
Journal of Computer Science 7 (3): 328-340, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: S. Jabeen Begum, Department of CSE, Velalar College of Engineering and Technology, Erode-12
328

A New Scalable and Reliable Cost Effective Key Agreement Protocol

for Secure Group Communication

1S. Jabeen Begum and 2 Dr. T. Purusothaman
1Department of CSE, Velalar College of Engineering and Technology, Erode-12, India

2Department of CSE, Government College of Technology, Coimbatore-13, India

Abstract: Problem statement: In a heterogeneous environment, for a secure multicast
communication, the group members have to share a secret key which is used to encrypt/decrypt the
secret messages among the members. The Secure Group Communication of large scale multicast group
in a dynamic environment is more complex than securing one-to-one communication due to the
inherent scalability issue of group key management. Since the group members are dynamic in nature
such as joining or leaving the group, the key updating is performed among the valid members without
interrupting the multicast session so that non group members can’t have access to the future renewed
keys. Approach: The main aim is to develop a scheme which can reduce the cost of computational
overhead, number of messages needed during the time of key refreshing and the number of keys stored
in servers and members. The cost of establishing the key and renewal is proportionate to the size of the
group and subsequently fetches a bottleneck performance in achieving scalability. By using a Cluster
Based Hierarchical Key Distribution Protocol, the load of key management can be shared among
dummy nodes of a cluster without revealing the group messages to them. Results: Especially, the
existing model incurs a very less computational and communication overhead during renewal of keys.
The proposed scheme yields better scalability because of the fact that the Key computational cost, the
keys stored in key server and numbers of rekey-messages needed are very less. Conclusion: Our
proposed protocol is based on Elliptic curve cryptography algorithm to form secure group key, even
with smaller key size, it is capable of providing more security. This protocol can be used both in wired
or wireless environments.

Key words: Clustering process, secure group communication, key management, Group Session Key

(GSK), Domain Key (DK), complexity analysis

INTRODUCTION

 The exponential growth of the Internet for the last
few years along with the relative increase in bandwidth
of networks has resulted in the development of new
services. Although the unicast communication has been
dominant so far, the need for multicast communication
is mandatory both in the perspective of Internet Service
Providers and Distributors. The Key management plays
a pivotal role in providing the common security services
such as authentication and integrity for a group
communication. The secure group communication
provides both secure multipoint communication and
point-to-point communication. The encryption of the
point-to-point messages is made with a key shared by
members both ends. The encryption of Multicast
messages is made with the help of the group key. The
main aim is to elaborate how provable and promising is
our proposed secure group key management protocol

when combined with the reliable group communication
services in obtaining a cost effective computational
strategy. For the establishment of group communication, a
single common group key is distributed to every member
of the group which is highly dynamic in heterogeneous
environment and the key is refreshed whenever a member
joins or leaves the group. Three main ways of the group
key management are Centralized Group Key
Management, Distributed Group Key Management and
Decentralized Group Key Management.
 The Centralized key management is employed for
controlling the entire group. Hence, a centralized key
management tries to minimize requirements of the
storage and computational power for both the client
and server. However the problem of single point
failure remains existing in this mode of key
management. The Protocols mostly used in
Centralized Group Key Management are OFT, LKH,
ELK and CFKM, GKMP, Keystone.

J. Computer Sci., 7 (3): 328-340, 2011

329

 In distributed key management architecture, there is
no external Key Distribution Centre to distribute the
key. The key generation is performed by the members
themselves. The members who want to be independent
of third party intervention can do the access control
operations and take part in the group key generations.
Thus, the security can be enhanced in this method.
However it is restricted to only a small group of
members in which the collection of the contributions of
each and every user is meticulous and time consuming
and hence the scalability criterion is not fulfilled. The
typical Protocols used in distributed key management
are CKA, STR, Octopus and DH−LKH.
 In a decentralized architecture, a large group is
managed by dividing it among the subgroup managers.
It minimizes the problem of focusing the entire task at
one particular location. The typical Protocols used in
decentralized environment are SMKD and IGKMP.
 An Efficient group key management protocol
demands a few miscellaneous requirements such as
Quality of Service, security and the resources of the
group members. The general attributes in Group Key
Management are as follow:
 Forward Secrecy: It ensures that a member who has
left the group should not be able to decrypt the data of
his old group.

