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Abstract: Problem statement: The accuracy of biometric systems varies with the kind of biometric 
feature used in it. The Unmoral biometric system is prone to interclass variations. Approach: We 
implement Multimodal biometric systems to overcome the limitations by using multiple pieces of 
evidence of the same identity. However, the multimodal biometric system is limited to the time 
constraints due to its multiple processing stages. To improve the speed of authentication in the 
biometric system with acceptable accuracy, we have introduced a dynamic fingerprint verification 
technique fused with enhanced iris recognition using the adaptive rank level fusion method. Results: 
When tested upon the standard biometric dataset the system shows improvement in the False 
Acceptance Rate (FAR) and Equal Error Rate (EER) curves. Essentially, the time taken for the training 
and verification phase has a reduction of 10% when compared with the existing systems. Conclusion: 
The multimodel system has necessarily increased the speed and performance of the verification system 
especially when tested on slow processing and low memory devices. 
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INTRODUCTION 

 
 Biometrics, which refers to identify an individual 
based on his or her physiological or behavioral 
characteristics, can distinguish between an authorized 
person and an imposter (Ross et al., 2006). Since 
biometric characteristics are distinctive, cannot be 
forgotten or lost and the person to be authenticated 
needs to be physically present at the point of 
identification, biometrics is inherently more reliable 
and more capable than traditional knowledge-based and 
token-based techniques.  
 In many real-world applications, unimodal 
biometric systems often face significant limitations 
due to sensitivity to noise intraclass variability, data 
quality, non universality and other factors. 
Attempting to improve the performance of individual 
matchers in such situations may not prove to be 
highly effective. Multimodal biometric systems 
(Veeramachaneni et al., 2005) shown in Fig. 1 seek 
to alleviate some of these problems by providing 

multiple pieces of evidence of the same identity 
(Kumar et al., 2010; Jain et al., 2004).  
 These systems help to achieve an increase in 
performance that may not be possible using a single-
biometric indicator.  
 
Fingerprint individuality: Fingerprints are the ridge 
and furrow patterns on the tip of the finger and have 
been used extensively for personal identification of 
people. The biological properties of fingerprint 
formation are well understood and fingerprints have 
been  used  for identification purposes for centuries 
(Jain et al., 1997a; 1997b).  
 However, since fingerprint-based biometric 
systems positive identification with a very high degree 
of confidence and compact solid state fingerprint 
sensors can be embedded in various systems (e.g., 
cellular phones), fingerprint-based authentication is 
becoming more and more popular in a number of 
civilian and commercial applications such as, welfare 
disbursement, cellular phone access and laptop 
computer log-in.  
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Fig. 1: Logical Structure of the Multimodal System    
 
Iris recognition: The iris is the plainly visible, colored 
ring that surrounds the pupil. It is  a  muscular  structure 
that controls the amount of light entering the eye, with 
intricate details that can be measured, such as striations, 
pits and furrows (Kong and Zhang, 2001). The iris is 
not to be confused with the retina, which lines the 
inside of the back of the eye. There is no detailed 
correlation between the iris patterns of even identical 
twins, or the right and left eye of an individual. 
  

MATERIALS AND METHODS 
 
Fingerprint enrolment: The quality of the ridge 
structures in a fingerprint image is an important 
characteristic, as the ridges carry the information of 
characteristic features required for minutiae extraction 
(Yang et al., 2002). Ideally, in a well-defined 
fingerprint image, the ridges and valleys should 
alternate and flow in the locally constant direction. This 
regularity facilitates the detection of ridges and 
consequently, allows minutiae to be precisely extracted 
from the thinned ridges. 
 
