
Journal of Computer Science 7 (5): 657-663, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Nandagopalan Shanmugam, Department of Computer Science and Engineering,
 Amrita Vishwa Vidyapeetham, Amrita School of Engineering, Bangalore, India

657

A Novel Approach to Medical Image Segmentation

1Nandagopalan Shanmugam, 2Adiga B Suryanarayana, 3Sudarshan TSB

4Dhanalakshmi Chandrashekar and 4Cholenally Nanjappa Manjunath
1Department of Computer Science and Engineering,

Amrita Vishwa Vidyapeetham, Amrita School of Engineering, Bangalore, India
2Tata Consultancy Services, Parallel Computing Division, Bangalore, India

3Department of Computer Science and Engineering,
Amrita Vishwa Vidyapeetham, Amrita School of Engineering, Bangalore, India

4Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India

Abstract: Problem statement: Segmentation is a vital aspect of medical imaging. It aids in the
visualization of medical data and diagnostics of various diseases. Ultrasound image segmentation, in
particular echocardiographic image segmentation, is required to identify the regions of interest such as Left
Ventricle (LV) and other cardiac cavities. Existing methods do not address the drawbacks of speed and
quality of segmentation. A faster method is required for effective, accurate and scalable clinical analysis
and diagnosis. Approach: In this research, a novel approach is used to segment the 2D echo images of
various views. A modified K-Means clustering algorithm, called “Fast SQL K-Means” is proposed using
the power of SQL in DBMS environment. In K-Means, Euclidean distance computation is the most time
consuming process. However, here it computed with a single database table and no joins. This method
takes less than 10 sec to cluster an image size of 400×250 (100K pixels), whereas the running time of direct
K-Means is around 900 sec. Since the entire processing is done with database, additional overhead of
import and export of data is not required. The 2D echo images are acquired from the local Cardiology
Hospital for conducting the experiments. Results: The proposed algorithm was tested by considering a
number of echo images in apical four chamber, long-axis and short axis views. We have compared the
direct K-Means implementation with the proposed algorithm by varying the data size from 10-100K and
found that the results outperformed compared to the results of other authors. The pattern of the data and the
number of clusters had almost no impact on the clustering time. Conclusion: An efficient and non-
traditional model for echo image segmentation is presented by using the SQL. Fast algorithms are required
for immediate analysis of echo images within ICUs, remote places, telemedicine. The challenge is that
ultrasound images are prone to speckle noise, segmented echo images carry gaps in the cardiac regions
which in turn causes difficulties in boundary tracing and selection of seed values for the K-Means. Future
research can enhance the speed by partitioning the database tables and use of parallel SQL statements.

Key words: K-means, echocardiographic image, image segmentation, echo image, biomedical image

segmentation, database tables, speckle noise

INTRODUCTION

 Medical image segmentation subdivides an image
into its constituent regions or objects. Automatic LV
segmentation is a difficult task due to the relatively poor
quality (speckle noise) of echocardiography images
(Lim and Goh, 2009). Many researchers have proposed
algorithms in the past for image segmentation tasks
(active contour or snakes), but all of them consume
extensive computation time and suitable for natural
images. One of the main objectives of our work is to

improve the computational efficiency of the
segmentation process and at the same time enhance the
quality of the output. In particular segmentation of
medical images is of prime importance even in
mammograms (Abdallah et al., 2008) to identify ROI.
Similarly in echo images the ROI is Left Ventricle. The
current work is automatic segmentation meaning no
prior information is required. However, semiautomatic
Seeded Region Growing (SRG) based image
segmentation is also used in the literatures (Tamilselvi
and Thangaraj, 2011).