Backward secrecy: It ensures that a member who has
newly joined the group should not be able to decrypt the
previous data of the group.

Collusion freedom: It ensures that no fraudulent user
can acquire the group key.

Key independence: It is a property of a protocol stating
the non compromising nature of the key disclosure.

Minimal trust: It ensures that the Key Management
scheme should provide trust only to limited number of
entities.
In order to accomplish these aspects, a partial
Distributed and Decentralized Architecture is proposed.

Related work: It is generally assumed that the
operation of rekeying has to be performed in
multicasting, whenever multicasting is used for group
transmission (Pour et al., 2007; Wong et al., 2000).
Using a scalable multicast communication, it is not
reasonable to consider that transmitting data to the
members and rekeying the members under a non-
scalable peer to peer communication. If the group has
large members, sending them a new key one by one will
not be efficient. Although rekeying (Mao et al., 2004) a

group before joining a new member is trivial, rekeying
the group after a member leaves will be far more
complicated. The old key cannot be distributed to a new
member, because the leaving member has already
known the old key. A group key distributor must
therefore provide other mechanisms to rekey the group
using multicast messages with maintaining the highest
level of possible security.
 In the centralized system, there is only one entity to
control the whole group. The central controller does not
have to rely on any auxiliary entity to perform access
control and key distribution operations. The central
server may undergo the problem of single point failure
with only one managing entity. If there is a problem
with the controller, then the entire group will be
affected.
 In Group Key Management Protocol, the KDC (Lee
and Shieh, 2004; Al-Talib et al., 2009; David Manz et
al.,2010) helps the first member to join the group and
creates a Group Key Packet (GKP) that consists of a
Group Traffic Encryption Key (GTEK) and a Group
Key Encryption Key (GKEK). The KDC sends a copy
of the GKP whenever a new member wants to join the
group. As all members know the GKEK, there is no
chance of maintaining the forward secrecy intact when a
member leaves the group. Therefore key for entire group
has to be renewed.
 In Logical Key Hierarchy, the KDC maintains a
tree of keys. The nodes of the tree hold key encryption
keys. The leaves of the tree correspond to group
members and each leaf holds a KEK (Saroit et al., 2009)
associated with one group. Each member receives and
maintains a copy of the KEK associated with its leaf and
the KEKs corresponding to each node in the path from
its parent node to the root. For a balanced tree, each
member stores at most (log 2 n) +1 keys, where (log 2 n)
is the height of the tree.
 The One-way Function Tree (OFT) scheme (Kim et
al., 2005; Poovendran and McGrew, 2004; Rafaeli and
Hutchison, 2003) is an improvement over the
hierarchical binary tree, which reduces the size of the
rekeying message from 2(log2 n) to only (log2 n). The
KEKs held by a node’s children are blinded using a one-
way function and then mixed together using a mixing
function. The result of this mixing function is the KEK
held by the node.
 One-way Function Chain Tree is a different
approach that undergoes the same communication
overhead. This scheme uses a pseudo-random-generator
(Micciancio and Panjwani, 2008; Rafaeli and
Hutchison, 2003) to generate a new KEK rather than
using a one-way function and then it is applied only on
user removal. This scheme is known as the one-way

