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Abstract: Problem statement: Intrusion Detection System (IDS) have become an important 
component of infrastructure protection mechanism to secure the current and emerging networks, its 
services and applications by detecting, alerting and taking necessary actions against the malicious 
activities. The network size, technology diversities and security policies make networks more 
challenging and hence there is a requirement for IDS which should be very accurate, adaptive, 
extensible and more reliable. Although there exists the novel framework for this requirement namely 
Mining Audit Data for Automated Models for Intrusion Detection (MADAM ID), it is having some 
performance shortfalls in processing the audit data. Approach: Few experiments were conducted on 
tcpdump data of DARPA and BCM audit files by applying the algorithms and tools of MADAM ID in 
the processing of audit data, mine patterns, construct features and build RIPPER classifiers. By putting 
it all together, four main categories of attacks namely DOS, R2L, U2R and PROBING attacks were 
simulated. Results: This study outlines the experimentation results of MADAM ID in testing the 
DARPA and BSM data on a simulated network environment. Conclusion: The strengths and weakness 
of MADAM ID has been identified thru the experiments conducted on tcpdump data and also on 
Pascal based audit files of Basic Security Module (BSM). This study also gives some additional 
directions about the future applications of MADAM ID. 
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INTRODUCTION 

 
 There was clear evidence from many studies (for 
example (Durst et al., 1999), that the insiders, who have 
not blocked by firewalls, are the causes for computer 
security incidents. At the same time, the intruders, so 
called legitimate users require access with significant 
privileges to do their day to day work. Moreover, the 
vast majority of the harm from the insiders are not 
malicious, rather it is honest people make some honest 
mistakes. However, there are so many potential 
outsiders who are very clever and have somehow 
passed all the screens of firewalls and access and 
authorization controls and do malicious activities, 
especially in a network environment. Then, how to 
prevent them? Although, prevention is very much 
necessary, it is not a complete solution for computer 
security. Moreover, it is not practically possible to 
detect such harmful incidents in advance. Many surveys 
have been done to control the intrusions and (Halme 

and Bauer, 1995) identified various range of controls to 
address intrusion detection. 
 All these preventive controls can be complimented 
as the next line of defense, an Id. This intrusion 
detection system acts as a separate spy computer in a 
network environment to monitor all the users and 
system activities, audit the system configuration for 
vulnerabilities, misconfigurations, accessing the system 
integrity and data files, recognizing the known attack 
patterns, violation of user access policy and much more 
functions. In case if it detects any harmful or suspicious 
activities, it will alarm the system administrator 
immediately to take necessary action.  
 Since the technology has been improved 
significantly, the modern IDs operates on real time and 
these ATIDS-Automated IDS monitor all the activities 
of the user, system and network and alarm the 
administrator in case if any malicious or suspicious 
event occurs. Ideally an IDs should be fast, simple, 
complete and more accurate. This is because, in the 