J. Computer Sci., 7 (5): 657-663, 2011

658

 Our focus is on designing a simple, elegant yet
robust algorithm that segments a cardiac image for
extracting its clinically relevant features (Muda et al.,
2010). For this purpose, K-Means clustering algorithm
is selected which partitions a data set into several groups
such that the intra cluster points are similar and the
inter-cluster points are dissimilar. K-Means is ideally
suitable for biomedical image segmentation since the
number of clusters (k) is usually known for images of
particular regions of human anatomy. Though K-Means
has been shown to be effective in producing good
clustering results, one of its main drawbacks is the poor
time complexity: O(Inkd), where I is the number of
iterations, n is the number of data points, k is the
number of clusters and d is the number of dimensions
(Nandagopalan et al., 2010a). Integrating K-Means
algorithm and SQL has many advantages. The image
data can easily be stored in relational DBMS and we can
perform all computations faster in SQL. Since the
resolution of the image is normally large, handling such
huge data sets without the help of DBMS is a daunting
task. However, with proper SQL join statements
(Ossama, 2010; Ordonez and Pitchaimalai, 2010) it is
possible to make it faster. Semantic learning based
dominant foreground region can be extracted for CBIR
applications as discussed in (Rajam and Valli, 2011).
 The authors contribution in this research is that the
conventional K-Means algorithm is implemented in
SQL and achieved an upper bound of O (n log n). Since
SQL is already designed with efficient algorithms it is
obvious that the proposed design must produce accurate
output. We have kept the table joins to minimum to
avoid unnecessary time delay. This algorithm can be
used both for 2D echo and color Doppler images. To
achieve further enhancement in speed, for all table
updates a novel idea of TRUNCATE-INSERT
combination is used (Nandagopalan et al., 2010b).
 K-Means algorithm was successfully used for
biomedical image segmentation using adaptive
techniques and morphological operations. Muda et al.
have applied K-Means algorithm to Intrusion Detection
Systems (IDS). Three algorithms were proposed by
Carlos Ordonez using DBMS SQL and C++ and
demonstrated how K-Means can be of practical
importance for clustering large data sets (Jaradat et al.,
2009). Another approach to speed up the (Patel and
Sinha, 2010) K-Means was based on k-d tree structure.

MATERIALS AND METHODS

Standard K-Means clustering algorithm: Generally
the input to K-Means algorithm is the number of clusters

(k) and is decided by the user depending upon the
problem domain. This algorithm works like this: first it
randomly selects k of the objects, each of which initially
represents a cluster mean. For each of the remaining
objects, an object is assigned to the cluster to which is
the most similar. This is done based on the Euclidean
distance between the object and the cluster mean. It then
computes the new mean for each cluster and the process
iterates until the criterion function converges. The
quality of clustering is determined by the following error
function:

k 2
i

i 1 p Ci

E | p m |
= ∈

= −∑ ∑ (1)

Where:
 E = The sum of the square error for all objects in the

data set D
p = The object
mi = The mean of cluster Ci

 Given an initial set of K-Means m1

(1),…,mk
(1) which

may be specified randomly. Assign each observation to
the cluster with the closest mean by:

Si(t) = {xj : || xj – mi
(t) ≤ || xj – mi*

(t)

|| for i* = 1,…, k} (2)

 Calculate the new means to be the centroid of the
observations in the cluster:

(t)
j i

(t 1)
i j(t)

x Si

1m x
| S |

+

∈
= ∑ (3)

 It is obvious that the conventional K-Means
algorithm (Nandagopalan et al., 2010a) for clustering n
data objects to Cj clusters is not efficient.
 The input for K-Means is a data set D containing n
points with d dimensions, D = {i1, i2, i3, .., in}. For our
case, we shall assume that k = 3, because typically an
echo image is segmented into three regions, i.e. cardiac
cavity (black region), near endocardium (white region)
and the rest (gray region). The data set is the pixel
values of the given image f(x, y) of size M × N, where
f(x, y) is the gray scale value of a pixel at location (x,
y). No spatial details of these pixels are taken into
account for clustering.