Reference point location: Fingerprints have many 
conspicuous landmarks and any combination of them 
could be used for establishing a reference point. It is 
defined the reference point of a fingerprint as the point 
of maximum curvature of the concave ridges in the 
fingerprint image (Bazen and Gerez, 2001). 
 To align two fingerprint images, we must locate a 
reference point as well as the orientation of each image. 
The most commonly used reference point is the core 
point. A core point is defined as the point at which a 
maximum direction change is detected in the 
orientation field of a fingerprint image or the point at 
which the directional field becomes discontinuous. 
 The most commonly used reference point is the core 
point. A core point is defined as the point at which a 
maximum direction change is detected in the orientation 

field of a fingerprint image or the point at which the 
directional field becomes discontinuous. Several methods 
have been proposed for core point detection. 
 The reference point or the core point of the 
fingerprint image is obtained using the following 
algorithm. 
 Compute the sine component ε (i, j) of the 
smoothed orientation field becomes a reference point: 
 

(i, j) sin( '(i, j))ε = Ο  (1) 
 
 The sine component possesses an attractive 
characteristic in that it reflects the local ridge direction. A 
perfectly horizontal ridge has a sine component equals 0. 
On the other hand, the ridge’s sine component equals 1 if 
it orientates vertically. Due to the discontinuity property, 
the sine component value always changes abruptly in 
areas near a reference point. Because of such findings, 
the following procedure is added. 
 Initialize a two-dimensional (2-D) array and set all 
its entries to 0.  
Scan the sine component map in a top-to-bottom, left-
to-right manner. For each sine component, ε (i, j)  
 

'(i, j) ' '(i 1, j) , andthreshold, 2
'(i 1, j) , th

2
en

π
Ο < Ο Ο − > −

π
Ο + <

  (2) 

 
• Compute the difference D 
• Compute the Ci(i,j)value 

 
 For each pixel (i, j) in E, integrate pixel intensities 
(sine component of the orientation field) in regions RI 
and RII shown in Fig. 2 and assign the corresponding 
pixels in A the value of their difference: 
 

I II

A(i, j) (i, j) (i, j)
R R

= ε − ε∑ ∑  (3) 
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Fig. 2: Regions for integrating pixel intensities in ε 

for computing A(i; j) 
 

  
 (a) (b) (c) (d) 
 
Fig. 3: Examples of the results of our reference point 

location algorithm 
 

 
(a) (b) 

 
Fig. 4: Example of a ridge ending and a bifurcation 
 
 The regions RI and RII (Fig. 2) were determined 
empirically by applying the reference point location 
algorithm over a large database. The radius of the semi-
circular region was set equal to the window size w. The 
geometry of regions RI and RII is designed to capture 
the maximum curvature in concave ridges. Although 
this approach successfully detects the reference point in 
most of the cases, including double loops (Fig. 4a), the 
present implementation is not very precise and 
consistent for the arch type fingerprints because it is 
difficult to localize points of high curvature in arch type 
fingerprint images. 
 The entry Ci(i,j) is used to compute the continuity 
of a possible reference point candidate and is defined as 
shown below: 
 

{ i
C(i, j) 1, Ci(i 1, j 1) Ci(i 1, j) C (i 1, j 1),

if (i 1)

otherwise

= − − + − + − +

=  (4) 

 
 The difference D in the circular mask indicates 
the extent of the change of direction for the concave 
ridges. After all the sine components have been 
scanned, the position with the maximum value is 

obtained. In other words, the location with the 
sharpest change in the orientation of the ridge 
direction becomes a reference point. 
 Due to the presence of noises in a fingerprint 
image, it is not uncommon that the location with an 
abrupt change in the orientation field is mistaken as a 
false reference point. To alleviate the problem, the 
following conditions must be checked to verify the 
genuineness of a reference point: 
 
• With the convergence property of the ridges 

curvature near the reference point, a reference 
point should be located in the block (i,j)at which 
the corresponding Ci(i,j)value>Cithereshold 

• In general, if two reference point candidates have 
the same D value, the one located at the bottom 
should be taken as the true reference point 

 
 We apply the above procedure using a larger grid 
size (w=8) first and then refine the grid size (w=3) to 
restrict the search in a localized fingerprint image. The 
method not only increases the processing speed, but 
also reduces the possible error due to scars or noises in 
the fingerprint image. 
 The result of the reference points found in the arch-
type fingers is shown in Fig. 3. It can be observed that 
the locations of the reference points are consistent in 
different impressions of the same finger. 
 