J. Computer Sci., 8 (10): 1649-1659, 2012 
 

1650 

initial stages, there were a huge false alarm signals and 
very little positive alarm signals. On attending these 
signals, there were so much of resources has been applied 
and much time has been wasted in attending the false or 
negative alarm signals. Modern commercial IDs tends to 
be more accurate. But these IDs, detects all known and 
unknown attacks with limited performance penalty.  
 Monitoring the use and system activities is 
appropriate for an attack of initial impact. Indeed, the 
actual goal of an ID is to check, what resources are 
being accessed and various attempted attacks are tried. 
Moreover, recording all the traffic of a given source or 
destination is very much useful for future audit 
analysis. This type of approach should be invisible to 
the user. Finally, IDS should respond an initial 
defensive action immediately while generating an alarm 
to the administrator, who can act, only upon receiving 
an alarm, which takes some time.  
 Many research works are still in progress on the 
evolving product of IDS, which has started from the 
early 1990s. Recent researches (Dickerson and 
Dickerson, 2000) reveal that, IDS detect a number of 
serious problems, which are even growing and as the 
number of problems or attacks increases, so do the 
signature patterns to the IDS model. Thus, modern IDS 
are improving in defending continuously. On the other 
side, avoiding IDS are the first and prominent priority 
for a number of successful intruders. As we all say that 
AN ID that is not well defended is useless. Another 
boom in the IDS technology is that the stealth mode 
IDS, which is very difficult, even to find on an internal 
network and is left alone to compromise by itself.  
 In today’s network environment, even though, 
accuracy of IDS is the essential requirement, its 
extensibility and adaptability are also very much 
critical. In a network environment, there exist multiple 
penetration points for the attackers. For example, in a 
network level, a well designed malicious IP packets 
penetrate even through the firewalls and crash the victim 
host, as well as, at the host side, more vulnerabilities in 
system software can be exploited to yield an illegal root 
shell. Since activities at different penetration points are 
recorded in different audit data sources, an IDS often 
needs to be extended to incorporate additional modules 
that specialize in certain components, such as hosts, 
subnets, etc. of the network system.  
 Snort, which is another milestone in IDS 
technology, is a signature based lightweight open 
source network intrusion prevention and NIDS-
Network IDS. This captures and analyze whether there 
exist a pattern that matches a known signature inside 
the packet content. Snort has been designed with 
flexible rules to describe the network traffic to 
identify which packets to collect or to pass and with a 
modular plug-in structured detection engine. 

 A real time alerting capability and generating logs 
when an attack occurs are the major credits of this 
Snort. Snort can be distributed to different parts of the 
network and can send alerts to the central console. 
Snort’s network interface card runs in promiscuous 
node, which captures all the network traffic that goes by 
NIC and detect the unexpected events in the traffic to 
generate real time alerts to the central console.  
 As a next step, a system for automated network 
intrusion detection is in progress as a part of JAM 
project. This ANIDS -Automated Network Intrusion 
Detection System is designed with many data mining 
methods, to build network intrusion classifiers which 
are used to monitor live network stream input to 
detect the intrusions.  
 This study discusses about our experiments on the 
audit data files for building intrusion detection models 
from the DARPA and Basic Security Module (BSM) 
Intrusion detection evaluation program and the security 
related problems. We obtained a set of tcpdump data, 
available at http://iris.cs.uml.edu:8080/network.html. Even 
though, the output of tcpdump data is not intended for 
security purposes, we had to go through multiple iterations 
of data pre-processing to extract meaningful features and 
measures. We studied TCP/IP and its security related 
problems, for example (Stevens, 1994; Paxson, 1997; 
1998; Atkins, 1996; Bellovin, 1989; Porras and Valdes, 
1998), for the guidelines of protocol features.  
 This study is organized as follows. We first give a 
brief overview of our experiments on tcpdump data. We 
then outline construction of manual and automatic 
features along with various detection models applied 
and the performance results of tcpdump data. In the last 
section, we give a brief overview of our experiments on 
BCM data and their results.  
 

