
Journal of Computer Science 7 (5): 770-778, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: S. Babu, Research Scholar, Anna University Coimbatore and Asst. Prof Department of IT,
 Adhi parasakthi Engineering College, Melmaruvathur, Kanchipuram

770

 Design Dynamic Coupling Measurement of Distributed Object

Oriented Software Using Trace Events

1S. Babu and 2R.M.S. Parvathi
1Anna University Coimbatore and Asst. Prof, Department of IT,

Adhi Parasakthi Engineering College, Melmaruvathur, Kanchipuram, India.
2Sengunthar College of Engineering, Tiruchengode, Namakkal, India

Abstract: Problem statement: A common way to define and measure coupling is through structural
properties and static code analysis. However, because of polymorphism, dynamic binding and the
common presence of unused code in commercial software, the resulting coupling measures are
imprecise as they do not perfectly reflect the actual coupling taking place among classes at run-time. For
example, when using static analysis to measure coupling, it is difficult and sometimes impossible to
determine what actual methods can be invoked from a client class if those methods are overridden in the
subclasses of the server classes. Approach: Coupling measurement has traditionally been performed
using static code analysis, because most of the existing work was done on non-object oriented code and
because dynamic code analysis is more expensive and complex to perform. We refer to this type of
coupling as dynamic coupling. In this study we propose a dynamic and efficient measurement technique
over object oriented software. Result: We propose a hybrid model to measure the dynamic coupling
present in distributed object oriented software. The proposed method has three steps; they are
instrumentation process, post process and coupling measurement. First, the instrumentation process is
performed. In this process, to trace method calls, a modified instrumented JVM has been used. During
this process, three trace files, .prf, .clp and .svp are created. In the second step, the information present
in these files, are merged. At the end of this step, the merged detailed trace of each Jvms contains
pointers to the merged trace files of the other JVM’s such that the path of each remote call from the
client to the server can be uniquely identified. Conclusion: Finally, the coupling metrics are measured
dynamically. The proposed system was implemented in JAVA. The implementation results show that
the proposed system effectively measures the dynamic coupling.

Key words: Static code, dynamic code, object oriented, scientific method, dynamic coupling,

theoretical model, structural complexity, oriented software, Java Virtual Machine (JVM)

INTRODUCTION

 Software engineering describes the group of
methods that construct and support software products
by employing an engineering approach. Methods based
on models and theories are employed by engineering
disciplines. Specifying a hypothesis, designing and
performing an experiment to verify its truth and
interpreting the results are involved in scientific
methods. Measuring the variables differentiates cases,
measuring the changes in behavior and measuring the
causes and effects are the supportive scientific method
measurements. After the validity of a model or the truth
of a theory is confirmed by scientific method, the
theory is applied to practice by continuously using
measurements. More visible characteristics and

relationships in estimating the enormity of problems
and in shaping a solution to problems can be obtained
by means of effective measurements. Coupling analysis
is one of the diverse methods used in software system
for modeling and measuring the relationships between
components. Two components having any type of
connection or relationship between them are coupled by
coupling analysis. Generally, the coupling nature has
been categorized into diverse levels or types.
 Coupling analysis attempts to capture all the
attributes of the relationships between components of a
given software program, by defining a theoretical
model. By defining a set of measures, the coupling
levels are also quantified by it. On a range of crisis that
are related to the interaction among components, the
theoretical model and the measurement set serve as a