Minutiae extraction: The endings and bifurcations of 
the fingerprint images are known as the minutiae (Luo 
et al., 2000; Maio and Maltoni, 2002) which is shown 
in the Fig. 4. The most commonly employed method of 
minutiae extraction is the Crossing Number (CN) 
concept (Jea and Govindaraju, 2005). This method 
involves the use of the skeleton image where the ridge 
flow pattern is eight-connected.  
 The minutiae are extracted by scanning the local 
neighborhood of each ridge pixel in the image using a 3 
x 3window. The CN value is then computed, which is 
defined as half the sum of the differences between pairs 
of adjacent pixels in the eight-neighborhood. Using the 
properties of the CN as shown in Table 1, the ridge 
pixel can then be classified as a ridge ending, 
bifurcation or non-minutiae point. For example, a ridge 
pixel with a CN of one corresponds to a ridge ending 
and a CN of three corresponds to a bifurcation. 
 The Crossing Number (CN) method is used to 
perform minutiae extraction. This method extracts the 
ridge endings and bifurcations from the skeleton 
image by examining the local neighborhood of each 
ridge pixel using a 3£3 window. The CN for a ridge 
pixel P is given by: 
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 (a) (b) 
 
Fig. 5: Results of performing minutiae extraction on a 

fingerprint image (a) skeleton image (b) 
original image 

 

 
 
Fig. 6: Flowchart of iris segmentation algorithm 
 
Table 1: The verification performance with different numbers of 

matching minutiae 
Number  Average radius Ratio of the 
of matching  of the extraction sub-regions to the 
minutiae EER (%) area (pixel) full size image 
6 8.4% 55 0.185 
10 6.4% 79 0.381 
18 4.9% 112 0.766 
 

i i 1 9 1

8
CN 0.5 P P , P P

t 1
+= − =∑

=
 (5) 

 
where, Pi is the pixel value in the neighbourhood of P. 
For a pixel P, its eight neighbouring pixels are scanned 
in an anti-clockwise direction as follows: 
 

4 3 2

5 1

6 7 8

P P P
P P P
P P P

 

 
 After the CN for a ridge pixel has been computed, 
the pixel can then be classified according to the 
property of its CN value. As shown in Fig. 5, a ridge 
pixel with a CN of one corresponds to a ridge ending 
and a CN of three corresponds to a bifurcation. For 
each extracted minutiae point, the following 
information is recorded: 
 
• x and y coordinates 
• orientation of the associated ridge segment 
• type of minutiae (ridge ending or bifurcation) 

However, there are a few cases where the extracted 
minutiae do not correspond to true minutiae points in 
the original image. In addition, it should be noted that 
in some cases the bifurcation and ridge ending points 
can be difficult to distinguish between each other. 
Artifacts of the enhancement stage and thinning process 
can occasionally result in bifurcations being detected as 
ridge endings and vice versa. 
 Hence, in practice, most fingerprint identification 
systems do not make a distinction between bifurcations 
and ridge endings when matching minutiae points. 
 
IRIS Recognition: Iris segmentation as shown in the 
flowchart Fig. 6 is to locate the valid part of the iris for 
iris biometrics, including finding the papillary and 
limbic boundaries of the iris, localizing its upper and 
lower eyelids if they occlude and detecting and 
excluding any superimposed occlusions of eyelashes, 
shadows, or reflections (He et al., 2009). 
 Being the first step in iris recognition, iris 
segmentation defines the image contents used for 
feature extraction and matching, which is directly 
related to the recognition accuracy. It is reported that 
most failures to match in iris recognition result from 
inaccurate iris segmentation. Speed is often a bottleneck 
in practical applications and iris segmentation is often 
found to be the most time-consuming module in an iris 
recognition system. Daugman used the following 
integrodifferential operator to find the circular 
boundaries of an iris: 
 

0 0 0 0

I(x, y)max G (r) ds
r 2 r(r,x ,y ) r,x ,yσ

∂
∗ ∫
∂ π

 (6) 

 
 This operator serves as a circle finder which 
searches the maximum angular integral of radial 
derivative over the k-means clustering algorithm on the 
position and intensity feature vector of the iris image. 
 