MATERIALS AND METHODS 
 
 In this study, we describe in detail about our 
experiments on DARPA and BSM audit data files for 
building intrusion detection models. We have applied 
the classification rules, link analysis and sequence 
analysis algorithms that has been discussed in (Nazer 
and Selvakumar, 2011) and we also applied the tools of 
Mining Audit Data for Automated Models (MADAM) 
to process the audit data, mine patterns and construction 
features that has been discussed in (Nazer and 
Selvakumar, 2012a) and (Nazer and Selvakumar, 
2012b) in our simulated network environment. In these 
experiments on tcpdump and BSM data, the strengths 
and weakness of MADAM ID has been identified and 
illustrated with their performance results. 
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Experiments on tcpdump data and their results: In 
order to test the effectiveness of data mining techniques 
in IDS (Abraham, 2001), we took the user of 
established and more appropriate data sets and these 
data sets are more popular and widely used for research 
work at MIT Lincoln Laboratory @ http://www//ll/mit-
edu/IST/ideval. They have collected and distributed the 
first version of standard corporation for evaluation of 
network intrusion detection systems. In this evaluation, 
the probability of detection (whether it detects all 
intrusions or known attacks) and the probability of false 
alarm are measured for each system under simulated or 
testing environments. The objective of these 
experiments is to study and to analyze the performance 
shortfalls in the intrusion detection research work.  
 All these experiments were done on the training 
data set provided at Lincoln Laboratory of 
Massachusetts Institute of Technology (DARPA 
Intrusion Detection Evaluation Dataset) and these are 
available at 
‘http://www.ll.mit.edu/mission/communications/ist/cor
pora/ideval/data/1998 data.html’. We have collected 4 
gigabytes of compressed tcpdump data of 7 weeks of 
network traffic, for these experiments. These data can 
be processed into 5 million connection records of 100 
bytes each. Each of this data contains the data portion 
of every ICMP packet transmitted between host inside 
and outside the simulated net work environment. For 
testing, we considered and simulated DOS, R2L, U2R 
and PROBING attack types and in addition to that there 
was anomaly user behaviour (Ghosh et al., 1999), 
which means a normal user acts as a system 
administrator with full authentication privileges. 
 Before commencing our experiments, certain data 
preprocessing was done, so that, for data packet 
filtering and reassembling work, we used Bro tool 
(Paxson, 1998). In our case, in order to avoid the system 
crashing in ping-of-death and teardrop attacks, we have 
made new changes in the ICMP packets to its packet 
fragment inspection modules. This change include a 
Bro-connection finished event handler so that we get a 
summarized record for each connection and these 
records have intrinsic features which are described in 
the following table (Table 1).  
 The above table lists the various intrinsic features 
of network connection records.  
 
Misuse detection: The ‘list files’ which are included in 
the training data files were used to identify type of 
attack, source and destination host and port id and also 
the timestamp of the files. For building the 
classification model, we used these information for 
pattern mining, feature construction and to name each 
correction record with ‘normal’ and an attack type to 
create training data. For our testing purpose, we did not 
aggregate all the connection records, since the amount of 

audit data is really very huge, instead, we considered only 
those connection records that fall within a surrounding 
time of plus and minus 5 min of each attack. Similarly, we 
created a dataset for each attack type and for normal 
dataset, we aggregated only the sequences of normal 
connection records.  
 
Construction of manual and automatic features: 
When each ICMP packet data is summarized into the 
connection records (Nazer and Selvakumar, 2012b) 
using commonly available packet processing engines, 
each network connection record contains a set of 
‘intrinsic’ features that are for general network traffic 
analysis purposes. These features include service, 
src_host, src_port, dst_host, duration (duration of 
the connection), src_bytes and dst_bytes (number of 
data bytes from source to destination and vice versa) 
etc. These intrinsic features were shown in the above 
mentioned table (Table 1). The frequent sequential 
patterns from these initial connection records can be 
viewed as statistical summaries of the network 
activities. For each attack type, e.g., syn flood, port-
scan, we performed pattern mining and comparison 
using its intrusion data set and the normal data set. 
But for each attack method, the actual network hosts 
are irrelevant and moreover there were over a 
thousand different hosts in the tcpdump training data. 
Hence we did post-processing work on the frequent 
patterns of each record before we do encode and 
compare on the training data. The post processing 
work was done with the following procedure.  
 In each dataset, check a frequent pattern from left 
to right, one by one as follows: 
 
• Let the first src_host value be s0 
• Let the first dst_host value by d0 
 
 In each dataset, whenever a src_host value is 
identified, check whether it is the same as one of the 
previous src_host in the pattern:  
 
• If yes, then replace it with the appropriate si 
• Otherwise replace it with sn+1  
• Perform the same process for the dst_host value 
 
 For example, a pre-processing dataset pattern: 
 
(service = http, src_host = hostA),  
(service = telnet, dst_host = hostB) →  
(service = smtp, src_host = hostC dst_host = hostB), 
[0.2,0.1,2s]  
The above data is post-processed into  
(service = http, src_host = s0),  
(service = telnet, dst_host = d0) → 
(service = smtp, src_host = s1, dst_host = d0), 
[0.2,0.1,2s] 
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Table 1: Intrinsic features of network connection records 