J. Computer Sci., 7 (5): 770-778, 2011

771

foundation for implementing complexity analysis. A
major role is played by software metrics in the planning
and control of software development projects. Software
development and maintenance has important
applications for coupling measures. In software, the
causes for structural complexity are explained and
quality attributes such as fault-proneness, ripple effects
of changes and changeability are predicted by coupling
measures. The extent to which each program module
depends on each one of the other modules is termed as
coupling or dependency. Static usage dependencies
between the classes in an object-oriented system are
portrayed by coupling measures. “Static” couplings
only are taken into account by conventional coupling
measures. They may considerably underestimate the
complexity of software leading to underestimation of
code inspection, testing and debugging needs because
dynamic coupling due to polymorphism are not taken
into account. Therefore, inferior predictive accuracy is
likely in quality models that utilize static coupling
measurement.
 Works available in the literature for software
metrics have mainly concentrated on centralized
systems and only very few of them have focused on
distributed systems and more specifically on service-
oriented systems. Conventional non distributed systems
differ from systems with distributed components in
several ways including communication type, latency,
concurrency, partial, versus total failure and referencing
parameters- passing strategies. Normally, distributed
systems with service oriented components are more
complex because they accomplish efficiency and other
quality characteristics in a more heterogeneous
networking and implementation environment. The
importance of software quality has been accepted a
matter of great concern not only for the developers but
also for the business and government customers.
 As it was well-Known before, quality depends
mainly upon the maintainability of the software.
Coupling measurement is undoubtedly one of the
benchmarking methods whether the ready-to-launch
application has reliable maintainability or not. The
measurement, in one hand, has traditionally been
performed simply using static code analysis at the stage
of system testing or sometimes at the trial operation
stage. The static analysis is an appropriate measure
while we were using traditional programming languages
like COBOL, FORTRAN, Pascal and C among others.
With the crowded popularity of Object-Oriented (OO)
languages like C++, Visual C, Java and applications
implemented in those OO languages, on the other hand,
the dynamic coupling measure could be used for the

evaluation of the systems and application. One of the
main reason to apply dynamic coupling metrics is that it
can reflects the reality of the tested application since the
measure could pinpoint the pitfalls and shortages that
are not to be expected to be found with static coupling
measure although dynamic measure takes much more
time to quality-test especially if the size of the subject
application is large.
 In the context of object-oriented systems,
research related to quality models has focused mainly on
defining structural metrics (e.g., capturing class
coupling) and investigating their relationships with
external quality attributes (e.g., class fault-proneness)
(Chidamber et al., 2005). The ultimate goal is to
develop predictive models that may be used to support
decision making, e.g., decide which classes should
undergo more intensive verification and validation.
Regardless of the structural attribute considered, most
metrics have been so far defined and collected based on
a static analysis of the structural attribute considered,
most metrics have been so far defined and collected
based on a static analysis of external quality attributes,
such as fault-proneness (Briand and Labiche, 2002),
ripple effects after changes (Briand et al., 1999; Kabaili
et al., 2001) and changeability (Arisholm, 2001; 2002;
Arisholm et al., 2001, Aly and Abuelnasr, 2010).
However, many of the systems that have been studied
showed little inheritance and, as a result, limited use of
polymorphism and dynamic binding (Deligiannis et al.,
2002). As the use of object-oriented design and
programming matures in industry, we observe that
inheritance and polymorphism are used more frequently
to improve internal reuse in a system and facilitate
maintenance. Though no formal survey exists on this
matter, this is visible when analyzing the increasing
number of open source projects, application frameworks
and libraries. The problem is that the static, coupling
measures that represent the core indicators of most
reported quality models (Briand and Labiche, 2002)
lose precision as more intensive use of inheritance and
dynamic binding occurs. This is expected to result in
poorer predictive accuracy of the quality models that
utilize static coupling measurement.
 A common way to define and measure coupling is
through structural properties and static code analysis.
However, because of polymorphism, dynamic binding
and the common presence of unused (“dead”) code in
commercial software, the resulting coupling measures
are imprecise as they do not perfectly reflect the actual
coupling taking place among classes at run-time. For
example, when using static analysis to measure

J. Computer Sci., 7 (5): 770-778, 2011

772

coupling, it is difficult and sometimes impossible to
determine what actual methods can be invoked from a
client class if those methods are overridden in the
subclasses of the server classes.
 Coupling measurement has traditionally been
performed using static code analysis, because most of
the existing work was done on non-object oriented code
and because dynamic code analysis is more expensive
and complex to perform. For modern software systems,
however, this focus on static analysis can be
problematic, because although dynamic binding existed
before the advent of object-orientation, its usage has
increased significantly in the last decade. We refer to
this type of coupling as dynamic coupling. An empirical
evaluation of the proposed dynamic coupling measures
is reported in which we study the relationship of these
measures with the change proneness of classes.
Preliminary results suggest that some dynamic coupling
measures are significant indicators of change proneness
and that they complement existing coupling measures
based on static analysis.

Classification of coupling measures: Existing coupling
measures can be broadly classified into the following
two groups:

• Procedural programming coupling measures: these

measure the coupling of software components that
are implemented in procedural programming
languages; examples include metrics proposed by);
Briand et al. (1999); Cartwright and Shepperd
(2000); Chaumun et al. (2000) and Chidamber and
Kemerer (2005). This class of metrics is heavily
influenced by the classification of coupling levels.