Iris detection after reflection removal: The objective 
of iris detection is not only to identify the presence of 
an iris in input video sequences but also to determine its 
position and scale. We use an adaptive threshold Tref to 
calculate a binary “reflection” map R(x,y) of image I(x,y).  
 
Pupillary and limbic boundary localization: The 
pupillary and limbic boundaries are modeled as two 
nonconcentric circles, as usually done in the iris 
community. Thanks to this particular circular structure, 
a novel iterative Pulling and Pushing (PP) (Kong and 
Zhang, 2001; He et al., 2006) as shown in the Fig. 7. 
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 (a) (b) (c) 
 
Fig. 7: An original iris image occluded by reflections. 

(b) The reflection map and the envelop points, 
denoted with bright and gray points, 
respectively. (c) The results of reflection 
removal. Note that, even though several 
nonreflection points are mistaken as reflection, 
little harm is made to the iris structure 

 

 
 (a) (b) 
 

 
 (c) (d) 

 
Fig. 8: The basic idea of the PP method. Each 

“spring” will produce a restoring force to resist 
its deformation. As a result, the current centre 
is pulled or pushed until it reaches the 
equilibrium position. A desirable property is 
that theoretically only three edge points are 
required for the PP method to determine the 
parameters of a circle, as illustrated in (d) 

 
 In this section, several important considerations 
involved in its effective implementation are presented 
after a brief introduction. Furthermore, we develop a 
novel EF method based on the PP method for more 
precise iris localization. This method is useful for dealing 
with noncircular iris images (e.g., the off-axis ones). 

The pulling and pushing method: The inspiration of 
the PP method stems from Hooke’s law (He et al., 
2006) where: 
 

N 1

i i 0
{S }

−

=
 (7) 

 
 Denotes N identical mass less springs with the 
equilibrium length R and spring constant k. One end of 
the springs is attached to circle whose radius is R and 
the other end joins at point O. At the beginning, all of 
the springs are relaxed and O is the equilibrium 
position, as shown in Fig. 8 Then, an appended force is 
exerted on O to make it move. 
 To O’ slowly. As a result, ach spring produces a 
restoring force to resist the introduced deformation: 
 

i if k(R r )e ,i 0,1,...., N 1,i
→ →

= − − = −  (8) 
 
Where: 
ri = The current length of si  

ie
→

 = Its direction radiating from { }N 1

i 0

' fi
−→

=

Ο will push O’ 

back to its equilibrium position O after the 
appended force is removed 

 
 Based on such mechanics, the PP method is 
developed. Let us take the localization of the pupillary 
boundary as an example (the limbic boundary can be 
similarly located). Suppose O0P is the rough position of 
the pupil center obtained by iris detection the PP 
method then works as follows: 
 

N 1

i
i 0

F f
→ →−

=
= ∑  (9) 

 
 Transform the original iris image into polar 
coordinates (centered by O 0P) and perform vertical edge 
detection on it. Only one edge point along each column 
is preserved to avoid most of the noisy edge points. In 
addition, only the ½3_=4; 9_=4_ sector is used to avoid 
the influence of the upper eyelid occlusion. 
Join each resulted edge point: 
 

N 1
i i 0{P} −

=  
 
 And the center point O 0P with an imaginary 
spring-like line in the Cartesian coordinates. As a result, 
we get N identical “springs” attached to a circle and 
meeting at O 0P: 
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Fig. 9: Flowchart of eyelid localization 
 

 
 
Fig. 10: The first N minutiae and their reference point 

formed 
 

N 1_ _____

i pp
i 0

1 1R O'P , k
N N

−

=

= ⋅ =∑  (10) 

 
Eyelid localization: The process of the eyelid 
localization (Kong and Zhang, 2001) is done as shown 
in the Fig. 9: 
  
• Crop the image ROI, the ROI Iroi of the iris image 

is cropped based on the localization results 
• Filter IROI with a 1D horizontal rank filter. With 

the observation that the eyelashes are mostly 
vertical thin and dark lines, IROI is horizontally 
filtered with a 1D rank filter 

• Calculate a raw eyelid edge map. Edge detection is 
then performed on the upper region of Iranked along 
the vertical direction, resulting in a raw eyelid edge 
map Erow. 

