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Abstract: Problem statement: Segmentation of 3D range images is widely used in computer vision as 
an essential pre-processing step before the methods of high-level vision can be applied. Segmentation 
aims to study and recognize the features of range image such as 3D edges, connected surfaces and 
smooth regions. Approach: This study presents new improvements in segmentation of terrestrial 3D 
range images based on edge detection technique. The main idea is to apply a gradient edge detector in 
three different directions of the 3D range images. This 3D gradient detector is a generalization of the 
classical sobel operator used with 2D images, which is based on the differences of normal vectors or 
geometric locations in the coordinate directions. The proposed algorithm uses a 3D-grid structure 
method to handle large amount of unordered sets of points and determine neighborhood points. It 
segments the 3D range images directly using gradient edge detectors without any further computations 
like mesh generation. Our algorithm focuses on extracting important linear structures such as doors, 
stairs and windows from terrestrial 3D range images these structures are common in indoors and 
outdoors in many environments. Results: Experimental results showed that the proposed algorithm 
provides a new approach of 3D range image segmentation with the characteristics of low 
computational complexity and less sensitivity to noise. The algorithm is validated using seven 
artificially generated datasets and two real world datasets. Conclusion/Recommendations: 
Experimental results showed that different segmentation accuracy is achieved by using higher Grid 
resolution and adaptive threshold.  
 
Key words: Laser scanning, point cloud, edge detection, normal vector estimation, Least Square 

Fitting (LSF), Principal Component Analysis (PCA), gradient method, range image 
segmentation, Terrestrial Laser Scanning (TLS), Airborne Laser Scanning (ALS) 

 
INTRODUCTION 

 
 Professional laser scanning technologies currently 
offer accurate and rapid acquirement of range data from 
real world objects. High speed graphics cards have also 
become available worldwide at a relatively low cost. 
These two factors have made available the growth of 
3D imaging systems. These systems collect a series of 
3D points called “point clouds” which provide the basis 
for surface reconstruction or modeling. These massive 
unstructured 3D point clouds are randomly distributed 
with different local densities, especially in the presence 
of random noisy points.  
 Laser scanning systems are currently used in 
different applications such as civil engineering, culture 
heritage, industrial monitoring and virtual 
environments. However, the production of complete 

scene from several scans is extremely difficult and 
needs high processing power. Segmentation, data 
reduction and data management of acquired point 
clouds are necessary for the downstream applications to 
be carried out at a practical computational cost. 
 In general, segmentation of point cloud means 
partitioning of the data in the object space in order to 
create meaningful, coherent and connected subsets. 
Each connected subset is supposed to include points 
with similar attributes and represents a surface, edge or 
parts of the objects.  
 By comparison to 2D digital imagery, TLS gives 
explicit 3D information that enables the rapid and 
accurate capture of the geometry of complex objects 
such as buildings. Point clouds require a great deal of 
pre-processing and data management before applying 
the segmentation algorithms. According to (Boulaassal 
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et al., 2009) the 3D point clouds are not immediately 
compatible with mathematical models, that is to say no 
planar surfaces and no straight edges are directly 
provided in the digital model .The capability of 
carrying out useful analysis is rather limited with 
unstructured points. A set of point cloud data implies 
abundant implicit information which can be turned into 
explicit through some methods of pre-processing and 
segmentation. 
 The main contribution of this study is the 
segmentation of 3D range images using 3×3×3 gradient 
edge detector that is applied in three different 
directions. The 3D range image is represented by a 3D 
gridded structure. This 3D gradient detector is a 
generalization of the classical sobel operator used with 
2D images. It is based on the differences of normal 
vectors or geometric locations in the coordinate 
directions. Our algorithm focuses on extracting 
important linear structures such as doors, stairs and 
windows from terrestrial point cloud using 3×3×3 
gradient edge detectors. These structures are common 
in indoors and outdoors in many environments.  
 Awwad et al. (2010) showed that the extraction of 
object features from massive unstructured 3D point 
clouds with different local densities, especially in the 
presence of random noisy points, is not a trivial task 
even if that feature is a planar surface. Boulaassal et al. 
(2009) showed the 3D point clouds are dependent on 
many factors, such as the roughness of different 
surfaces, the registration step and the TLS instrument 
resolution. These factors affect the final results, causing 
the 3D point cloud even for a planar surface to appear 
not to be flat. In real scans the planer surfaces such as 
building facades have non-zero thickness or finite 
thickness. 
 Segmentation of the linear structures is very 
essential in many applications like mobile robot 
navigation and the inspection of industrial parts. The 
segmented linear structures support the robot’s choice 
of correct paths while navigation (Cang and Hegde, 
2009). Another important application that uses 
segmentation as an essential pre-processing step is 3D 
building reconstruction and modeling which is a very 
active topic in the field of computer vision and virtual 
reality. In recent years, terrestrial laser scanning and 
Airborne Laser Scanning have been proven as a 
valuable source for building facade reconstruction. 
Edges detection for the outer surface of the building’s 
point cloud and their features like windows, outer 
doors, roof, outer edges of walls and stairs will be a 
good representation of the model outline.  
 Many attempts have been made to segment planar 
surfaces from point clouds and extract their linear 
features. In many cases these scans were acquired by 