J. Computer Sci., 7 (3): 328-340, 2011

330

function chain tree. The pseudo-random-generator, G(x),
doubles the size of its input (x), the output of G(x) is
represented as two functions, L(x) and R(x) that are the
left and right halves of G (x.) (i.e., G(x) = L(x) R(x))
 The Distributed Key Management approach is
characterized by having no group controller. The group
key can be either generated in a contributory fashion,
where all members contribute their own share to
computation of the group key, or generated by one
member. Although it is fault-tolerant, it may not be
safe to leave any member to generate new keys since
key generation requires secure mechanisms, such as
random number generators, that may not be available
to all members. Moreover, in most contributory
protocols, processing time and communication
requirements increase linearly (Yi, 2005; Sundaram
Sudha et al.,2009) in term of the number of members.
 In Distributed Logical Key Hierarchy, the GC
(Kulkarni and Bruhadeshwar, 2010) is completely
abolished and the logical key hierarchy is generated
among the members, therefore there is no entity that
knows all the keys at the same time. This protocol uses
the notion of sub trees agreeing on a mutual key. That is,
two groups of members namely sub tree L and sub tree
R, agree on a mutual encryption key. Assuming that
member ml is to be L’s leader and member mr is to be
R’s leader. The Sub tree L has sub tree key kL and the
sub tree R has sub tree key kR.
 In Diffie–Hellman Logical Key Hierarchy, a logical
key hierarchy is used to minimize the number of keys
held by group members. The main difference here is that
group members generate the keys in the upper levels
using the Diffie–Hellman algorithm (Zheng et al., 2006;
Amir et al., 2004) rather than using a one-way function.
The key of each node is generated from its two children
(k=αk1k2 mod p).
 In Conference Key Agreement (CKA) where all
group members contribute to generate the group key.
The group key can be generated with a combining
function: K = f (h(N1), h(N2),…, h(Nn)), where f is the
combining function, h is a one-way function, n is the
group size and Ni is the contribution from group
member i. The protocol specifies that n - 1members
broadcast their contributions (Ni).
 In Decentralized Key Management, the large group
is split into small subgroups. Different controllers are
used to manage each subgroup, minimizing the problem
of heaping the work on a single location. In Scalable
Multicast Key Distribution, the trees built by the Core
Based Tree (CBT) multicast routing protocol are to
deliver keys to a multicast group. Any router in the path
of a joining member from its location to the primary
core can authenticate the member since the router is
authenticated with the primary core. Furthermore, there

is no solution for breach of forward secrecy other than
recreating an entirely a new group without the leaving
members. In Intra-Domain Group Key Management
scheme, there are a Domain Key Distributor (DKD) and
many Area Key Distributors (AKD) (Rafaeli and
Hutchison, 2003; Al-Saadoon et al., 2009). Each AKD
is responsible for his respective area. The group key is
generated by the DKD and is propagated to the members
through the AKDs The key managers (DKD and AKD)
are placed in a multicast group, named All-KD-group
.The All- KD-group is used by the DKD to transmit the
rekey messages to the AKDs. All areas in the domain
use the same group key. Therefore, data packets do not
need to be translated when passing from one area to
another. Moreover, if an AKD is unavailable, no
member in that area is able to access the group
communication, since they will not be able to access
AKDs from other areas.
 A group of nodes is called Cluster where one node
acts as Cluster head which is responsible for some
specific tasks. Each cluster is formed around a
representative called Cluster Head. According to a well
defined criterion, Cluster Heads are selected. A cluster is
assigned with an identifier that is related to its
representative (i.e. its cluster head). Each node in the
network carries the cluster identifier to which it belongs.
The hierarchy is built based on the capabilities of nodes.
To form clusters, a new message called CIA (Cluster Id
Announcement) is periodically sent by cluster heads to
declare their leaderships and invite other nodes to join
their clusters.
 In key management algorithms (Prathap and
Vasudevan, 2009; Poovendran and McGrew, 2004;
Rafaeli and Hutchison, 2003; Zheng et al., 2006) when
group membership changes, the group controller
changes the keys in the key tree and securely broadcasts
the new keys to other existing members. The group
controller broadcasts all the key updates which are
encrypted with shared keys known only to a subset of
users in the group. Since all users do not need all the key
updates, his mode of key distribution is not efficient.
Focusing on the key distribution using these algorithms
where each user receives only a small subset of keys that
includes all the keys it needs. Towards this end, the
forwarding mechanism is modified at the intermediate
nodes; an intermediate node forwards a key update
message only if it believes that there are descendant
users who need this key update. In this approach, an
intermediate node performs this check by verifying
that any of its descendants know the key with which
the key update message is encrypted. The keys known
to a user depend on the type of group key management
algorithm used.