• Eliminate noisy edge points via shape similarity 
Calculation 

• Fit the eyelid with a parabola curve. The exact shape 
of the eyelid is obtained by parabolic curve fitting 

 
Verfication and rank-level fusion: 
Fingerprint verification: Once the reference point is 
located, all minutiae extracted from a master fingerprint 
image can be aligned with the reference point to 

generate a circular sub region in the original image 
(Chan et al., 2004) as shown in Fig. 10. This sub region 
contains a fixed number of minutiae to be matched with 
similar minutiae contained in a live template during an 
authentication process. 
 First, the Cartesian coordinates of the extracted 
minutiae in a master fingerprint image are converted 
into Polar coordinates using the following equations: 
 

2 2
i

1
i i x orient

i i orient

r (x core ) (y core )x yi i
tan (y core ,x core ) coreyi

core

−

= − + −

θ = − − −

ϑ = φ −
 (11) 

 
Where: 
(xi,yi) = Cartesian aoordinates of minutia i 
φi = Minutia orientation 
(ri,θ) = Polar coordinates of minutia i 

iϑ  = Normalized minutia orientation 
(corex, corey) = Cartesian coordinates of the reference 

point 
Core orient = Reference point orientation 
 
 In polar coordinate representation, the minutiae are 
rotational and transitional invariant with respect to their 
reference point. After the coordinate’s transformation, 
the minutiae are sorted in ascending order according to 
their distances from the reference point. To compute a 
minimum area that covers a predetermined number of 
minutiae points, we select the first minutiae from the list 
to form a master feature template (Maio et al., 2002). 
 Especially in the Arch fingerprints, that some 
reference points are located near the boundaries of the 
images. Such cases can lead to large bounding circle 
size as shown. As a remedy, we construct an average 
center (Xcenter, Ycenter) as shown in Fig 11; 
 

N N
i i

centre
i 0 i 0

x yx , ycentreN N= =
= =∑ ∑  (12) 

 
where, (Xi, Yi) is the Cartesian coordinates of minutia 
in the feature template and (Xcenter, Ycenter) is the 
new centre of the feature template.  
 It should be noted that a pre-defined constant Rd is 
added to tolerate elastic distortion errors during an 
image capture process. Subsequently, we look for 
minutiae points only in the bounding circle centered at 
the average centre. 
 
Adaptive rank level fusion: An effective adaptive rank 
level fusion scheme that combine information presented 
by multiple domain experts based on the rank-level fusion 
integration method (Monwar and Gavrilova, 2009). 
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 (a) (b) 
 
Fig. 11: Size of a bounding circle is large if the 

reference point is near boundary (b) Size of 
the bounding circle decreases when a 
“centralized” reference point is used. 

 
2

i center 2Mathing d
i center

2
centter x

2center
center y

1
center center y

center x

(x x )R Max ( ) R(y y )

(x core )r (y core )
tan y core ,

x core )

−

− += +−

− +=
−

θ = −
−

 (13) 

 
 The ranks of individual matchers are combined 
using the highest rank, approach. The results indicate 
that fusion of individual modalities can improve the 
overall performance of the biometric system, even in 
the presence of low quality data. Insights on 
multimodal biometric design using rank-level fusion 
and its performance on a variety of biometric databases 
are considered. 
 The main goal is to present a comprehensive 
analysis of various biometric fusion techniques in 
combination with advanced biometric feature extraction 
mechanisms that improve the performance of the 
biometric information system. 
 Here we are proposing logistic regression 
technique in rank level approach. In the logistic 
regression method, a weighted sum of the individual 
ranks is calculated.  
 The weight to be assigned to different matchers is 
determined by logistic regression. This method is very 
efficient when different matching modules have 
significant differences in their accuracies but requires a 
training phase to determine the weights. It is often not 
possible to achieve a higher recognition rate and 
attempting to improve the performance of single 
matchers in such situations may not prove to be 
effective due to inherent problems. 