TLS instruments (Boulaassal et al., 2009; Boulaassal et 
al., 2010). Most authors used points acquired by ALS. 
Many researchers made building facade reconstruction 
by fusing segmented terrestrial laser points and 
segmented images, the integration of the 2D outlines 
with the 3D outlines will lead to a more reliable and 
automated extraction of 3D features and will give an 
accurate model representation of the real point cloud 
data of the buildings. 
 The proposed algorithm works directly on the raw 
laser scanner point clouds without converting it to 
another form i.e., mesh generation. This algorithm 
requires a pre-processing that includes generation of 
virtual 3D-grid structure to handle a large amount of 
unordered sets of point data and establish relationships 
between neighbors. The final constructed virtual 3D-
grid will contain an N×M×L cells which are equally 
spaced. The virtual 3D-grid structure enables us to 
segment the 3D range image by convoluting the 
computed normal vectors with 3×3×3 gradient edge 
detectors. This virtual 3D-grid is similar in its shape to 
the volumetric structure used in the representation of 
the medical images. 
 Extensive experiments have been performed on 
artificial datasets and real world datasets captured by 
Riegl LMS-Z620 http://www.riegl.com of informatics 
institute building (IRI) in Mubarak City for Science and 
Technology (MUCSAT), Alexandria, Egypt. The 
results show that the proposed algorithm works well on 
various types of artificial datasets ranging from simple 
to complicated ones. The results show that the 
algorithm is efficient in terms of accuracy and 
sensitivity to noise. 
 
Literature review and related work: Since range 
images convey more 3D information of real world 
objects than intensity images and because the evolution 
of 3D laser scanners allows digitalizing a real scene fast 
and efficiently, 3D range image analysis become one of 
the most important areas in computer vision and has 
been applied to many fields. A number of range image 
segmentation techniques have been proposed in the 
next discussion.  
 Segmentation is the process of aggregating points 
with similar attributes or portioning a point cloud data 
into smaller coherent connected regions. Edge 
segmentation refers to extraction of the point cloud 
connected edges and corners; it attempts to detect the 
discontinuities in the surface that form close boundaries 
of different segments. The segmentation techniques for 
range images could be generalized into two main 
categories: Region based segmentation, where points 
are classified into Regions and Edge based 
segmentation, where the region boundaries are detected. 
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Hybrid methods also exist which are a mix of the region 
and edge techniques. Edge based techniques obtain step 
edges and roof edges respectively by locating the points 
with depth discontinuities and normal inconsistency 
then link them to divide the image into different 
regions. Region based techniques select a set of seed 
regions and grows these regions by iteratively merging 
neighborhood points with similar properties.  
 Edge based techniques play a key role in 3D range 
image segmentation as region based techniques suffer 
from a number of problems such as distortion of region 
boundaries, dependency on the initial seed selection, 
over-segmentation and is time consuming. While edge 
based techniques are more suitable to preserve the 
border locations but their results still need further 
refinement and the difficulty in obtaining closed 
segments is its main drawback, which is solved by 
applying edge thinning and closing operations. 
However, edge based techniques can be used in 
combination with region based segmentation techniques 
to obtain better results. 
 Edge-based methods attempt to detect the 
discontinuities in the surface that form close boundaries 
of different segments. In range images, there are three 
categories of edges to be extracted: jump edges / step 
edges, crease edges / roof edges / fold edges and 
smooth edges. Jump edges are found where range 
values (in depth or height values) are discontinuous,       
such as when one object occludes another. Jump edges / 
Step edges are used to segment point clouds into 
surface patches from different objects. In post-
processing stage, the surface patches are grouped into 
identifiable objects, such as ground and buildings. 
 Crease edges/Roof edges occur where two surfaces 
meet; such edges are characterized by discontinuities in 
surface normal’s at the intersection line which make an 
angle greater than the given threshold. Crease 
edges/Roof edges are used to further segment points 
into adjacent planar regions, which are inside the 
surface patch defined by the jump edges. Crease 
edges/Roof edges are usually detected by threshold the 
difference in surface normal’s or the maximum 
curvature. Crease edges/Roof edges prove difficult to 
detect as they do not correspond to large range variation 
and therefore are usually inclined to be suppressed 
along with noise. The smooth edge is identified by 
continuity of the surface but discontinuity of the 
curvature. This particular type of edge is most difficult 
to detect as it does not correspond to rapid range 
variation. Most edge detection techniques for range 
image data do not attempt to extract smooth edges. 
Other known techniques distinguish only between jump 
and crease edges. 

 Most of the existing range image based edge 
detection algorithms base their detection criterion on 
depth or curvature changes. However, depth or 
curvature changes do not have keen sensitivity on 
detecting roof or crease edges. Using normal changes as 
a detecting criterion, on the contrary, can easily detect 
the existence of a roof edge even the change across a 
boundary is slight small. Coleman et al. (2010a) used 
gradient operators for feature extraction and 
characterisation in range images. Coleman et al. 
(2010b) applied laplacian operators for edge detecting 
for range data.  
 Region based techniques are used for the extraction 
of object’s surface but they suffer from selecting the 
start /seed points and the unstructured behavior of the 
operator. Also these techniques relay just on the range 
value. Surface fitting methods are good in extraction 
the geometrical solid objects such as plane, cylinder 
and coin. The drawback of the geometric surface fitting 
methods is that these methods are very restricted to 
simple structured scenes. Finite element surface fitting 
methods like mesh generation are independent of the 
scene and object shapes and generate topological 
relationships. These methods suffer from their 
computational complexity and their implementation not 
as easy as the previous named methods. Mazouzi and 
Batouche (2007) used randomized region growing and 
bayesian edge regularization. 
 Some techniques used gradient operators for edge 
detection. Several operators have been proposed to 
detect 3D edges. 3D generalization of the Hueckel 
operator based on determining a best fitting step 
function, they proposed a mathematical model to 
determine the optimal 3D gradient operators using a 
functional analysis and their theory was a 
generalization of the 2D sobel operator. The Zucker-
Hummel operator used a radial functions that smooth 
the calculated gradient which have a positive effect in 
noisy data. The optimal gradient operator described in 
Zucker-Hummel study is a 3×3×3 anti-symmetric 
operator that is applied in 3 different directions. 
 The 3D surface operators proposed by Zucker and 
Morgenthaler belong to facet model approaches and 
made use of polynomial surface fitting. Chowdhury et 
al., (2006) made an evaluation of 3D gradient filters 
like the 3×3×3 Zucker-Hummel operator and 5×5×5 
sobel operator for estimation of the surface orientation 
in medical images. 
  Segmentation using 2D-3D sobel operator: For 3D 
images, the approaches of segmentation are usually 
extension of the 2D approaches to 3D in which the 
region based approaches extract homogeneous volumes 
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instead of areas and the edge based approaches identify 
surfaces forming volume boundaries. 3D edge operator 
is generally not a simple extension of 2D operators, 3D 
sobel operators have been generalized to the 3D space 
by using the separability property in the frequency 
domain. The coefficients of the masks can be computed 
by Taylor’s development of the partial derivatives. 
Monga et al. (1991) investigated theoretical and 
experimental reasons why 3D edge detection is of 
greater interest than 2D edge detection in Computed 
Tomography (CT) 3D images. Monga and Deriche 
pointed out that 3D edge detection compared with 2D 
edge detection yields to better immunity to the noise, 
better estimation of the gradient magnitude and 
accurate computation of the 3D gradient.  
 For segmentation of images using sobel operator 
for 3D volumes, there are two approaches. 
 
