creating prefix
codes (Sayood, 2012)

2.6. Decoding Algorithm

• Huffman decoding algorithm decodes the binary
code from the encoded output. This Huffman
decoding output is given as input to the RLE
algorithm (Sayood, 2012)

• The RLE decoded output converts short
sequence symbol into a long sequence symbol
(Salomon, 2007)

• After this conversion the output is given as an
input to the BWT reverse transform which
rearranges the data into an original order

• The combination of (a...z) or (A...Z) with ASCII
character is considered as a code and the
equivalent word of the code is searched in the
corresponding dictionary

• Similarly with this combination if two consecutive

ASCII character occurs, it is extensively

considered as a separate code and searched in the

respective dictionary. Finally the words are

collected in the output file

3. RESULTS

 We performed experiments on the MBRH

transformation algorithms using standard Calgary

Corpus text file collection and compared with some

standard existing compression algorithm Eq. 1 and 2:

Output filesize
Compression ratio

Input filesize
=

 (1)

Output filesize
Bit percharacer (BPC) *8

Input filesize
=

 (2)

Fig. 2. Comparison of BPC

Fig. 3. Comparison of compression ratio

M. Baritha Begum and Y. Venkataramani / Journal of Computer Science 8 (12) (2012) 1940-1945

44 Science Publications

JCS

Table 1. List of files used in experiments

File name Size (byte) Description

Bib 111,261 Bibliography

Geo 102,400 Geological seismic data

Obj1 21,504 VAX object program

paper1 53,161 Technical Paper

Paper2 82,199 Technical Paper

Paper3 46,526 Technical Paper

Paper4 13,286 Technical Paper

Paper5 11,954 Technical Paper

Paper6 38105 Technical Paper

Progc 39,611 Source Code in “C”

Progl 71,646 Source Code in “Pascal”

Progp 49,379 Text: English Text

4. DISCUSSION

 The test files specified in Table 1 are programmed by
Matlab for implementation of MBRH and are compared
with various compression algorithms such as arithmetic
coding, Huffman with BWT, LZSS with BWT and
Dictionary Based Encoding (DBE) and multidictionary
based compression, multidictionary BWT with RLE and
MBRH. By using equations (1, 2), compression ratio and
bits per character are calculated. The comparison is shown
in Table 2 and 3.The results are shown graphically in
Figure 2 and 3. They show that MBRH out performs the
other techniques in terms of compression ratio and Bits
Per Character (BPC). Table 4 shows compression time of
input file size to compression code for each algorithm.
Compression ratio is increased in MBRH compared with
other dictionary based compression. MBRH achieves less
transmission time.

Table 2. Comparison of BPC

Bits per character

 Dictionary Multidictionary Multidictionary Multidictionary+
File Arithmetic Huffman LZSS based based +BWT BWT + RLE + Huffman
Name coding BWT BWT compression compression +RLE coding(MBRH)

Bib 5.232 3.656 5.016 2.224 2.219 1.955 1.538
Geo 5.656 5.800 6.304 4.560 4.857 4.168 3.386
Obj1 5.968 4.768 5.288 1.856 1.765 1.495 1.187
paper1 4.984 3.616 4.976 2.256 2.183 2.028 1.615
paper2 4.624 3.680 5.136 2.256 2.161 2.077 1.630
paper3 4.712 3.856 5.336 2.200 2.097 2.009 1.596
paper4 4.824 4.064 5.376 2.212 2.136 2.018 1.562
paper5 5.064 4.056 5.256 2.480 2.350 2.194 1.700
paper6 5.008 3.632 4.952 2.408 2.349 2.186 1.686
Progc 5.240 3.504 4.728 2.288 2.206 1.987 1.596
Progl 4.760 2.680 3.648 1.896 1.882 1.560 1.243
Progp 4.896 2.760 3.688 1.392 1.317 1.153 0.950

Table 3. Comparison of compression ratio

Compression ratio

 Dictionary Multidictionary Multidictionary+
File Input file Arithmetic Huffman LZSS based based Multidictionary+ BWT + RLE + Huffman
Name size (byte) coding + BWT + BWT compression compression BWT+RLE coding (MBRH)

Bib 111261 0.654 0.457 0.627 0.2780 0.277 0.244 0.192
Geo 102400 0.707 0.725 0.788 0.5700 0.607 0.521 0.423
Obj1 215040 0.746 0.596 0.661 0.2320 0.221 0.187 0.148
paper1 531601 0.623 0.452 0.622 0.2820 0.273 0.254 0.202
paper2 821990 0.578 0.460 0.642 0.2820 0.270 0.260 0.204
paper3 465260 0.589 0.482 0.667 0.2750 0.262 0.251 0.199
paper4 132860 0.603 0.508 0.672 0.2765 0.267 0.252 0.195
paper5 119540 0.633 0.507 0.657 0.3100 0.294 0.274 0.213
paper6 381050 0.626 0.454 0.619 0.3010 0.294 0.273 0.211
progc 396110 0.655 0.438 0.591 0.2860 0.276 0.248 0.200
progl 716460 0.595 0.335 0.456 0.2370 0.235 0.195 0.155
progp 493790 0.612 0.345 0.461 0.1740 0.165 0.144 0.119