J. Computer Sci., 7 (5): 657-663, 2011

659

Table 1: Matrices / DB Tables
Matrix Size Description
Data n × d Pixel data
Centroid k × d Cluster mean
Eucl n × k Euclidean distance
CVCD n × d Cluster assignment

Fig. 1: Overview of Echo image segmentation

 We use the matrices or tables as shown in Table 1
throughout the discussion of this study.
 Each tuple in Data represents a pixel with its spatial
co-ordinates and the gray scale intensity [0-255] value.
This means that the number of dimensions is just one-
intensity value of the pixel. Since k = 3, the Centroid
table always contains 3 rows with the pixels being
selected as centroids in each iteration. Next, in order to
store the Euclidean distances, d1, d2 and d3, the table
Eucl is used and each entry gives the distance of ith pixel
to the respective centroids in k clusters. Our algorithm
uses Euclidean distance to find the nearest centroid to
each pixel, i.e., the distance between Cj and Di as shown
in Eq. 4:

d 2
li lj

l 1
Euclidean Distance (D C)

=
= −∑ (4)

 The table CVCD stores the pixels and their assigned
cluster number (j) during every iteration. At the end of
the predefined iterations, the CVCD table would contain
the desired segmented pixel data. We use the following
subscripts in this study: i: 1..n: number of data points
(pixels), j: 1..k: number of clusters and l: 1..d: number of
dimensions.

Proposed algorithm: Fast SQL K-Means: The design
follows almost the same conventional approach as given
in (Patel and Sinha, 2006; Muda et al., 2010, Ordonez
and Pitchaimalai, 2010), except that the procedure is
implemented in SQL with its overview appearing in Fig.
1. The shaded boxes represent the name of the database
tables being used for segmentation.

Image preprocessing: Generally, an echo image is
acquired from an ultrasound and echocardiography
system with a resolution of 800×564 (Philips machine is
used for our experiment). Then, it is median filtered to
remove the speckle noise (Lim and Goh, 2009). These
images are of JPG format with 24bpp grayscale. This
means the RGB values are same and taken as a one-
dimension intensity value of each pixel, i.e., one byte.
Now this filtered image is given as input to K-Means
algorithm.

Relational DBMS tables: Following are the normalized
database tables that are required for the clustering of
pixel data:

Data (i, x, y, val), Centroid (j, x, y, val), Eucl(i, d1, d2,
d3) and CVCD(i, j, x, y, val)

 The Data table stores the pixel data in which i is the
id and declared as primary key and also indexed. Next,
to store the mean values of each cluster, a separate table
Centroid is used. For this table j acts as the primary key
which references i in Data table. The Euclidean distance
is computed for each data point in Data with rows in
Centroid and the computed value is stored in Eucl table
for all clusters. Since k = 3, the Centroid table will have
3 tuples at any point of time. The table CVCD is to store
the pixel and the assigned cluster number (1, or 2, or 3).

Algorithm: In order to speed up the processing,
minimum number of tables and joins must be
formulated in the SQL statements. Figure 2 shows the
proposed algorithm for Fast SQL based K-Means
clustering.
 Steps 1-4 are initialization steps and do not depend
on n. The for loop in line 5 iterates Q times and executes
3 INSERT statements. The first sub-step deletes the
Centroid table data (using TRUNCATE) and inserts the
newly computed mean of each cluster. Next step
computes the distance between each pixel in Data table
with the cluster centroid and insert them into Eucl table.
Finally, the third step computes the minimum out of d1,
d2, d3 and assigns the cluster id of each pixel and inserts
them into CVCD. The final table SI is to quantize the
pixels into 3 colors: 0, 150 and 255 for the final image.

J. Computer Sci., 7 (5): 657-663, 2011

660

Fig. 2: Algorithm for fast SQL K-means

 Since all the tables are indexed, the time taken by
the three insert statements in the for loop of step5 can be
shown to be O(n log n). Further, it does not have any
impact on k.

Delete table data: Before populating the database
tables, we must delete all the existing rows. The fastest
way to do this in Oracle 10g is by executing the
following statements:

TRUNCATE TABLE CVCD;
TRUNCATE TABLE EUCL;
TRUNCATE TABLE CENTROID;
TRUNCATE TABLE DATA;

 Note that TRUNCATE is faster than DELETE,
because the former does not store the deleted tuples in
rollback segments. Next, loading the image data into
Data table can be done as follows:

INSERT INTO Data (i, x, y, val) VALUES (:i, :x, :y,
:val)

where, i, :x, :y, :val are the pixel id, pixel coordinates
and the intensity vale arrays. This method of
parameterized insertion is more efficient. In order to
initialize the Centroid table, we simply use random
number generator and pick 3 pixels from Data table.
However, this must be done using the dynamic SQL:

INSERT INTO Centroid
 (SELECT 1, x, y, val FROM Data WHERE i = “j1”);
INSERT INTO Centroid
 (SELECT 2, x, y, val FROM Data WHERE i = “j2”);

INSERT INTO Centroid
 (SELECT 3, x, y, val FROM Data WHERE i = “j3”);

where, j1, j2 and j3 are the three random numbers
generated using the host language (C#.NET). The other
tables are initialized in a similar way and are shown
below:

INSERT INTO CVCD (i, j, val)
 (SELECT v1.i,
 Case when d1 <= d2 and d1 <= d3 then 1
 when d2 <= d3 and d2 <= d1 then 2
 when d3 <= d2 and d3 <= d1 then 3
 end as j, v1.val
 FROM Eucl v2, Data v1
 WHERE v2.i = v1.i);

 It is easy to notice that the only input to this
algorithm is Q-number of iterations. Next, k is set to its
default value as 3. It is experimentally verified that a
maximum of 6-8 iterations is sufficient to get good
segmentation results. Euclidean distance, d is calculated
with a single SQL statement for all pixels w. r. t the
centroids without join (Nandagopalan et al., 2010b).

Update of database tables: We must update all the
tables, except the Data table to cluster the data points.
Depending upon the pixel data distribution and initial
seed values, certain clusters may contain NULL values.
This would cause incorrect join operations. To
overcome this problem, left-outer join and NVL are
appearing in the queries. Hence, our queries are
carefully designed for any eventualities and this exhibits
the robustness of the proposed design. The sub-steps
of statement 5in Fig. 2 can be accomplished using the
following SQL statements.

Update Centroid table: Before performing the insert
operation, it is mandatory to delete the rows with
TRUNCATE statement:

UPDATE Centroid c3
SET j, val) =
 (SELECT c1.j, c2.val FROM Centroid c1,
 (SELECT j, Avg(val) as val
 FROM CVCD GROUP BY j) c2
 WHERE c1.j = c2.j(+) AND c1.j = c3.j);

 Since the number of rows of this table is always 3,
there is no need to use INSERT statement and instead it
can be updated directly.

J. Computer Sci., 7 (5): 657-663, 2011

661

Update Eucl table: For this table, the TRUNCATE
must be used prior to insert, because the size of this table
is equal to the resolution of the image (normally huge):

 INSERT INTO Eucl (i, d1, d2, d3)
 (SELECT i, sqrt(power((e2.val - c1.val), 2)) as d1,
 sqrt(power((e2.val - c2.val), 2)) as d2,
 sqrt(power((e2.val - c3.val), 2)) as d3
 FROM Data e2,
 (SELECT j, x, y, NVL(val, 0) as val
 FROM Centroid WHERE j = 1) c1,
 (SELECT j, x, y, NVL(val, 0) as val
 FROM Centroid WHERE j = 2) c2,
 (SELECT j, x, y, NVL(val, 0) as val
 FROM Centroid WHERE j = 3) c3
);

 The advantage of SQL is evident here; the distance
calculation for all clusters and all data points are
computed with a single query; thus obtaining fast
running time.

Update CVCD table: Finally, the cluster assignment to
each pixel is done by finding the least distance in Eucl
table and update CVCD table accordingly:

INSERT INTO CVCD (i, j, val)
 (SELECT v1.i,
 Case when d1 <= d2 and d1 <= d3 then 1
 when d2 <= d3 and d2 <= d1 then 2
 when d3 <= d2 and d3 <= d1 then 3
 end as j, v1.val
 FROM Eucl v2, Data v1
 WHERE v2.i = v1.i);

 With a Case statement, this study can easily be done
as shown above.
 Next, in order to create an image for display we
assign 0 (black) to all pixels in cluster 1, assign 150
(gray) to all pixels in cluster 2 and 255 (white) to all
pixels in cluster 3. This task is also carried out by the
following SQL statement:

INSERT INTO SI (i, j, val)
 (SELECT i, j, DECODE
 (j, 1, 0,
 2, 150,
 3, 255) val
 FROM CVCD
);

 Now, with the data in CVCD table the image can be
constructed and returned to the calling routine. The sample
segmentation of images is shown in the results section.
Since the number of dimensions is just 1 and the data size
is small, K-Means algorithm converges very fast.