Feature  Description  Value type  

Duration  Length of the connection (number of seconds)  Continuous  
Protocol_type  Type of protocol, e.g., tcp, udp,  Discrete  
Service  Network service on the destination, eg., http, telnet  Discrete  
Src_bytes  Number of data bytes from source to destination  Continuous  
Dst_bytes  Number of data bytes from destination to source  Continuous  
Flag  Normal or error status of the connection  Discrete  
Land  1- connection is from/to the same host/port; 0 - otherwise  Discrete  
Wrong-fragment  Number of wrong fragments  Continuous  
Urgent  Number of urgent packets  Continuous  

 
As a result of post-processing, the redundancy patterns 
are reduced and this means, the number of unique 
patterns within a pattern set is significantly reduced. 
Moreover, the process of creating a normal pattern set, 
pattern encoding and pattern comparison becomes very 
much efficient and all these processes are possible only 
because of the post processing. In this process, we have 
created two features namely ‘same host’ (same_host) 
and ‘same service’ (same_srv) for intrusion only 
patterns of each attack type. These two intrinsic 
features are explained as follows: 
 
• The ‘same_host’ feature examines only the 

connections in the past 2 sec that have the same 
destination host as the current connection record 

• The ‘same_srv’ feature examines only those 
connections in the past 2 sec that have same 
services as the current connection record 

 
 We finally summarize the statistical features that 
are automatically constructed in this process. The 
statistical feature includes:  
 
• Count of same_host and same_srv connections 
• Percentage of connections having same_srv as the 

current one 
• Percentage of different services 
• Percentage of different destination hosts 
• Percentage of Serror_% and Rerror_% 
 
 These time-based ‘traffic’ features of connection 
records are summarized in the Table 2.  
 Out of all the four attack types that we considered 
namely DOS, R2L, U2R and PROBING, only the 
PROBING is very slow that did not produce intrusion-
only patterns within the specific time of 2 sec, to say, it 
can scan the host or the port in a time span of more 
than a minute. In order to create a ‘host based’ traffic 
features, these connection records were sorted based on 
the destination hosts and applied same pattern mining 
and feature construction process. Similar to the time 

based traffic features, we constructed a mirror set of 
host based traffic feature by using a ‘connection’ 
window of 100 connections instead of time span of 2 
sec. The R2L and U2R attacks don’t have any intrusion 
only frequent patterns as found in most of the DOS and 
PROBING attacks. These DOS and PROBING attacks 
involve a lot of connection to some hosts or ports in a 
very short period of time and hence they can have more 
frequent sequential patterns than the normal traffic 
pattern. In case of R2L and U2R attacks, these are 
encapsulated within the data portion of ICMP packets 
which generally appear in a single connection.  
 Our automatic feature construction model would 
fail to produce any model or features for these types of 
attacks since because these attacks don’t have any 
unique frequent patterns of traffic. Also in case of 
unstructured data contents of IP packets, our current 
data mining algorithm cannot deal and hence we 
consider the domain knowledge for defining 
appropriate current features. To inspect the data 
exchanges of interactive TCP connection, such as 
ftp, smtp, we added some more functions that assign 
values to a set of content features in order to identify 
any suspicious behaviour inside the packet data 
contents. The various features are listed in the 
following table (Table 3).  
 The statistical features include number of hot 
indicators, number of failed login attempts, successful 
logins, number of compromised conditions, whether 
root shell is obtained or not, whether a su command is 
attempted and successful or not, number of file 
creations, number of shell prompts, number of write, 
delete and create operations on access control files, 
number of outbound commands in a ftp session, root or 
admin logins or a guest login status. With so much of 
statistical indicators, the classification program can 
decide, which minimal set of discriminating features 
can be used in order to identify the instructions and this 
is the basic idea behind Table 3.  
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Table 2: Network traffic features of network connection records 
Feature  Description  Value type 
Count  Number of connections to the same host as the current connection in the past 2 sec  Continuous 
The following features refer to these same-host connections  
Serror_%  % of connections that have ‘SYN’ errors  Continuous 
Rerror_%  % of connections that have ‘REJ’ errors  Continuous 
Same_srv_%  % of connections to the same service  Continuous 
Diff_srv_%  % of connections to the different services  Continuous 
Srv_count  Number of connections to the same service as the current  Continuous  
   connection in the past 2 sec  
The following features refer to these same-service connections 
Srv_serror_% % of connections that have ‘SYN’ errors  Continuous 
Srv_rerror_%  % of connections that have ‘REJ’ errors  Continuous 
Srv_diff_host_%  % of connections at different hosts  Continuous  
 