• Object-oriented coupling measures : these measure
the coupling of software components that are
implemented in object-oriented programming
languages; examples include metrics prop osed by
Chidamber et al. (2005); Deligiannis et al. (2002);
and Freund and Wilson (1998)

 Existing evidence suggests that dynamic coupling
could be of strong interest. A preliminary empirical
study on a Smalltalk system suggests that there is a
significant relationship between change proneness and
dynamic coupling (Arisholm, 2002). Furthermore,
according to the results of a controlled experiment
(Arisholm et al., 2001), static coupling measures may
sometimes be inadequate when attempting to explain
differences in changeability (e.g., change effort) for
object-oriented designs. A follow-up study indicates that
the actual flow of messages taking place between

objects at run-time is often traced systematically by
professional developers when attempting to understand
object-oriented software (Kabaili et al., 2001). The
results thus suggest that dynamic coupling measures
could be of interest as predictors of the cognitive
complexity of object-oriented software. Finally,
dynamic coupling is more precise than static coupling
for systems with dead (unused) code, which is
uninteresting in most situations and can seriously bias
analysis.
 Traditional coupling measures take into account
only “static” couplings. They do not account for
“dynamic” couplings due to polymorphism and may
significantly underestimate the complexity of software
and misjudge the need for code inspection, testing and
debugging. This is expected to result in poorer
predictive accuracy of the quality models in Distributed
Object-Oriented System that utilize static coupling
measurement.
 We first distinguish different types of dynamic
coupling measures. Then, based on this Classification,
we provide both informal and formal definitions, using a
working example to illustrate the fundamental
principles. Our measures were designed to fulfill five
properties that we deem very important for any coupling
measure to be well formed. In order to define measures
in a way that is programming language independent, we
refer to a generic data model defined with a UML class
diagram.

Entity of measurement: Since dynamic coupling is
based on dynamic code analysis, coupling may be
measured for a class or one of its instances. The entity of
measurement may therefore be a class or an object.

Granularity: Orthogonal to the entity of measurement;
dynamic coupling measurement can be aggregated at
different levels of granularity (Table 1). With respect to
dynamic object coupling, measurement can be
performed at the object level, but can also be aggregated
at the class level, i.e., the dynamic coupling of all
instances of a class is aggregated. In practice, even when
measuring object coupling, the lowest level of
granularity is likely to be the class, as it is difficult to
imagine how the coupling measurement of objects could
be used. Alternatively, all the dynamic coupling of
objects involved in an execution scenario can be
aggregated. We can also measure the dynamic object
coupling in entire use cases (i.e., sets of scenarios), sets
of use cases, or even an entire system (all objects of all
use cases). In the case where the entity of measurement
is a class, the aggregation scale is different as we can
aggregate dynamic coupling across an inheritance

J. Computer Sci., 7 (5): 770-778, 2011

773

hierarchy, a subsystem, a set of subsystems, or an entire
system.
Scope: Another important source of variation in the way
we can measure dynamic coupling is the scope of
measurement. This determines which objects or classes,
depending on the entity of measurement, are to be
accounted for when measuring dynamic coupling. For
example, we may want, depending on the application
context, to exclude library and framework classes.
Simula At the level, we may want to exclude certain use
cases modeling exceptional situations (e.g., error
conditions, usually modeled as extended use cases
(Lakhotia and Deprez, 1999) or objects that are
instances of library or framework classes. At the very
least, we may want to distinguish the different types of
coupling taking place in these different categories. The
choices we make regarding the entity, granularity and
scope of measurement depend on how we intend to
apply dynamic coupling.

MATERIALS AND METHODS

Collecting dynamic coupling data at distributed
environment: It is crucial to collect dynamic coupling
data in a practical and efficient manner, Based on
dynamic UML models.
 We propose a hybrid model to measure the
dynamic coupling present in distributed object oriented
software. The proposed method has three steps; they
are:

• Instrumentation process
• Post process
• Coupling measurement

 First, the instrumentation process is performed. In
this process, to trace method calls, a modified
instrumented JVM has been used. During this process,
three trace files, .prf, .clp and .svp are created. In the
second step, the information present in these files, are
merged. At the end of this step, the merged detailed
trace of each Jvms contains pointers to the merged trace
files of the other JVM’s such that the path of each
remote call from the client to the server can be uniquely
identified. Finally, the coupling metrics are measured
dynamically. The proposed system was implemented in
JAVA. The implementation results show that the
proposed system effectively measures the dynamic
coupling.
Collecting distributed dynamic coupling measures at
runtime in the distributed environment: To collect
dynamic coupling data from Java applications, we
developed a method: Trace Event. An overview of the

architecture is depicted in Fig. 1. The method separates
the collection and analysis of dynamic coupling data
into three phases. In the first phase is instrumentation
process, in this process we are using trace event method
to trace the .prf, .clp and .svp from a running Java
program is gathered and stored. This is accomplished
by having the Java Virtual Machine (JVM) load a
library of data collection routines that are called
whenever specified internal events occur. The
interfaces used for communication between the JVM
and the library are called JVMPI (Java VM Profiling
Interface) and JVMDI (Java VM Debugging Interface).
Most of the data is collected from the profiling
interface. The JVMDI is used to obtain the unique line
number from which a method call originates (to obtain
the information needed to calculate the measures).
 During the instrumentation process phase, a user
may interactively tag messages belonging to specific
scenarios or use cases through a separate utility that
communicates with distributed systems so through a
socket connection. These tags can subsequently be used
to limit the scope of measurement (e.g., to specific use
cases) and, potentially, to compute measures at higher
levels of granularity than the class (e.g., at the use case
aggregation level). When the application terminates, the
data is stored in a flat file structure (Data).
 In the second phase, the information present in
these files like .prf, .clp and, .svp are merged and the
data is analyzed.
 In the third phase, the merged detailed trace of
each Jvms contains pointers to the merged trace files of
the other JVM’s such that the path of each remote call
from the client to the server can be uniquely identified.
Finally, the coupling metrics are measured dynamically.
The proposed system was implemented in JAVA. The
implementation results show that the proposed system
effectively measures the dynamic coupling.
 Each measure is then computed simply by counting
the number of elements in each set. Data from several
runtime sessions can be merged by the analysis tool,
such that accumulated dynamic coupling data can be
computed. This merging capability enables the
collection of coupling data for Java systems for which
several concurrent instances of the JVM are used, such
as large, distributed, or component-based systems.
 Our coupling method utilizes interfaces provided
by the Java Virtual Machine to collect the message
traces and other information. Instrumentation can be
done either at the source code or byte code level using
tools such as the Java Compiler Compiler (JavaCC)
(Java.net, 2003) or the Byte Code Engineering Library
(BCEL) (Jakarta, 2003), respectively. However,
utilizing the existing interfaces to the Java VM provides

J. Computer Sci., 7 (5): 770-778, 2011

774

several benefits over instrumentation. Instrumenting the
code means that we are testing the instrumented version
and not the actual version, which may lead to different
outputs and system states. Since instrumentation causes
a significant effort overhead, if the system is evolving
rapidly, the project manager will also be reluctant to
keep instrumenting the new versions.
 Furthermore, source code instrumentation requires
access to the Java application source code. This might
be a disadvantage in cases where an application uses
libraries for which the source code is not available.
Finally, instrumentation might cause a significant
performance overhead. In contrast to our approach,
both source code and byte code instrumentation require
that parts of the data collection software be written in
Java. Subsequently, the byte code of the data collection
software is interpreted by the Java VM. Since our data
collection tool is written in C++ and dynamically linked
with the JVM at runtime, there is probably less
performance overhead associated with our approach
than with data collection tools employing
instrumentation. As performance overhead increases,
the behavior of concurrent software is more likely to be
affected by the data collection process and it is
important to minimize the chances of such a problem
occurring.

Working example: We now use a small working
example, as shown in Fig. 1, though it is assumed that
our measures are collected through static and dynamic
analysis of code, we use UML to describe a fabricated
example, because it is more legible than pseudo code.
This example is designed to illustrate the subtleties
arising from polymorphism and dynamic binding. Other
aspects, such as method signatures, have been
intentionally kept simple to focus on polymorphism and
dynamic binding.
 The following sets can be derived from above Fig. 2:

Class C = {c1, c2, c3, c4, c5}
Method M = {m1, m2, m3}
RMC= {(m1, c1), (m2, c2), (m3, c3)}:

Definitions of measures: The measures are all defined
as cardinalities of specific sets. They are therefore
defined on an absolute scale and are amenable, as far as
measurement theory is concerned; to the type of
regression analysis performed. First, as mentioned
above, we differentiate the cases where the entity of
measurement is the object or the class. Second, as in
previous static coupling frameworks (Briand et al.,
1999), we differentiate import from export coupling,
that is the direction of coupling for a class or object. For
example, we differentiate whether a method executed

on an object calls (imports) or is called by (exports)
another object’s method. Furthermore, orthogonal to the
entity of measurement and direction of coupling
considered, there are at least three different ways in
which the strength of coupling can be measured. First,
we provide definitions for import and export coupling
when the entity of measurement is the object and the
granularity level is the class. Phrases outside and
between parentheses capture the situations for import
and export coupling, respectively.