First approach: 2D techniques are used on 3D data 
(3D volumes) which involves first segmenting each 2D 
image in the sequence of slices and then combining the 
results in some manner to get the 3D segmentation. The 
segmentation is applied on contours, or 2D slices, of the 
data apart from directly utilizing all of the information 
in the volume data. Such 2D methods give rise to 
various ambiguity and connectivity problems between 
the 2D segmented planes. That is actually what 
happened in medical volumes like Computed 
Tomography (CT), magnetic resonance imaging (MRI). 
They are typically stored as a sequence of parallel 2D 
slices. So for 2D images pixel (x, y) become a 3D 
image voxel (x, y, z) namely volume pixel. A voxel 
represents a quantity of 3D data just as a pixel 
represents a point or cluster of points in 2D data. This 
approach could successfully detect all the edges in the 
2D slice however, it is very difficult to find the 
correlation between edges, region of interest in the 
successive slices, as the third dimension is not taken 
into account while calculations of gradients. 
 
Second approach: The 3D sobel edge detector is 
operating on three adjacent slices (a subset of the image 
solid). The results of edge detection are put in the 
central slice. It works directly with the volume data as a 
whole, thereby utilizing all of the 3D information 
making use of the 26 neighbors not only the 8 neighbors 
(Chi et al., 2008) The utilization of the 26 voxels has 
several good properties both in the magnitude response 
and in considering direction responses. 
 

MATERIALS AND METHODS 
 
Pre-processing: The specification of an appropriate 
data structure and a proper data processing 

methodology are both necessary if the intended 
efficiency in processing enormous amounts of TLS data 
is to be realized. This stage does not change the format 
of the scanned point clouds to another form like 
meshes.  
 The segmentation technique is applied to a virtually 
arranged point cloud in a coordinate system suitable to 
segmentation. Most of the existing segmentation 
methods are based on 2.5D range image or Triangular 
Irregular Network (TIN) model. Unlike the 2.5D range 
image and TIN model; the point clouds do not explicitly 
represent topology information. As a result, most existing 
segmentation methods encountered two difficulties. First, 
converting data from irregular 3D point clouds to other 
models usually leads to information loss which is 
particularly a serious drawback for range image based 
algorithms. Second, the high computation cost of 
converting a large volume of point data is a considerable 
problem for any large scale TLS applications. Therefore, 
it is preferred that segmentation of TLS is performed on 
point clouds directly. 
 The pre-processing stage aims to minimize the 
operations done on the point clouds. Due to the 
enormous number of points in real world datasets, the 
searching of particular locations of points cannot be 
completed in a constant time if the scanned points are 
not arranged on a proper data structure as they are 
irregularly distributed geometrically. Also, the 
geometric position of each point (X, Y and Z) and the 
estimated surface normal’s could be affected by noisy 
points. These noisy points directly affect the 
segmentation results. Therefore, massive unstructured 
and noisy point clouds can lead to bad segmentation 
(over-segmentation, under-segmentation or no 
segmentation).  
 The pre-processing stage is used to reduce an 
amount of noisy points which have influence on the 
segmentation results. The virtually 3D-grid structure is 
used for data storage, fast search of adjacent points, 
organizes the huge number of point clouds based on 
properties of the point’s distribution and estimation of 
the normal vectors.  
Finding bounding box: Bounding box volume (Bbox) is 
a very simple approximation of the scanned object. The 
size of an object can be indicated by the dimensions of 
the Bbox, namely the smaller parallelepiped that 
contains the object. As the bounding box became 
tighter, the processing time decreases and the 
dimensions of the 3D-grid decrease. Bounding volumes 
are used to optimize and speed up many graphic 
algorithms. The dimensions of this box could be found 
by scanning the 3D surface and finding the points with 
the minimum/maximum coordinates along each 
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dimension. Obviously the dimensions of the Bbox 
depend on the orientation of the scanned surface.  
 Existing types of bounding boxes are: axes parallel 
bounding boxes (Bboxes), bounding spheres, bounding 
slabs, arbitrarily transformed Bboxes. This study uses 
the PCA method to determine the tighter bounding box. 
PCA finds a best approximating plane po. After the 
parameters of plane po are estimated, rotation matrix R 
and translation vector T are constructed. Consequently 
that data in scan is transformed into a coordinate system 
suitable to segmentation. 
 Determination of the translation and rotation 
parameters: Any movement of an object in the 3D 
space is a superposition of a 3D rotation and a 3D 
translation. Consequently, the movement of a point p = 
(x, y, z) on the object to p’ = (x’, y’, z’) is represented 
by Eq. 1: 
 

X ' x
y ' R y T
z ' z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (1) 

 
Where, R, T denote the rotation matrix and translation 
vector respectively. 
 