 By utilizing a multi biometric system, these 
problems can easily be alleviated by providing multiple 
pieces of evidence of the same identity, thus achieving 
higher and more reliable recognition. The proposed 
system integrates two different biometric matchers of 
fingerprint and iris and incorporates a rank-level fusion 
module to improve the recognition performance. 
 When the output of each biometric matcher is a 
subset of possible matches sorted in decreasing order of 
confidence, fusion can be done at the rank level. The 
goal of rank-level fusion is to consolidate the rank 
output by individual biometric subsystems (matchers) 
in order to derive a consensus rank for each identity. In 
the highest rank method, each possible match is 
assigned the highest (minimum) rank, as computed by 
different matchers. The Borda count method uses the 
sum of the ranks assigned by individual matchers to 
calculate the final rank. On the other hand, in the 
logistic regression method, a weighted sum of the 
individual ranks is calculated. 
 

RESULTS AND DISCUSSION 
 
Fast fingerprint authentication: To evaluate the 
performance of the fingerprint biometrics system with 
the reduced number of the minutiae points the 25 
fingerprint samples were taken and tested. It is seen 
from the Table 1 that the EER where the FAR and False 
Rejection Ratio (FRR) meets at a single point decreases 
as the number of minutiae points is increased. However, 
the system is optimized to produce results at a faster 
rate with a threshold EER score.  
 Obviously, the processing time of the minutiae 
extraction process is directly proportional to the image 
size. If we limit the minutiae extraction to six minutiae, 
the average bounding circle will have a radius of just 55 
pixels. The total minutiae extraction area will be 
reduced to about 20% of the original size, indicating 
roughly 20% of the original processing time for the 
complete image is really needed. The balance between 
the number of matching minutiae to the FAR and FRR 
curves is acceptable since the errors rates doesn’t 
significantly changes with the decreasing minutiae 
count as shown in Fig. 12. 
 Figure 12 FAR and FRR curves with different 
number of matching minutiae 
 
Rank level fusion: We compare various biometric 
techniques in terms of FAR and Genuine Acceptance 
Ratio (GAR): 
 
GAR = 1-FRR (14) 
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Fig. 12: ROC Curves for different rank level fusion 

Methods 
 

 
 
Fig. 13: ROC Curves for different rank level fusion 

Methods 
 
 
Table 2: Response time comparison table 
 Training Recognition 
Approaches time (min) time (min) 
Highest Rank method 1.74 0.45 
Borda count method 1.74 0.54 
Logistic regression method 1.74 0.65 
 
 Figure 13 shows the performance rate of three 
different kinds of rank-level fusion approaches in terms 
of GAR and FAR. These three different approaches of 
the rank-level fusion method are as follows: Borda count, 
Logistic Regression method and Highest Rank method. 
As noted in the Table 2 the best performance that we 
have received from this system is using the logistic 
regression approach of the rank-level fusion method. 

 In this method, assigning different weights to 
individual matchers based on their accuracy plays a 
significant role in determining the final result. The 
second best result is obtained through the Borda count 
method. This method is similar to the logistic 
regression method, except that there is no weight-
assigning procedure in this method. This leads to a vital 
issue on the performance of a biometric system. The 
least advantage that we obtained through the rank-level 
fusion method is by using the highest rank method. This 
method only considers the highest rank associated with 
each user and can often lead to a problem of lower 
acceptance rate. 
 

CONCLUSION 
 
 The proposed multimodal biometric systems with 
fingerprint and iris recognition seek to alleviate some of 
these problems by providing multiple pieces of evidence 
of the same identity. The time constraints due to its 
multiple processing stages are overcome by the selecting 
the sub region of the fingerprint image and iris 
segmentation techniques given in this study. The adaptive 
rank level fusion in the multimodal system is fused using 
rank level fusion at the verification stage. The results 
show improvements in the fingerprint verification phase 
and iris segmentation process. The performance of the 
biometric system shows significant improvement, 
especially when tested on the slow processing mobile 
devices. The future scope of our work is to implement 
the fusion of the multiple biometric evidence during the 
feature extraction level for improving the accuracy and 
processing time of the system. 
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