J. Computer Sci., 7 (3): 328-340, 2011

331

MATERIALS AND METHODS

 Now we will briefly discuss about the Secure
Group Communication Protocol (SGCP) and the new
designed protocol architecture.

Initialization and updation on clusters: To generate a
Cluster Based Hierarchical Tree (CBHT), a certain
group of members of common interest has to form a
group. The CC forms a group after getting the
appropriate count of members, by clustering, along with
partition types. The clustering may be any one of the
following types based on the application and the mode
of environment whether wired/wireless.

Key based clustering: Based on similarities of public
key {x1, y1} or private key {x2, y2} of the members,
clustering has been done. The public key is constructed
with their private keys and the contribution to the group
key formation is given.

Position based clustering: By analyzing the exact
position of the members, clustering process is done
based on their location.

Time based clustering: In order to form a cluster
based hierarchical tree based on time, a database which
is used to store the time related entities like the member
joining time and leaving time, has to be maintained and
it helps in forming cluster.

 The Group Member database (DBGM) is used to
store the Key, Location and Time based entities, which
are controlled by the Cluster Controller Head (CCH).
By using these entities, a CBHT can be easily
generated. After completion of this process, the key
can be generated for both the member and cluster
head. This process is controlled by Cluster Key
Formation (CKF) and Cluster Controller Formation
(CCF). Fig. 1 shows the structure of the Cluster Based
Hierarchical Tree (CBHT). The Fig. 2 illustrates the
Cluster Initialization, Key Formation and Secure
Group Communication. The Architecture is well
explained below.

Group and member key formation: The Cluster
Controller head (CCH) is responsible for generating the
group key. Here, the group key is formed using Elliptic
Curve Cryptography. A public key is constructed by
each member in the cluster with his own private key
and it will be sent to the respective Cluster Controllers.
An elliptic curve consists of the points satisfying the
equation y2=x3+ax+b. It also has a distinguished point
at infinity which is denoted by ∞. The key
computational process is done as follows.

Fig.1: Cluster Based Hierarchical Tree

Elliptic curve key generation: E is considered to be an
elliptic curve specified over a finite field Fp. Let p be a
point on E (Fp) and is assumed to have a prime order n.
The cyclic subgroup E (Fp) that is generated by p is {p}
= {p, 2p, 3p………. (n-1)p, ∞}.
 The public domain parameters are the prime p and
its order n and the equation of the elliptic curve E. A
private key d is an integer. It is selected randomly from
the interval [1, n-1] and has its corresponding public key
is q=dp.
 The Key Exchange Protocol (KEP) enables the
secured and effective use of keys, considering the
members involved in communication. Each member
chooses his own random key and multiplies it with
global key to form the public key. The result of each
member is sent to concerned Cluster Controller where
all the public keys are added and multiplied with his
own integer private key by the Cluster Controller and
the resultant key, the Group key of each Cluster is
formed and this will help to do Intra Process
Communication.
 Then each Cluster Controller will send the Group
key of his own Cluster to the Cluster Controller Head to
form another key for Inter Process communication. The
final group key formed by the Cluster Controllers Head
is issued to all the Cluster Controllers and the
communication is allowed to take place by encrypting
and decrypting the messages secretly among all Cluster
Controllers.

Secure group communication: Secure Group
Communication (SGC) is the process of transferring the
message from one member to another member in a
highly secured manner. The SGC performs, joining and
leaving operations and maintains the transfer of
message between the sender and receiver. The transfer
of messages can take place either among nodes under
the same cluster called the Intra cluster communication.