Table 3: Content features of network connection records 
Feature  Description  Value type  
hot   Number of ‘hot indicators’  Continuous  
failed_logins  Number of failed login attempts  Continuous  
logged_in  1- successful login; 0 - otherwise  Discrete  
compromised  Number of ‘compromised’ conditions  Continuous  
root_shell  1- root shell is obtained; 0 - otherwise  Discrete  
su  1 -‘su root’ command attempted;  
 0-otherwise  Discrete  
file_creations  Number of file creation operations  Continuous  
shells  Number of shell prompts  Continuous  
access_files  Number of write, delete and create operations on access control files  Continuous  
outbound_cmds  Number of outbound commands in a ftp session  Continuous  
hot_login  1- the login belongs to the ‘hot’ list (e.g., root, admin, 0 - otherwise  Discrete  
guest_login  1 - the ‘guest’ login; 0 - otherwise  Discrete  
 
Table 4: Example of ‘traffic’ connection records 
Label  Service  Flag  Count.  Srv_count  Rerror_%  Diff_srv_% 
Normal  ecr_i  SF  1  1  0  1  
Smurf  ecr_i  SF  350  350  0  0  
Satan  user-level  REJ  231  1  85%  89%  
Normal  http  SF  1  0  0  1  
 
Table 5: Example of RIPPER Classifier for DOS and PROBING Attacks 
RIPPER rule  Description  
smurf :- count = 5, srv_count >= 5, If the service is ecr_i (icmp echo request) and for  
service = ecr_i  the past 2 sec, if the number of connections (that has 
 the same destination host as the current one) is 5 and the 
 number of connections that has the same service as the current one 
 is at least 5, then this is a smurf type of DOS attack.  
satan :- rerror_% >= 83%,  For the past 2 sec, if the number of connections have 
diff_srv_% >= 87%.  the same destination host as the current connection, the % 
 different services is at least 87%, then this 
 of the rejected connection is at least 83%, 
 and the % of is a satan type of PROBING attack  

 
Different detection models: Since different types of 
intrusion requires different construction features to 
detect them, we have created three classification models, 
each of which will be using different set of construction 
features and these models are explained below:  
 
• Traffic model  
• Host-based traffic model  
• Content model  
 
The ‘Traffic’ model:  In this model, each connection 
record contains the ‘traffic’ and ‘intrinsic’ features as 
shown in the following table. Table 4 shows the 
example labeled connection records.  

 The appropriate RIPPER classifier detects the DOS 
and PROBING attacks and the following table (Table 
5) shows such an example.  
 
The ‘Host-Based Traffic’ model: In this model, each 
connection record contains the ‘intrinsic’ and the ‘host-
based traffic’ features and the resultant RIPPER classifiers 
detect the slow PROBING attacks.  
 
The ‘Content’ model: In this model, each connection 
record contains the ‘intrinsic’ and the ‘content’ features 
of each ICMP packets and the resultant RIPPER 
classifier detects the R2L and U2R type of attacks all 
the above mentioned classification models detects a 
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specific type of intrusion. Instead of having different 
models individually, we combine all these three 
classification models into a meta classifier. The 
advantage of this meta classifier is that each meta level 
audit record contains the three predictions from the 
traffic, host-based and content models and additionally 
one more information of true class label which means 
‘normal’ and an attack type. In order to identify 
whether a connection is normal or an intrusion type, we 
apply RIPPER rules, so that to detect the R2L and U2R 
attack type, the meta level classifier uses the content 
model and to detect the DOS and PROBING attacks, 
the meta level classifier uses the combination of the 
traffic and host-based traffic models.  
 