Dynamic messages: Within a runtime session, it is
possible to count the total number of distinct messages
sent from (received by) one object to (from) other
objects, within the scope considered. That information
is then aggregated for all the objects of each class. Two
messages are considered to be the same if their source
and target classes, the method invoked in the target
class and the statement from which it is invoked in the
source class are the same. The latter condition reflects
the fact that a different context of invocation is
considered to imply a different message. In a UML
sequence diagram, this would be represented as distinct
messages with identical method invocations but
different guard conditions.

Fig. 1: Dynamic coupling data at distributed environment

Fig. 2: Class diagram example (UML notation)

J. Computer Sci., 7 (5): 770-778, 2011

775

Table 1: Dynamic coupling classification
 Granularity Scope
S. No Entity aggregation level (Include/Exclude)
1 Class Class, inheritance Library files and classes,
 Hierarchy, Systems Framework files
 and Set of sub systems and classes
 2 Object Class, object, set Library objects,
 of use cases, set of Framework objects,
 scenarios and systems Exceptional use cases

Distinct method invocations: A simpler alternative is
to count the number of distinct methods invoked by
each method in each object (that invokes methods in
each object). Note that this is different from simply
counting method invocations as we count each distinct
method only once. That information is then aggregated
for all the objects of each class.

Distinct classes: It is also possible to count only the
number of distinct server (client) classes that a method
in a given object uses (is used by). That information is
then aggregated for all the objects of each class.

Analysis of properties: We show here that the five
coupling properties presented in (Briand et al., 1999)
are valid for our dynamic coupling measures. The
motivation is to perform an initial theoretical validation
by demonstrating that our measures have intuitive
properties that can be justified.

Nonnegativity: It is not possible for the dynamic
coupling measures to be negative because they measure
the cardinality of sets, e.g., IC OM returns a set of
tuples (m, c, m’, c’) 2 M_ C _M_ C.

Null values: At the system level, if S is the set that
includes all the objects that participate in all the use
cases of the system, IC (M_S) is empty (and coupling
equal to 0) if and only if the set of messages in S is
empty.

Monotonicity: If a class c is modified such that at least
one instance o sends/receives more messages, its
import/export coupling can only increase or stay the
same, for any of the coupling measures.

Impact of merging classes: Assuming c0 is the result
of merging c1 and c2, thus transforming system S into
S0, for any Coupling measure, we want the following
properties to hold at the class and system levels:

Coupling (c1)+ Coupling(c2) > = Coupling(c)
Coupling (S) > = Coupling(S’)

Merging uncoupled classes: Following reasoning
similar to that above, if two classes’ c1 and c2 do not

have any coupling, this means there is no tuple of the
type (m1, c1, m2, c2) in IV. If we merge them into one
class, we therefore cannot obtain tuples of the type (m1,
c0, m2, c0).

Related work: Arisholm et al. (2003) defined and
validated a number of dynamic coupling metrics and
studied the relationship of these with the change
proneness of a system. They found that the dynamic
coupling measurement did capture additional properties
to the static coupling metrics and were good predictors
of the change proneness of a class. Chidamber and
Kemerer (2005) originally defined CBO for a class as “a
count of the number of non inheritance related couples
with other classes. An object of a class is coupled to
another if methods of one class use methods or instance
variables defined by the other. They later revised their
definition to state (Thwin and Quah, 2003), “CBO for a
class is a count of the number of other classes to which
it is coupled.
 Briand et al. (1999) carried out an extensive survey
of the available literature on coupling in object-oriented
systems and concluded that all the metrics at that time
measured coupling statically, at the class level. No
measures of runtime object level coupling had been
proposed.
 Yacoub et al. (1999) described a set of dynamic
coupling metrics designed to evaluate the change-
proneness of a design. The metrics were applied at the
early development phase to determine design quality.
They used executable object-oriented design models to
model the application to be tested. The metrics were
evaluated for a number of different execution scenarios
and they extended the scenarios to have an application
scope.
 Existing literature on software metrics is mainly
focused on centralized systems. Yacoub et al. (1999)
while work in the area of distributed systems,
particularly in service-oriented systems, is scarce.
Systems with distributed components differ from
traditional non distributed systems along a number of
dimensions including communication type, latency,
concurrency, partial versus total failure and
referencing/parameter-passing strategies. Distributed
systems with service-oriented components are even
more complex, since efficiency and other quality
attributes must be achieved in a typically more
heterogeneous networking and execution environments.
Object-oriented analysis and design are popular
concepts in today’s software development environment.
They are often heralded as the silver bullet for solving
software problems, while in reality there is no silver
bullet; object-oriented has proved its value for systems