3D-Grid structure: TLS data consists of millions of 
points distributed irregularly in 3D space. These points 
are stored in the order in which they are scanned, 
forming a unique trajectory according to the specific 
type of scanner. These points can easily become 
irregular when the laser beam emitted by the scanner 
meets edges, corners of objects or scattered back. 
Because of this, the method for storing the point data is 
important to ensure low processing costs, fast access 
times of points and its surrounding information and less 
memory space. 
 Much of TLS data processing relies on the 
operations of querying points at specific locations along 
with their neighbors. However, such operations cannot 
be efficiently executed when TLS point data are stored 
in common data structures such as the stack or queue. A 
3D-grid structure can be a solution as the location of 
neighbors are fast located in this numerous data, but the 
large computational overhead in forming a high 
resolution grid with enormous amounts of TLS data is a 
drawback, O(n3) storage if you have N×M×L cell. 
However, this weakness can be overcome if enough 
resources are provided.  
 The virtual 3D-grid structure main advantage is 
that searching of points in particular locations can be 
completed in a constant time thus minimizing the time 
complexity. Another advantage is that 3D-grid structure 

is used to provide an acceptable level of precision or 
accuracy in the estimation of geometric properties such 
as surface normal vectors or points simplifications.  
 The virtual 3D-grid is divided into an N×M×L 
uniform cubes whose cube length is lcube which is a user 
input, see Eq. 2-4 .The lengths of the Bbox are LX, LY, 
LZ respectively:  
 
N = LX / lcube, LX = xmax - xmin (2) 
 
M = LY / lcube, LY = ymax - ymin (3) 
 
L = LZ / lcube, LZ = zmax - zmin (4) 
 
 Finally, insert every point into the linear list 
corresponding cell. Points are clustered into the cells 
according to a user-defined interval lcube in directions 
of x, y and z. Each cell refers to a range of object space 
and contains points within it. The index of the start of 
each cell and the numbers of points contained within 
are then stored to allow for fast retrieval of the points. 
As a result, the neighbor information between points 
can be easily established. Depending on the spacing of 
the grid, each cell should only contain a few features of 
interest and can be easily separated. Additional 
information from neighboring grid cells can be 
compared and incorporated to see if common features 
or properties exist across the cell. In practice, an 
appropriate grid size can be determined by checking 
point density; density is the average number of points 
within a unit area. 
 Other researchers like (Han et al., 2009) used the 
octree based 3D-grid structure for segmentation of 3D 
point clouds from ALS. Belton and Bae (2010) proposed 
to store the 3D TLS data into a 2D grid using a modified 
counting search method.  
 
Point cloud simplification: Simplification or data 
reduction of point cloud data is one of the key pre-
processing technologies in reverse engineering. Where 
a typical laser scanned data set often contains millions 
of data points and this leads to significant 
computational challenges in processing the point cloud 
data for practical applications such as multiple scene 
registration, inspection of industrial parts.  
 Simplification is done to reduce the number of the 
massive data points to facilitate geometric computation 
while preserving the geometric feature of point cloud 
(Peng et al., 2009). By simplifying the point set first, 
any subsequent surface reconstruction becomes 
significantly faster. Point cloud simplification tends to 
be computationally more efficient and less memory 
demanding than mesh simplification since no mesh data 
structures need to be maintained. 
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 In this study we use a simple simplification 
method. First, points in point cloud are distributed into 
uniform cubes or cells as previously discussed. Next, 
each cell includes one point which is equivalent to the 
average value of the clustered points in that cell. The 
cells that have just one or two points will be discarded 
and labeled as noisy data. Dealing with the average 
value of each cube makes the segmentation process 
very fast rather than segmenting the whole point cloud. 
So after the segmentation process of the simplified 
point cloud, the results will be referred back to the 
original points. This simplification method depends 
mainly on the lcube of the grid and its resolution. Points 
in each cell are clustered based on properties of the 
point’s distribution which lead to minimizing the 
deformation of the resulted simplified point cloud while 
keeping its geometric features. 
 
Normal vector estimation: The gradient method 
depends on the normal vector changes as their values 
are much more significant than those of depth or color 
changes. In literature, researchers found that by 
detecting significant normal changes both step edges 
and roof edges can be easily detected. In order to 
calculate the normal vector for the point cloud, for every 
cell in the 3D grid, the normal vector from the enclosed 
points is computed as an index of local surface formation. 
 There are two popular approaches to find optimal 
planes which are LSF and Analysis PCA. LSF is an 
iterative algorithm for finding the best-fit plane with the 
least-squares constraint of the distances from the 
scanned points to the plane. 
 The PCA method calculates the eigenvector of 
point cloud as the normal for finding out the parameters 
of the optimal plane. Huang and Tseng (2008) compare 
the PCA and the LSF methods in terms of algorithm 
implementation, computation time and robust 
estimation. Sharma et al. (2006) used PCA to reduce 
linearly redundant components that may present in 
higher dimensional space. 
 This study uses the PCA analysis for calculating 
the normal vectors. PCA uses Eq. 5 and 6 to calculate 
the eigenvector as the normal of optimal plane, the 
solution obtaining three eigenvalues is the calculation 
of three eigenvectors. The eigenvectors represent the 
three axes of point clouds and the eigenvalues denote 
the square sum of point’s deviations along the 
corresponding axis. Hence the eigenvector 
corresponding to the smallest eigenvalue is exactly the 
required normal of the best-fitted plane: 
 

T

1 1

j p

k k

pi p pi p
C . ,i N

pi p pi p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ∈⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (5) 

I i I I { 0 ,1 , 2 }C .V .V , ∈= λ   (6) 
 