M. Baritha Begum and Y. Venkataramani / Journal of Computer Science 8 (12) (2012) 1940-1945

45 Science Publications

JCS

Table 4. Comparison of compression time

 Dictionary Multidictionary
 based based Runlength Huffman
File compression compression BWT coding coding

Name (sec) (sec) (sec) (sec) (sec)

Bib 638 85.770 9.0 1.4 1.5
Geo 1620 409.500 10.0 2.0 1.7
Obj1 180 26.330 4.7 0.3 0.8
paper1 207 41.340 3.2 0.7 1.1
paper2 264 48.490 6.5 0.9 1.2
paper3 182 30.320 1.8 0.6 1.0
paper4 42 3.896 2.5 0.4 1.3
paper5 47 4.719 2.4 0.3 0.9
paper6 118 29.790 0.7 0.6 1.0
Progc 142 33.060 0.2 0.7 1.0
Progl 167 53.950 3.8 0.8 1.1
Progp 125 21.160 0.3 0.6 0.9

5. CONCLUSION

 This study proposes a new method of text
transformation using Multidictionary based encoding.
In a channel, the amount of compression paves way for
reduction in transmission time. The input text is
replaced by variable length codes, the size of input text can
be reduced by using Multidictionary based compression.
MBRH compression algorithm attains good compression
ratio, reduces bits per character and conversion time.

6. REFERENCES

1. Al-Bahadili, H. and S.M. Hussain, 2010. A bit-
level text compression scheme based on the ACW
algorithm. Int. J. Automat. Comput., 7: 123-131.
DOI: 10.1007/s11633-010-0123-6

2. Abel, J. and W. Teahan, 2005. Universal text
preprocessing for data compression. IEEE Trans.
Comput., 54: 497-507. DOI: 10.1109/TC.2005.85

3. Begum, M.B. and Y. Venkataramani, 2012. LSB
based audio steganography based on text
compression. Proc Eng., 30: 703-710. DOI:
10.1016/j.proeng.2012.01.917

4. Bhadade, S.U. and A.I. Trivedi, 2011. Lossless text

compression using dictionaries. Int. J. Comput.

Appli., 13: 27-340.

http://www.ijcaonline.org/volume13/number8/pxc3

871767.pdf
5. Carus, A. and A. Mesut, 2010. Fast text

compression using multiple static dictionaries.
Inform. Technol. J., 9: 1013-1021.
http://altanmesut.trakya.edu.tr/pubs/1013-1021.pdf

6. Kulekci, M.O., 2012. On scrambling the burrows-

wheeler transform to provide privacy in

lossless compression. Comput. Security, 31: 26-32.

DOI: 10.1016/j.cose.2011.11.005

7. Li, L., K. Chakrabarty and N.A. Touba, 2003. Test

data compression using dictionaries with selective

entries and fixed-length indices. ACM Trans.

Design Automat. Elect. Syst., 8: 470-490. DOI:

10.1145/944027.944032

8. Mohan, B.S. and V.K. Govindan, 2005.

Compression scheme for faster and secure data

transmission over networks. Proceedings of the

International Conference on Mobile Business, Jul.

11-13, pp: 678-681. DOI: 10.1109/ICMB.2005.29

9. Martinez-Prieto, M.A., J. Adiego and P.D.L.

Fuente, 2011. Natural language compression on

edge-guided text preprocessing. Inform. Sci., 181:

5387-5411. DOI: 10.1016/j.ins.2011.07.039
10. Salomon, D., 2007. Data Compression: The

Complete Reference. 4th Edn., Springer, London,
ISBN-10: 9781846286032, pp: 1092.

11. Sun, W., N. Zhang and A. Mukherjee, 2003. A

dictionary-based multi-corpora text compression

system. Proceedings of the 2003 IEEE Data

Compression Conference, Mar. 27-27, IEEE

Xplore Press, USA. DOI:

10.1109/DCC.2003.1194067
12. Sayood, K., 2012. Introduction to Data

Compression. 4th Edn., Morgan Kaufmann,
Waltham, ISBN-10: 9780124157965, pp: 768.

13. Sun, W., Z. Zhang and N., Mukherjee, 2003. A

dictionary-based fast transform for text

compression. Proceedings of the International

Conference on Information Technology,

Computers and Communications, Apr. 28-30,

IEEE Xplore Press, pp: 176-182. DOI:

10.1109/ITCC.2003.1197522

14. Tadrat, J. and V. Boonjing, 2008. An experiment

study on text transformation for compression using

stoplists and frequent words. Proceedings of the

5th International Conference on Information

Technology: New Generations, Apri 4-9, IEEE

Xplore Press, DC, USA., pp: 709-713.

DOI: 10.1109/ITNG.2008.178