J. Computer Sci., 7 (3): 328-340, 2011

332

Fig. 2: Protocol architecture

or among different group of clusters called the Inter
cluster communication

Due to lack of security aspects in the current scenario of
networks, different secrecy policies and authentication
mechanisms are to be adopted. They control the
join/leave operation in a secured way and check for the
user authentication. The DBMSG stores all the group
messages and it can be accessed by the proper group
member only. The cluster is updated on
addition/deletion of a member along with the generation
of the authenticated key.

Design and implementation: The design and
implementation of Secure Group Communication
Protocol is done using Advanced Java. Each phase of
the architecture is implemented as a separate algorithm.

The output of one algorithm is fed as an input to another
algorithm. Each one holds its own security mechanism
to secure the message conversation and authentication.
Below we will briefly discuss about the Cluster Based
Hierarchical Tree generation (CBHT), key formation
and message communication through ECC Algorithm.

Cluster based hierarchical tree generation: This
phase has an algorithm that generates a cluster based
hierarchical tree in an efficient manner. Its main
mechanism is to provide tree dynamics for joining /
leaving operations. The algorithm for cluster formation
is shown below. The CBHT is formed based on the type
of applications.

Algorithm 1. Cluster Formation

J. Computer Sci., 7 (3): 328-340, 2011

333

Input: Cluster Formation Parameters (UserTotal,
TypeCluster).

Output: CBHT Generation.
1. Digit:=TotalDigit(UserTotal);
2. Digit/=2;
3. assert(UserTotal<=power(2,PowerDigit*Digit));
4. if(true) begin
5.
 CreateDummyNode(GetMemberAddress(dbgm.Poi
nter));
6. end
7. if(TypeCluster==0) begin
8. AssignMember(dbgm.Key);
9. ClusterTree(Sort(dbgm.Member));
10. else if(TypeCluster==1)
11. AssignMember(dbgm.Location);
12. ClusterTree(Sort(dbgm.Member));
13. else
14. AssignMember(dbgm.TimeStamp);
15. ClusterTree(Sort(dbgm.Member));
16. end
17. ClusterUpdation(db.Member,Cluster) begin
18.
 CreateDummyNode(GetMemberAddress(dbgm.Poi
nter));
19. AssignMember(dbgm.Cluster);
ClusterTree(Sort(dbgm.Member));
20. end

Key formation: This phase generates the key not only
for the group members of the resultant hierarchical tree,
but also for the cluster controllers using ECC technique
to enable effective key exchange.

Algorithm 2. Key Pair Generation
Input: Key Generation Parameters (a, b, p,
dbgm.MemberList).
Output: Pair of Keys [x, y]
1. string Eqn=”y^2=x^3+ax+b”;
2. v1=mod(Value(a, b, x),p);
3. v2=mod(y, p);
4. if(v1==v2) //for any [x, y]points array
5. begin
6. assume n1 as integer //chosen by group member
7. assign(n1,dbgm.Member);
8. arr.x=Computex(global.x,global.y,p,a,b,n1);
9. arr.y=Computey(global.x,global.y,p,a,b,n1);
10. arr.point=Computep(arr.x,arr.y,n1);
11. return arr;
12. end
13. else
14. return null;

Elliptic curve encryption/ decryption strategy: A
plaintext m is denoted by point M and it is then
encrypted by adding it to kQ, where k is an integer
selected randomly and Q is the targeted recipient’s
public key. The sender sends the points C1=kP and
C2=M+kQ to the recipient .The recipient uses his/her
private key d to compute dC1=d(kP)=k(dP)=kQ and
thereafter recovers M= C2 – kQ. An eavesdropper now
has to compute kQ. This task of computing kQ from
domain parameters is accomplished with the elliptic
curve analogue of the Diffie-Hellman problem.