RESULTS AND DISCUSSION 
 
 The training audit data were provided by Lincoln 
Laboratory of Massachusetts Institute of Technology at 
‘http://www.ll.mit.edu/mission/communications/ist 
/corpora /ideval/data/1998data.html’. These tcpdump 
data is about 7 weeks of network traffic and took 2 
weeks of unlabelled test data for our experiment. The 
test data were having so many attack types and we 
considered 14 types in test data only since our models 
were not trained to detect of all attack types. These ere 
reported in the following figure (Fig. 1). 
 The above figure shows the performance of 
tcpdump misuse detection models and the ROC curves 
on detection rates and false alarm rates, on all four 
attack types such as DOS, PROBING, U2R and R2L. 
The x-axis represents the false alarm rate and the y-axis 
represents the detection rate. The false alarm rate is 
calculated as the percentage of normal connections that 
are classified as an intrusion. The upper left corner data 
print on each ROC curve shows the low false alarm rate 
with high detection rate. Group 1 to 3 ROC curves 
represent the performance of an intrusion detection by 
other knowledge engineering models.  
 From the above figure, we can see that our 
detection model has the best overall performance on 
detecting intrusion attacks. However, in the case of R2L 
attacks, all models performed very poorly. The 
features we built would be general enough so that the 
models can detect new variations of the known 
attacks and the new attack refer to those that did not 
have corresponding instances of our trained data. 
Moreover, our model can handle a large percentage 
of PROBING and U2R attacks when compared to 
DOS and R2L intrusions.  
 Experiments on BSM data and their results-The 
Basic Security Module (BSM) (Sunsoft, 1995) audit 
data were provided by DARPA for a particular host, 
pascal. With this data, we did some experiments in 
building host-based intrusion detection model. In a host 

machine, when BSM data is enabled, we get time-
bounded sequence of actions that are audited on the 
system which contains one or more audit files.  
 Each record in the audit file may contain a kernel 
event such as a system call or a user-level event which 
is nothing but a system program. Audit session is the 
collection of incoming or outgoing sessions on a 
particular host such as terminal login, telnet login, 
rlogin (remote login), rsh, ftp and sendmail.  
 Data Preprocessing-We need to perform a 
sequence of data preprocessing tasks on the BSM data. 
Since the BSM data is in the form of binary, it has to be 
converted into ASCII data and hence we further 
extended the preprocessing component of USTST 
(Ilgun, 1993). The following table (Table 6) represents 
some example BSM event records.  
 Table 7 shows example of BSM event records and 
a ‘?’ refers that the value is not given in the original 
audit record itself. In this each audit record contains 
various basic features and these features are shown in 
the following table.  
 We have created a procedure to process the event 
data and convert into session records and the procedure 
is constructed as follows:  
 
• In the beginning of a audit session, we execute  
• The inetd_connect event (for telnet, rlogin, rsh) or  
• The execve event on a system program in.fingerd 

(for incoming finger request) or finger (outgoing), 
mail.local (incoming) or sendmail (outgoing), ftpd 
(incoming) or ftp (outgoing) 

• We record the setaudit event, which assigns the 
auid and sid of the session 

• We examine all audit records that share the same 
combination of auid and sid to consolidate a 
number of session features 

• Finally record the session termination 
 
Session features: The various tests with feature 
construction for session records were analyzed as well 
and as the first step we computed the frequent patterns 
from the BSM audit event records. For pattern mining, 
we prepared the data set in such a way that it contains 
all the accountable event records of a particular session. 
The word ‘accountable’ here means an audit record 
having a meaningful audit user id and a valid session id. 
From these data sets, we have removed audit user id 
and session id in order to get a generalized data set and 
this is because as such the data set is session specific. 
Then we replaced ruid and euid features with a flag 
same_reid so that ruid agrees with euid.