Experimental setup: To evaluate the performance of
the proposed algorithm, a number of images are used.
For the developmental work, following tools are helpful:
Visual Studio 2010, ODAC (Oracle Data Access
Components (ODAC) on C#.NET Framework, Oracle
10g DBMS running on Dell T3400 Desktop with Intel
Core2 Duo Processor @ 2.33GHz with 2GB RAM and
150GB HDD.

RESULTS

 Following approach is used to demonstrate the
improved efficiency of the proposed algorithm:

• 2D echo images of different views but of same size

(i.e., n remains constant)
• A single image at different resolutions (10K pixels

to 100 K pixels - varying n)
• A data size of 100 K pixels with k = 5 (varying d)

 These real test data are executed on two algorithms:
Conventional and Fast SQL K-Means. The running
times are also compared with the earlier results.
Figure 3 shows five 2D echo images of different views
with resolution 400×250 (n = 100 K) and their
segmented outputs.
 The objective of the next experiment is to compute
the execution time for 10 echo images by running
conventional and our algorithm. As per Table 2, it is
evident that the conventional K-Means is significantly
slow compared to the SQL implementation.
 These timings are calculated only for the statements
inside the for loop (with Q = 4) and does not include the
set up time or other times required for the clustering
process.
 Another surprising inference obtained from this
analysis is that, when k = 5, there is no significant
change in the running time for the same data size. This
clearly indicates that the SQL statements are
independent of the number of clusters. The table data is
plotted as a bar chart and shown in Fig. 4.

J. Computer Sci., 7 (5): 657-663, 2011

662

Table 2: Comparing Conventional K-Means with Fast SQL K-Means (Q = 4)
 Running time
 (sec) k = 3 Running time
 ------------------------------------- (sec) k = 5
 Direct Fast SQL Fast SQL
Image K-means K-means K-means
Img1 951.3 12.2 12.3
Img2 902.5 10.3 12.4
Img3 920.4 8.8 12.5
Img4 962.2 11.1 15.0
Img5 945.6 12.0 14.7
Img6 916.9 9.2 15.9
Img7 930.2 11.1 17.1
Img8 917.6 12.0 16.8
Img9 919.2 11.9 16.4
Img10 953.0 9.8 14.4

Table 3: Comparing Direct K-Means with Fast K-Means for various values of

n (Q = 4)
 Running time (sec)
 --
n Conventional Fast SQL
(pixels) K-Means K-Means
10000 31.7 0.9
20000 125.1 1.8
30000 214.5 2.7
40000 352.4 3.1
50000 461.8 4.4
60000 552.1 5.1
70000 663.2 6.3
80000 759.5 7.9
90000 842.7 10.6
100000 951.3 10.9

Fig. 3: Input images and their segmented images

Fig. 4: Comparing Conventional K-Means with Fast

SQL K-Means implementation for k = 3 and k =
5 with Q = 4.

Fig. 5: Plot of running time (Direct K-Means Vs Fast

SQL K-Means)

 To understand the relative efficiency of this
algorithm under more practical circumstances, two
algorithms were executed by varying the data size from
10 K pixels to 100 K pixels. For this experiment second
image of Fig. 3 was selected as input under different
resolutions. The results appear in Table 3 and Fig. 5.

DISCUSSION

 The proposed Fast SQL K-Means is faster than
conventional and SQL K-Means by a factor of 90 and 10
respectively. No significant change in running time when k
increases. We can compare the results of these
experiments with that of other authors and is given below:

• Proposed Fast SQL K-Means: n = 100K, k = 3, Q = 4
• T = 8.8 s (best value)
• Carlos Ordonez’s (Ordonez and Pitchaimalai,

2010) method 4 CPUs, 40
 AMPs: n = 100K, k = 4,
• d = 8, Q = 4, OptKM = 17.0 s, IncrKM = 44 s
• Java based (Velmurugan and Santhanam, 2010): n

= 1000,
• T = 7.6 s

J. Computer Sci., 7 (5): 657-663, 2011

663

• Dataset: ‘Israel’, k = 8, d = 4, T = 140.4 s

 The above arguments reveal that our algorithm is
fast to a large extent than others and also the quality of
clustering is good for visual interpretation. It is also
useful for ventricle border tracing and to extract
clinically relevant features.