Where: 
c = Denotes the 3×3 covariance matrix of local 

neighbor points 
pi = The ith point in the point cloud 
p   =  The average of all 3D points 
Np = The points in the target cell 
λ and V = eigenvalue and eigenvector respectively 
 
 Assume that λ0>λ1>λ2 denotes the eigenvalues of 
covariance matrix associate with the unit eigenvectors 
of V0, V1 and V2, respectively. V2 is chosen as normal 
vector which is corresponding to the smallest 
eigenvalue if λ0>λ1>λ2.By means of such method, a 
normal vector on a local surface within a cell could be 
determined. Using the previous method, for each point 
pi a normal vector ni = [nix, niy, niz] is estimated. 
 The problem with this method is that the density 
and points distribution is not always consistent and 
sometimes the cells have only one or two points 
(insufficient points).As result of that, normal vector will 
be calculated using the k-nearest neighbor cells of pi. 
 
Segmentation using 3D gradient: Edges in 3D range 
images are defined by the points where changes in the 
local surface properties exceed a given threshold. The 
local surface properties mostly used are surface 
normals, gradients, principal curvatures or higher order 
derivatives. The extraction of the gradient information 
from 3D objects plays an important role for many 
applications including object reconstruction and 3D 
medical imaging. The gradient information is used to 
identify strong features in the image such as edges or 
the local orientation of the curves and the surfaces. In 
image processing the extraction of the 3D gradient 
information is generally performed by filtering the 
input 3D data with filters that are typically implemented 
using 3×3×3 masks or higher ones.  
 These 3×3×3 filters usually extract the gradient 
information using the small surrounding neighborhood. 
As result, the estimated gradient information will be 
sensitive to image noise. In order to minimize this 
image noise we applied the previous pre-processing to 
the input data before applying the 3D filters. The idea 
behind the 3D edge detector is to measure the changes 
of geometric locations across each point of the given 
3D grid, i.e., the change being measured along the three 
directions parallel to the coordinate axes.  
 Edge detection using 3D sobel edge operator 
emphasizes edge details using three 3×3×3 masks, one 
detecting x-gradients, the second one detects the y-
gradients and the third one detects the z-gradients. The 
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magnitude and orientation of an edge is determined 
using the sum of absolute value of each gradient. 3D 
sobel masks are convoluted with the corresponding 
normal vectors of the range image and the cells that 
have no points take zero value.  
 A gridded 3D point cloud f(x, y, z) is represented 
by a matrix of cells, each cell is a small cubic region of 
f(x, y, z) and has a point p1x equal to the average value 
of all points throughout this region. The gradient at that 
Cartesian coordinate location (x, y and z) is defined in 
Eq. 7. And the magnitude of the gradient is given by 
Eq. 8: 
 

Tf [Gx Gy Gz]∇ =   (7) 
 

2 2 2
x y z x y zG(n ,n ,n ) G G G= + +   (8) 

 
 We use three 3D gradient operators, or masks, to 
do the computation, capitalizing the ideas of Zucker 
and Hummel where all the 26 neighborhoods which are 
associated with each cell of the grid are involved in 
computing the gradient vector components. Zucker and 
Hummel were the first to introduce a 3D gradient 
operator based on N×N×N cell neighborhoods. They 
provided mathematical foundations to derive three basic 
functions that define their local operator. Discrete 
approximations to these basis functions can form three 
3×3×3 masks which are used to compute the 
components of the gradient vector for the cell located at 
the center of the mask. One common form of the 3D 
Sobel operator that approximates the first derivatives 
Gx, Gy and Gz using the 3×3×3 filters is shown in Eq. 9-
11. Here each filter is expressed as three 2D matrices, 
which when stacked vertically, form the 3×3×3 filter. 
Gy and Gz are basically a rotation in space of Gx: 
 

x

2 4 2 4 8 4 2 4 2
G : 0 0 0 , 0 0 0 , 0 0 0

2 4 2 4 8 4 2 4 2

− − − − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (9) 

 

y

2 0 2 4 0 4 2 0 2
G : 4 0 4 , 8 0 8 , 4 0 4

2 0 2 4 0 4 2 0 2

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (10) 

 

z

2 4 2 0 0 0 2 4 2
G : 4 8 4 , 0 0 0 , 4 8 4

2 4 2 0 0 0 2 4 2

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (11) 

 
Selecting threshold: By analyzing of the output 
gradient magnitude G(x, z, y) we can apply a suitable 
threshold T in order to detect the edges as shown in 
Eq. 12: 

1, f (x, y,z) T
G(x, y,z)

0, f (x, y,z) T
∇ ≤⎧

= ⎨ ∇⎩
  (12) 

 
 The point clouds became structured after the pre-
processing stage and contain relatively less noise, so as 
result of doing many experiments the threshold T is set 
to zero. In other situations, an adaptive threshold could 
be used. The compromise between having under-
segmentation or over-segmentation or well segmented 
is tackled by setting appropriate thresholds to the three 
gradients. In order to achieve a satisfactory final 
segmentation results, one more additional step is done. 
The point cloud is segmented using different filters with 
the same threshold. The output is selected based on 
repetitive edges from these filters; other non repetitive 
edges are neglected.  
 