J. Computer Sci., 7 (5): 770-778, 2011

776

that must be maintained and modified. Object-oriented
software development requires a different approach
from more traditional functional decomposition and data
flow development methods. While the functional and
data analysis approaches commence by considering the
systems behavior and/or data separately; object-oriented
analysis approaches the problem by looking or system
entities that combine them. Object-oriented analysis and
design focuses on objects as the primary agents involved
in a computation; each class of data and related
operations are collected into a single system entity. The
concepts of software metrics are well established and
many metrics relating to product quality have been
developed and used. For evaluating software quality that
has four goals

• Stability o f requirements and design
• Product quality
• Testing effectively and
• Implementation effectively

 With object-oriented analysis and design
methodologies gaining popularity, it is time to start
investigating object-oriented metrics with respect to
these goals.

RESULTS

 The coupling metrics for Distributed Object
Oriented System, which is proposed in this paper, was
implemented in the working platform of JAVA (version
JDK 1.6). The results obtained from the proposed
method are described as follows.

Fig. 3: Initial screen obtained in the proposed system

When we execute the proposed method, the initial
screen obtained which is described in Fig. 3. In this, the
browse button is used to select the package. In Fig. 4,
the instrumentation process is described.

Fig. 4: The sample output obtained in the
Instrumentation process

Fig. 5: The static coupling measurements

J. Computer Sci., 7 (5): 770-778, 2011

777

Fig. 6: The dynamic coupling measurements

 These Fig. 5 and 6 show, the number of packages
used in both static and dynamic coupling. In this, the
packages are used by both client and servers.

DISCUSSION

 In this paper, we have proposed a new approach
to the computation of dynamic coupling measures in
DOO systems by introspection and adding trace events
into methods. First, we provide formal, operational
definitions of coupling measures and analysis. We
propose dynamic coupling measures for distributed
object-oriented systems i.e., coupling measurement on
both clients and server dynamically. We described the
classification of dynamic coupling measures. The
motivation for those measures is to complement
existing measures that are based on static analysis by
actually measuring coupling at runtime in the hope of
obtaining better decision and prediction models because
we account precisely for inheritance, polymorphism
and dynamic binding. Admittedly, many other
applications of dynamic coupling measures can be
envisaged. However, investigating change proneness
was used here to gather initial but tangible evidence of
the practical interest of such measures. Finally we
propose our dynamic coupling measurement techniques
which involve Introspection Procedure, Adding trace
events into methods of all classes and Predicting

Dynamic Behavior while running the source code. The
source code is filtered to arrive the Actual Runtime
used Source Code which is then given for any standard
coupling technique to get the Dynamic Coupling.

CONCLUSION

 In the above we have discussed about the
distributed object oriented system for coupling
measurement, in future we have to analyses some steps
to showcase that our proposed scheme behaves
efficiently than the existing one. We are analyzing the
various Coupling Measurement in Object Orient
Software and propose the Hybrid model in Distributed
Object Oriented (DOO) Software for dynamic coupling
measurement.

REFERENCES

Arisholm, E., 2001. Empirical assessment of

changeability in object-oriented software. PhD
Thesis, Dept. of Informatics, Univ. Oslo, ISSN:
1510-7710.

Arisholm, E., 2002. Dynamic coupling measures for
object-oriented software. Proceeding of the 8th
IEEE Symposium Software Metrics (METRICS
’02), IEEE Computer Society Washington, DC,
USA., pp: 33-42. ISBN: 0-7695-1339-5

Arisholm, E., D.I.K. Sjoberg and M. Jorgensen, 2001.
Assessing the changeability of two object-oriented
design alternatives-a controlled experiment.
Empirical Software Eng., 6: 231-277. DOI:
10.1023/A:1011439416657

Arisholm, E., L.C. Briand and A. Foyen, 2003.
Dynamic coupling measurement for object-
oriented software. Technical Report, Simulation
Research Laboratory, http://www.simula.no/~erika.