CONCLUSION

 The main task of this research is the echo image
segmentation and for this an efficient implementation of
K-Means clustering algorithm, called Fast SQL K-
Means is implemented. Traditional K-Means algorithm
presents scalability problems with increasing number of
clusters or number of points. Its performance graphs
exhibit nonlinear behavior. The SQL based algorithm
does not require extensive set up and also take extra
time in the segmentation process, because the patient
data is already available in the database.
 The algorithm has been implemented on C#.NET
framework. We have demonstrated the practical
efficiency of this algorithm both theoretically, through a
data sensitive analysis and empirically, through
experiments on both synthetically generated and real
data sets like live patient.

REFERENCES

Muda, Z., W. Yassin, M.N. Sulaiman and N.I. Udzir,

2010. A K-means and naive bayes learning
approach for better intrusion detection. Inform.
Technol. J., 10: 648-655.
http://docsdrive.com/pdfs/ansinet/itj/2011/648-
655.pdf

Jaradat, A., R. Salleh and A. Abid, 2009. Imitating K-
means to enhance data selection. J. Applied Sci., 9:
3569-3574.

Nandagopalan, S., B.S. Adiga, C. Dhanalakshmi and N.
Deepak, 2010a. A fast k-means algorithm for the
segmentation of echocardiographic images using
DBMS-SQL. Proceedings of the 2nd International
Conference on Computer and Automation
Engineering, Feb. 26-28, IEEE Xplore, Singapore,
pp: 162-166. DOI: 10.1109/ICCAE.2010.5451438

Nandagopalan, S., B.S. Adiga, C. Dhanalakshmi and N.
Deepak, 2010b. Color doppler echocardiographic
image analysis via shape and texture features.
Proceedings of the International Conference on
Bioinformatics and Biomedical Technology, Apr.
16-18, IEEE Xplore, Chengdu, pp: 139-143. DOI:
10.1109/ICBBT.2010.5478992

Lim, C.T. and J.C.H. Goh, 2009. Speckle reduction of
echocardiograms via wavelet shrinkage of
ultrasonic RF signals. Proceedings of the 13th
International Conference on Biomedical
Engineering, Dec. 3-6, Springer, Singapore, pp:
395-398. ISBN: 3540928405

Ossama, K.M., 2010. Increasing database performance
through optimizing structure query language join
statement. J. Comput. Sci., 6: 585-590. DOI:
10.3844/jcssp.2010.585.590

Patel, B.C. and D.G.R. Sinha, 2010. An adaptive k-
means clustering algorithm for breast image
segmentation. Int. J. Comput. Appli., 10: 35-38.
DOI: 10.5120/1467-1982

Velmurugan, T. and T. Santhanam, 2010.
Computational complexity between k-means and k-
medoids clustering algorithms for normal and
uniform distributions of data points. J. Comput.
Sci. 6: 363-368. DOI: 10.3844/jcssp.2010.363.368

Abdallah, M.H., A.A. AbuBaker, R.S. Qahwaji and
M.H. Saleh, 2008. Efficient technique to detect the
region of interests in mammogram images. J.
Comput. Sci., 4: 652-662. DOI:
10.3844/jcssp.2008.652.662

Rajam, I.F. and S. Valli, 2011. SRBIR: Semantic region
based image retrieval by extracting the dominant
region and semantic learning. J. Comput. Sci., 7:
400-408. DOI: 10.3844/jcssp.2011.400.408

Tamilselvi, P.R. and P. Thangaraj, 2011. Computer
aided diagnosis system for stone detection and
early detection of kidney stones. J. Comput. Sci., 7:
250-254. DOI: 10.3844/jcssp.2011.250.254

Ordonez, C. and S.K. Pitchaimalai, 2010. Bayesian
classifiers programmed. IEEE Trans. SQL. Knowl.
Data Eng., 22: 139-144.
DOI: 10.1109/TKDE.2009.127