Post-processing and edge thinning: There are some 
problems that face the effectiveness of the segmentation 
techniques in 2D and in 3D. In the case of 2D images, 
sobel operator is characterized by its smoothing effect 
on the output images. As a result of using gradient 
filters, edges in the output image are several pixels wide 
and they are a bit broader. The image may be sampled 
in such a way so that changes in gray level may extend 
across some number of pixels. Some thinning may be 
desirable to counter this well known problem. 
 Edge thinning is a well known technique used to 
remove the unwanted spurious points on the edge of an 
image. This technique is employed after the image has 
been filtered for noise (using median, Gaussian filter). 
Also it is applied after the edge operator has been 
applied to detect the edges and after the edges have 
been smoothed using an appropriate threshold value. 
This removes all the unwanted pixels and if applied 
carefully, results in one pixel thick edge elements. 
 In the case of 3D images, the digitized 3D sobel 
masks have similar effect on the output 3D edges like in 
2D case. But in the case of 3D range images it will 
differ a little bit, where the points which are detected as 
edges are doubled instead of being several pixels wide, 
as the gradient effect of real edges extent to the 
neighborhoods non-edges where the edges and their 
neighborhoods could have similar gradient values.  
 Moreover, 3D image may be sampled in such a 
way so that the edges is deviated from its real position 
and could appear in a near position. Furthermore, the 
influence of the image noise on the output. This noise 
has unrepresentative value that can significantly affect 
the gradient value of all the points in its neighborhoods. 
The Zucker-Hummel used radial functions that smooth 
the calculated gradient that have a positive effect in 
noisy data. 
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 As a result of the previous decision, the edges 
could not be precisely localized and may be corrupted 
by noise. In general, 3D thinning is a straightforward 
extension of the 2D image thinning. A number of 3D 
thinning methods existed for processing the medical 
images represented by voxels, like histogram 
equalization and interpolation techniques.  
 In order to keep the edges extracted after applying 
the sobel filter precisely localized and closely to that of 
the actual point clouds, a thinning algorithm is used as a 
post-processing step after a threshold is applied to the 
output of the sobel masks. 
 
The thinning algorithm is as follow: 
• Search for cells with no points that are marked as 

edges (this step is applied to eliminate the edges 
which are deviated from their real position and 
appear in a near position) 
• Calculate the Euclidean distance between 

these cells center value and the closest points 
in space to them with certain distance 

• The matched points are marked as edges 
instead of the last ones 

• If no points are found within this distance the 
location of edge is neglected and is labeled as 
false edge. 

• Search for cells that include points marked as 
edges and their neighborhoods which have similar 
gradient values that are marked also as edges. (This 
step is applied to eliminate the double edge effect) 
• Calculate the Euclidean distance between 

these points’ value and the closest points in 
space to them with certain distance 

• The matched points are marked as edges 
instead of the last ones 

 
 The standard deviation is then calculated to find 
the deviation of the sobel output and the corresponding 
corrected edges after applying the thinning algorithm. 
The rms error ∈ represents the difference between the 
measurement and its true value, n represents the 
number of cells. The rms error can be defined as in Eq. 
13. The standard deviation of the distribution of these 
3D measurements about the average value is defined in 
Eq. 14: 
 

2 2 2n n n

i i i i
i 0 i 0 i 0

(x x) (y y) (z z)
= = =

∈ = − + − + −∑ ∑ ∑   (13) 

 

i

n
∈

σ = ±   (14) 

RESULTS 
 
 This algorithm is implemented using standard c 
language and tested on variety of artificial data sets and 
real world data sets. This is necessary for two reasons.  
 First, as the 3D gradient operators are tested on 2D 
data set or 2D slices with certain limitations, we need to 
know if the proposed algorithm is working properly with 
different types of 3D artificial and real world datasets.  
 Second, most real world data are noisy and can 
often suffer from corruptions when the laser beam 
emitted by the scanner meets objects of sharply 
differing heights or may suffer from incomplete values 
due to partial sensor failure, environmental conditions, 
data storage corruption or non reflective surfaces such 
as windows are missing. This noise may impact the 
decisions made based on the data. Moreover, noise can 
reduce the system performance in terms of 
segmentation accuracy.  
 Thus, empirical experiments on artificial and real 
world datasets will give us intuitions on the ranges of 
degree of applicability and how is this algorithm able to 
detect edges and come over some of these difficulties. 
The artificial datasets have shapes that are represented 
by portion of primitive surfaces such as planes, 
cylinders and so on. The algorithm is used to extract the 
edges of these shapes. In this study we validate our 
algorithm in both free noise artificial datasets and noisy 
real world datasets. 
 
Datasets descriptions: The seven artificial datasets have 
been generated with different shape complexity. Table 1 
shows the CAD models of the artificial datasets with 
their description. We conduct similar experiments on two 
real world datasets. These sets are scanned using the 
terrestrial laser scanner RIEGL LMS-Z620 
(http://www.riegl.com).These scans are taken for 
different positions of Mubarak City for Science and 
Technology (MUCSAT), informatics institute, 
Alexandria, Egypt (http://www.mucsat.sci.eg). The data 
sets where scanned from three scan positions, then the 
scan positions were registered and merged as one point 
cloud. The registered data represents the front and the 
side facades of the MUCSAT informatics institute which 
has a pyramid shape. Each data set contains position in x, 
y, z, color and intensity per point. Here we focus on the 
geometry information instead of the color information as 
a clue for our segmentation algorithm.  
 We have chosen the informatics institute’s building 
because of its geometric shape and its important 
building features like linear structures such as doors, 
stairs and windows. As well as, you can find rounded, 
rectangular, triangular windows, rounded, cylindrical 
edges and straight Edges. The detection and localization 
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of these linear structures are very important in variety 
of applications like robot navigation and inspection of 
industrial parts. 
 