Briand, L.C. and Y. Labiche, 2002. A UML-based
approach to system testing. Software Syst. Model.,
1: 10-42. DOI: 10.1007/s10270-002-0004-8

Briand, L.C., J. Wust and H. Lounis, 1999. Using
coupling measurement for impact analysis in
object-oriented systems. Proceeding of the
International Conference Software Maintenance
(ICSM ’99), IEEE Computer Society Washington,
DC, USA., pp: 475-482. SBN:0-7695-0016-1

Briand, L.C., J.W. Daly and J. Wust, 1999. A unified
framework for coupling measurement in object-
oriented systems. IEEE Trans. Software Eng., 25:
91-121. ISSN: 0098-5589

Cartwright, M. and M. Shepperd, 2000. An empirical
investigation of an object-oriented software
system. IEEE Trans. Software Syst., 26: 786-796.
ISSN: 0098-5589

J. Computer Sci., 7 (5): 770-778, 2011

778

Chaumun, M.A., H. Kabaili, R.K. Keller, F. Lustman
and G. Saint- Denis, 2000. Design properties and
object-oriented software changeability. Proceeding
of the 4th Euromicro Working Conference
Software Maintenance and Reeng., Feb. 29- Mar.
03, Zurich, Switzerland, pp: 45-54. ISBN: 0-7695-
0546-5

Chidamber, S.R., D.P. Darcy and C.F. Kemerer, 2005
Springer Science + Business Media. Inc.
Manufactured in The Netherlands.

Deligiannis, I.S., M. Shepperd, S. Webster and M.
Roumeliotis, 2002. A review of experimental
investigations into object-oriented technology.
Empirical Software Eng., 7: 193-231. DOI:
10.1023/A:1016392131540

 Emam, K.E., S. Benlarbi, N. Goel and S.N. Rai, 2001.
The confounding effect of class size on the validity
of object-oriented metrics. IEEE Trans. Software
Eng., 27: 630-650. ISSN: 0098-5589

Aly, W.M. and M.S. Abuelnasr, 2010. Electronic
design automation using object oriented
electronics. Am. J. Eng. Applied Sci. 3: 121-127.
DOI: 10.3844/ajeassp. 2010.121.127

Freund, R.J. and W.J. Wilson, 1998. Regression
Analysis: Statistical Modeling of a Response
Variable. 2nd Edn., Academic Press,
ISBN0120885972, pp: 459.

Jakarta, 2003. The apache Jakarta project.
http://jakarta.apache.org/

Java.net, 2003. Java Compiler Compiler (JavaCC).
https://javacc.dev.java.net/

Kabaili, H., R. Keller and F. Lustman, 2001. Cohesion
as changeability indicator in object-oriented
systems. Proceeding of the IEEE Conference
Software Maintenance and Reengineering
(CSRM’01), IEEE Computer Society Washington,
DC, USA., pp: 39-46. ISBN: 0-7695-1028-0

Lakhotia, A. and J.-C. Deprez, 1999. Restructuring
functions with low cohesion. Proceeding of the
IEEE Working Conference Reverse Engineering
(WCRE’099), IEEE Computer Society
Washington, DC, USA., pp: 36-46. ISBN:0-7695-
0303-9

Thwin, M.M.T. and T.-S. Quah, 2003. Application of
neural networks for software quality prediction
using object-oriented metrics. Proceeding of the
IEEE International Conference Software
Maintenance (ICSM’03), Sep. 22-26, Amsterdam,
The Netherlands. ISBN: 0-7695-1905-9

Yacoub, S.M., H.H. Ammar and T. Robinson, 1999.
Dynamic metrics for object-oriented designs.
Proceeding of the IEEE 6th International
Symposium Software Metrics (Metrics ’99), Nov.
04-06, Boca Raton, FL , USA., pp: 50-61. ISBN: 0-
7695-0403-5

Yacoub, S., H. Ammar and T. Robinson, 2000. A
methodology for architectural-level risk assessment
using dynamic metrics. Proceeding of the 11th
International Symposium Software Reliability
Engineering, Oct. 08-11, San Jose, California, pp:
210-221. ISBN: 0-7695-0807-3