J. Computer Sci., 8 (10): 1649-1659, 2012 
 

1655 

 
  (a) 
 

 
  (b) 
 

 
  (c) 
 

 
  (d) 
 
Fig. 1: Performance of tcpdump misuse detection models (a) DOS (b) BROBING (c) U2R and R2L (d) Over all 
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Table 6: Example records of BSM Event Records 
Time  Auid  Sid  Event  Pid  Obname  Euid  
08:05:22  0  0  Inet_connect  0  ?  0  
08:05:22  -2  0  Execve  415  /usr/bin/  0  
08:05:31  2104  417  Setaudit  417  ?  0  
08:05:31  2104  417  Chdir  418  /home/tristank  2104  
 
Table 7: Features of BSM Event Records 
Features  Description  Value  
Time  Timestamp of the event  Discrete  
Auid  Audit user id, inherited by all child processes started  Discrete 
  by the user’s initial process of a session  
Sid   Audit session id, assigned for each login session and Discrete 
  inherited by all dependent processes  
Event  Audit event name  Discrete  
Pid   Process id of the event  Discrete  
Obname  Object name, that is full file path that the event operates on  Discrete  
Argl_arg4  Arguments of the system call  Discrete  
Text   Short event information (e.g., successful login)  Discrete  
Error_status  Error status of the event  Discrete  
Return_value  Return value of a system call event  Discrete  
Tmid  Terminal id  Discrete  
Ip_header  Source and destination ip address and ports of the socket used by the event  Discrete  
Socket  The local and remote ip addresses and ports of the socket used by the event  Discrete  
Ruid   The real user id of the event  Discrete  
Rgid   The real group id of the event  Discrete  
Euid   Effective user id of the event  Discrete  
Egid  The effective group id of the event  Discrete  
 
Table 8: Features for BSM session records 
Feature  Description  Value type  
Duration  Length (number of seconds) of the session  Continuous  
Service  Operating system or network service  Discrete  
Logged_in  Whether the user successfully logged in  Discrete  
Failed_logins  Number of failed login attempts  Continuous  
Process_count  Number of processes in the session  Continuous  
Suid_sh  Whether a shell is executed in suid state  Discrete  
Suid_p  Whether a suid system program is executed  Discrete  
User_p  Whether a user program is executed  Discrete  
Su_attempted  Whether a su command is issued  Discrete  
Access_files  Number of write, delete and create operations on access control files  Continuous  
File_creations  Number of file creations  Continuous  
Hot_login  Whether the login belongs to the ‘hot’ list  Discrete  
Guest_login  Whether the login belongs to the ‘guest’ list  Discrete  
 
Table 9: Example records of BSM Session 
Label  Service  Suid_sh  Suid_p  User_p  File_creations  
Normal  Smtp  0  0  0  0  
Normal  Telnet  0  1  1  3  
Normal  Telnet  0  1  0  0  
Buffer_overflow  Telnet  1  1  1  2  
Normal  Ftp  0  0  0  0  
Wraz_master  Ftp  0  0  0  42 

Since axis is very important attribute to describe an 
event data, we represent event as the axis attribute. To 
compute the number of occurrences of each unique 
event and the object name, we used relative support of 
0.1, so that the patterns of frequent occurrences of 
object names can be captured using the relative support 
0.1. On further proceeding in our testing, we identified 
the frequent patterns are related a specific object names. 
For example, although an object name of /usr/bin/nazer 
may appear only once or twice in the dataset for a 
session, we can still identify its patterns using the 
relative support of 0.1, these occurrences are all of 
frequent patterns. After a few rounds of initial 
experiments, we discovered that the patterns are all 

related to very specific object name or event values. But 
there are many system calls (kernel events) which 
cannot be directly linked to user-level commands and 
hence we reasoned that for intrusion detection purposes, 
we only need to analyze user-level commands and their 
operations. For this purpose, we kept only the read, 
write, create, delete, execute, change ownership, 
permission, rename and link event records.  
 The event value of each audit record is replaced by 
the appropriate type name, for example, open_r is 
replaced by read event. We kept only the original 
object name if the event is execute, otherwise we used 
‘user’ to replace all object name values that indicate 
files in the user directories and ‘system’ to replace the 