Table 1: Shows a description for the artificial datasets 
Artificial dataset 
------------------------------------------------------------------------------------ 
Object CAD model Number of points Number of edges 

1       1100          12 

2       900          24 

3       69264          24 

4       190910          64 

5       16003         156 

6        88290          48 

7        84920 48 Edges 
   3 Semi rounded shapes 

 
Table 2: Shows a description for the real world datasets 
Real world datasets 
------------------------------------------------------------------------------------ 
Object CAD model Description            number of points 

 
 
 
1 

 

 
Informatics 
institute 
Front facade 
 

 
81053 

 
 
 
2 

 

 
Informatics 
institute 
Side facade 
 

 
 
74752 

 
Table 3: Shows a description for the real world datasets 
Real world datasets 
------------------------------------------------------------------------------------ 
 Object 1 Object 2 
Number of rounded windows 8 14 
Number of rectangular windows 61 98 
Number of triangular windows 33 33 
Number of cylindrical parts 1 3 
Existing  doors 1 1 
Existing  stairs 1 1 

Segmenting the MUCSAT facades is very challenging 
for many reasons. First, it is not restricted to simple 
structures or simple edges. Second, you can find a 
variety of edge lengths that range from small, medium, 
large. Third, it has many non reflective surfaces such as 
windows. The non reflective surfaces are a very 
important problem that faces most of the segmentation 
algorithms when dealing with uncompleted point 
clouds. Fourth, it is composed of three registered scans 
from different scan positions. If the point cloud 
contains multiple scans, then the segmentation becomes 
more complex because it may suffer from corruptions, 
noise and repetitive points. Also, it has a dense number 
of points. All the previous conditions and difficulties 
are used to exam the degree of applicability of the 
proposed algorithm. Here we will exam our proposed 
algorithm on two real world datasets described in Table 
2 and 3. 
 
Experimental results: the proposed algorithm is 
evaluated using two real world scans as an outdoor 
datasets. Also it is validated using six artificial datasets. 
Experimental results for the artificial datasets are 
illustrated in Table 4 and the experimental results for 
the   real    world   datasets   are   illustrated in Table 5. 
Tables (4 and 5) show the detected edges for each 
object after the filtering step, Tables (4 and 5) show 
each object surrounded by its edges. Table 6 shows the 
number of edges in the artificial models compared to the 
number of detected edges after the segmentation step. 
 As previously discussed, the deviation analysis is 
very important. Table 7 shows the deviation of the 
detected edges from its real ones. Considering the real 
world datasets object 1 and object 2, the proposed 
algorithm segmented its important features like 
rounded windows, rectangular windows, triangular 
windows, boundary, door and stairs.   Table 8 shows 
the   segmentation results.   Table 9   shows the   
deviation of the detected edge from its real ones. 
These low deviation results for the registered real world 
datasets is not correspondence to the accuracy of the 
scanner, but the results show the deviation of the sobel 
output and the corresponding corrected edges after 
applying the thinning algorithm.  
 In the introduction we talked about the linear 
features detection, if we considered the theoretical ideal 
case in its detection, if the surface is planar every 
neighboring group of points that are clustered based on 
properties of the point’s distribution must lead to the 
same normal  
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Table 4: Shows the results for the artificial datasets 
Artificial datasets results 
---------------------------------------------------------------------------------- 
Object Detected edges (a) Object surrounded by edges (b)  

1   

2   

3   

4   

5   

6   

7   
 
Table 5: The segmentation results of the real world datasets 
Real world datasets results 
------------------------------------------------------------------------------------ 
Object Detected edges (a) Object surrounded by edges (b) 

1                       

2              
 
vector of that original surface. Also the perpendicular 
distance between that point, which found some 
neighbors and its plane must be equal to zero. On the 
other hand, when considering practical cases, the 
surface of buildings with planer facades is provided as 
3D point clouds (X, Y, Z). These points are not 
immediately compatible with mathematical models, that 
is to say no planar surfaces and no straight edges are 
directly provided in the digital model. Moreover the 
registered planer surfaces appear with a finite thickness. 
That means that they are in general not flat facades with  

Table 6: Shows the results of the artificial datasets 
Artificial datasets 
------------------------------------------------------------------------------------ 
 Number of Number of  
Object real edges detected edges Accuracy % 
1 12 12 100% 
2 24 24 100% 
3 24 24 100% 
4 64 64 100% 
5 156 156 100% 
6 48 48 100% 
7 48 and three 48 and three 100% 
 rounded shapes rounded shapes 
 
Table 7: Shows deviation results of the artificial data sets 
Artificial datasets 
------------------------------------------------------------------------------------------ 
 Object 
Deviation in mm ---------------------------------------------------------------- 
   1   2    3   4   5   6   7             
 x direction                0.28 0.30 0.20 0.25 0.220 0.21 0.08 
 y direction                0.30 0.31 0.34 0.31 0.230 0.32 0.18 
 z direction                0.27 0.30 0.26 0.25 0.220 0.18 0.15 
Average   0.28 0.30 0.27 0.27 0.224 0.23 0.1 
 
Table 8: Shows results of real world datasets 
Real world datasets 
------------------------------------------------------------------------------------------------ 

Object 
 ----------------------------------------------------------------- 
  Number of  Number of  
 real edges  detected edges      Accuracy % 
 ------------------- ------------------ ---------------------- 
 1 2 1 2 1 2 
Number of 8 14 8 14 100.00% 100.000% 
rounded windows 
Number of 61 98 24 92 39.30% 93.880% 
rectangular windows 
Number of 32 32 14 3 43.75% 9.375% 
triangular windows 
Number of 1 3 1 3 100.00% 100.000% 
cylindrical parts 
Stairs 1 1 1 1 100.00% 100.000% 
Doors 1 1 1 1 100.00% 100.000% 
Triangular boundary 1 1 1 1 100.00% 100.000% 
 
Table 9: Shows deviation results of the real world data sets 
Real world datasets 
------------------------------------------------------------------------------------ 
Deviation in mm Object 1 Object 2 
x direction  0.03 0.03 
y direction  0.07 0.05 
z direction  0.04 0.04 
Average    0.05 0.04 
 
none zero thickness. Most of the edges in the small 
triangular windows are missed and the detected are 
visually squared shaped more than being triangular 
shaped but these results could be enhanced using 
smaller Lcube or grid with smaller resolution in this 
particular space. 
 

DISCUSSION 
 
 Here we discuss the main differences between the 
first and second approaches (see the literature review) 
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and our approach. In the two approaches, the target 
samples are different where the first and second 
approaches are using a sobel filter that works on 
consecutive 2D images or 2D slices stacked together 
with constant depth (usually medical images), while our 
approach is using real 3D data which have information 
about geometric coordinates and color. 
 In the first approach, the contribution of the 26 
points or 26 voxels do not exist as the depth is constant. 
In the second approach, the depth is taken into account 
but it is still equally spaced in z direction. In our 
approach the depth info is taken into account as the 
point’s depth may vary from cell to another or even no 
points exist in certain depth. 
 The first approach uses two filters 3×3, one for x 
direction the second one for y direction, while the 
second and our approach use 3 filters 3×3×3 one for x 
direction, the second for y direction and the third for z 
direction 
 In the two approaches, the convolution works 
usually on the intensity data in each pixel or voxel (for 
medical images) but in our approach it works on the 
normal vectors or the geometric locations of each cell. 
Normal vectors and the geometric locations are more 
accurate as the color or gray level is generally 
meaningless in calculating of the edges in 3D data. Also 
the normal vector is calculated using the PCA of the 
included points within the each cell and their neighbors. 
 The two approaches work well on images with 
good contrast between different regions; the edges are 
detected and can be verified visually. On the down side, 
as these approaches detect most of the edges. It is very 
difficult to find a correlation between edges in 
successive image slices. The two approaches work well 
on images with good contrast between different 
regions; the edges are detected and can be verified 
visually. These two approaches are also susceptible to 
noise. In most of the cases, they are followed by other 
segmentation algorithms to find an accurate segmented 
volume. Additionally, unlike 2D images, we cannot use 
the color information or the texture to detect surfaces or 
edges, as they lose the depth information in the 
projection process from 3D-2D.  
 Most of 3D segmentation algorithms use the 
geometric properties as a clue. Also, unlike most of 
computer graphics models, the input is a nosy point cloud 
representing a registered scene or real world objects rather 
than a clean surface model of individual object. 
 We summarize below the steps used in the 
computation of the proposed algorithm: 
 
Input: 3D-grid contains n points, represented by p (p1, 
p2, p3, pn), Where each cell has pi ( p1x , p1y , p1z )t, 

Where p1x  denotes the average point in that cell in x 
direction. 
 
Output: geometric edge detector Gi(x,y,z)  
 
Steps: For each cell: 
• Calculate the Gx , Gy, Gz and Compute G(x,y,z) 
• Threshold G(x,y,z) 
• Filtering phase 
 
Computational complexity: The sobel algorithm runs 
in linear time, which is if N is the number of cells then 
the estimated run time for the proposed edge detector 
would be O(N). Its performance is only weakly affected 
by the huge increases in the input model size that can 
be easily solved by using the appropriate hardware.  
 The calculation of the Gx, Gy and Gz for each cell 
is independent from the calculation of the rest of the 
cells. Besides, the grid size may be huge due to small 
step size and high resolution grid. As a result of the 
previous, it is more preferable that the 3D range image 
is divided into small windows (3×3×3) that could be 
processed in parallel with appropriate hardware or 
using a parallel 3D sobel algorithm rather than using 
the sequential one. Han et al. (2009) applied a parallel 
processing method for airborne laser scanning data 
using a pc cluster and a virtual grid in order to control 
the huge amount of point cloud data. 
 

CONCLUSION 
 
 Segmentation is an essential pre-processing step in 
image understanding. We have proposed a 
straightforward 3D edge detector for artificial datasets 
and real world datasets, generalizing the classical sobel 
operator of 2D images. The presented method is used to 
extract edges from 3D range images. We have validated 
our algorithm on seven artificially generated datasets 
and two real world datasets captured by the terrestrial 
laser scanner system RIEGL LMS-Z620. 
 The proposed algorithm is applied in three stages 
the pre-processing stage is first applied followed by 3D 
gradient edge based segmentation and finally the post-
processing stage which is used for thinning the output 
edges. The pre-processing stage includes virtual 3D-
grid generation, normal vector calculations, point cloud 
data reduction. The point cloud is fitted in a virtual 3D-
grid for the efficient search of the neighbors thus 
minimizing the time taken for segmentation. This tight 
3D-grid structure shrunk the area to be searched and 
handles huge number of points.  
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 The proposed algorithm depends on the normal 
vector changes and the geometric locations; x, y and z; 
as a clue for segmentation of 3D range images. As 
normal vector values are much more significant than 
those of depth or color changes. As the color or gray 
level information are generally meaningless in 
calculating of edges in 3D data. The Principal 
Component Analysis (PCA) is applied here to derive 
the local normal vectors. Besides that, the PCA is 
applied for the analysis of rotation and translation of the 
point clouds. The factors which control the output of 
being well segmented are the step size used to define 
the virtual 3D-grid and the threshold that is applied 
after the 3D sobel filter.  
 Experiments have been conducted for testing the 
performance of the proposed algorithm using seven 
artificial datasets and two real world datasets. Linear 
structures, such as doors, stairs and windows are 
detected using the proposed algorithm. These linear 
structures are common in indoors and outdoors in many 
environments. Segmentation of these linear features is 
very essential in many applications like mobile robot 
navigation and is useful for building modeling and 
surface reconstruction. The proposed algorithm is 
efficient in the detection of all the edges of different 
shapes in both the artificial datasets and the real world 
datasets. This means that our segmentation algorithm is 
not restricted to simple structured objects only. 
 For future work: The 3D range image can be 
divided into small windows (3×3×3) or (5×5×5) that 
could be processed in parallel with appropriate 
hardware and parallel 3D sobel technique instead of the 
sequential one. 
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