J. Computer Sci., 8 (10): 1649-1659, 2012 
 

1657 

object name values that indicate files in the system 
directory. We have also removed ‘?’ (missing) object 
name values as well and finally we aggregated all event 
patterns of all normal sessions into a normal pattern set.  
 For each U2R session, we further mined its event 
patterns and compared with the normal pattern set. On 
encoding, we used the same_reid, event, obname and 
rest in alphabetical order. On applying the pattern 
encoding and comparison procedures, we received the 
top 20% of intrusions-only patterns for each U2R 
attack. But soon, we came to know that there are many 
U2R attacks of buffer-overflow, having the same 
characteristics of intrusion only patterns.  
 On further investigating, we identified that there is 
an execution of a user program with a system tool 
SUID and a shell program. Hence there is a need to 

build a feature that handles the normal behaviour of the 
attack. But in the event data, we are having specific 
operating system information, we have to use domain 
knowledge (KDD process, Fayyad et al., 1996; Lee et 
al., 1999) to acquire the general and abstract information. 
Here all the limitations of fully automatic feature 
construction has been analyzed in case of a low level 
event data, but still the intrusion-only patterns from the 
pattern mining and comparison gives more helpful 
information for the manual feature construction. We 
defined some set of features as shown in the following 
table for the BSM session records. 
 Table 8 shows some set of features for BSM 
session records and some of the features (those in bold) 
are from the buffer overflow patterns, while others are 
similar to ‘content’ features as mentioned above.  

 

 
(a) 

  

 
(b) 

 
Fig. 2: ROC curves showing Detection Rates and False Alarm Rates (a) U2R (b) DOS, R2L, PROBING and over all 
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BSM misuse detection models:  In the BSM session 
records, each record is labeled as ‘normal’ or an 
intrusion name. All the BSM session records are 
aggregated in to a single dataset for this experiment. 
The following table (Table 9) shows some example 
records of BSM session.  
 We then applied the RIPPER rules for BSM 
session records to know the classification rules. We 
tested the performance of the rule set on these test data 
using the DARPA files. Here we compared our model 
with other models in terms of performance in detecting 
the U2R attack and the performance of our model in 
detecting DOS, R2L and PROBING attacks and finally 
the overall performance of the attacks. These ROC 
curves of the detection models were shown the 
following figure (Fig. 2). 
 
Results of BSM data: The following figure shows the 
performance of BSM Misuse Detection Models. Since 
there are much fewer attacks contained in the BSM 
data of a single host, the model has slightly better 
performance. From the above figure it is very clear that 
the BSM model has good performance in detecting 
DOS, U2R and PROBING attack but very poor 
performance in R2L attacks. When compared with the 
predictions between the BSM and the tcpdump models, 
we found that they simply agree with other’s 
predictions on the pairs of host session and network 
connections, because of the following reasons: 
 
• The nature of intrusion detection, one that uses a 

service that was not modeled can go undetected and 
• BSM model feature and tcpdump model features 

are very similar for the evidences with different 
data sources 

 
 Our experiments in meta-learning, where a 
combined model was computed based on a model for 
tcpdump header-only connection data and a model for 
BSM host session data, indeed showed that the same 
level of accuracy was maintained as using a 
heavyweight tcpdump model that also checked the IP 
data contents. 
 

CONCLUSION 
 
 In this study we presented detailed performance 
evaluation experimentation results on network tcpdump 
data and on operating system BSM audit data set. The 
experiments on tcpdump data showed the effectiveness 
of MADAM ID’s automatic pattern mining and 
comparison and feature construction procedures. These 
patterns were mechanically parsed to construct a set of 
temporal and statistical ‘traffic’ features for the 

detection models. There are no intrusion-only patterns 
from connection records of R2L and U2R attacks since 
they involve in a single connection. We have used 
domain knowledge to define a set of ‘content’ features 
for these attacks. Where as in the case of BSM data 
experiments, we found that the intrusion-only patterns 
of buffer overflow attacks contain specific program 
names that are not inherent to the attack method. This 
is because, compared with connection records which 
are more general and their semantics well 
understood, the BSM audit records are contains low 
level details of system events. Hence we need to use 
domain knowledge to interprete these patterns. And 
the most general information is aggregated into 
BSM session records.  
 This shows the advantages of using MADAM ID 
to process huge volume of audit data, construct features 
and inductively lean more classification rules. 
However, since our models were intended for misuse 
detection and were trained using only the available data 
sets, a number of new attacks in the test may not be 
identified and these attacks need to be detected as well.  
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