Algorithm 3. Elliptic Curve Encryption
Input: Elliptic Curve Parameters (p, E, P, n). Public
key Q, Plain Text m.
Output: Cipher Text (C1,C2)
1. Represent the message m as a point M in E(Fp).
2. Select k€ R [1, n-1].
3. Compute C1=kP.
4. Compute C2=M+kQ.
5. Return(C1,C2)

Algorithm 4. Elliptic Curve Decryption
Input: Elliptic Curve Parameters (p,E,P,n). Private
Key d, Cipher Text (C1,C2).
Output: Plain Text m.
1. Compute M= C2-d C1 and extract m from M.
2. Return(m).

Group communication: The generated keys are used
to provide security mechanisms for transferring the
messages through encryption and decryption methods.
The group dynamics enables the updating of the group
whenever a joining / leaving operation is performed by
the group member. The following pseudo code explains
the entire process of SGC.

Algorithm 5. Membership Process Control
1. SGC(Operation,dbgm.AccessControl) begin
2. if(Operation.Join==1||Operation.Leave==1)
3. begin
4. DoMembershipProcess(CC);
5. ClusterUpdation(dbgm.Member,Cluster)
6. end
7. elseif(Operation.Send==1||Operation.Receive==1)
8. begin
9. Commn(Crypto(dbmsg.Msg))
10. ClusterCommn(dbmsg.EncMsg);
11. end
12. end

J. Computer Sci., 7 (3): 328-340, 2011

334

RESULTS AND DISCUSSION

 The implementation of the CBHKDP is carried out
in Windows platform with 64 systems with Advanced
Java as front end and Oracle database as backend. A
single common group key is formed with the keys
obtained from all the 64 terminals which act as servers
and each server has 64 terminals as its clients being run
simultaneously. The joining/leaving operations of the
member are performed on each machine and the key is
obtained to have Intra/Inter Cluster communications
among all group members.
 For instance, an elliptic curve over the finite field
F23 is assumed. Let a = 1 and b = 0 and the elliptic curve
equation be y2 = x3 + x. The points satisfying the
equation are: (0,0) (1,5) (1,18) (9,5) (9,18) (11,10)
(11,13) (13,5) (13,18) (15,3) (15,20) (16,8) (16,15)
(17,10) (17,13) (18,10) (18,13) (19,1) (19,22) (20,4)
(20,19) (21,6) (21,17) . The 64 keys from each terminal
which are used to generate the group and public keys are
obtained with these points that are derived from our
implementation. The following Fig. 3 with 8 Cluster
Contollers under a Cluster Controller Head illustrates
the implementation of our model. Example if there are 8
members under each Cluster Controller(CC), the
function of the CC is to calculate the Cluster group key
and provide a medium of access for communication
between the members of the same Cluster(Intra
Communication) and the Cluster Controller Head(CCH)
will form a Group Key deriving keys from each Cluster
Controllers for Inter Group Communication. Here we
have taken the global point as (16, 15).
 The CCH in the Fig. 3 is the head of all the Cluster
Controllers. Here, (1, 18) is the group key that is
computed by the contributions of all the Cluster
members.
 The main task after the generation of the group key
is to establish a secured communication among the
group members. For an example, the communication
between M1 and M49 is assumed. The member M1
sends the message (say “HELLO”) to M49 using ECC.
The encrypted form of the message “HELLO” is {(9,
18), (16, 8)}, {(9, 18), (15, 3)}, {(9, 18), (20, 19)}, {(9,
18), (20, 19)}, {(9, 18), (20, 4)} which is obtained as the

result of our implementation. Now, the member M49
easily decrypts the message as “HELLO”. If three
members want to leave the group and two members
want to join the group then all the Cluster Controller
keys with which the Cluster Controller Head key must
be updated.

Performance analysis: The Table 1-5 show the cost
effectiveness of proposed model over the other existing
models.

Communication cost: The data has been encrypted
with the help of the ECC algorithm and then distributed
it to the other systems to achieve secure communication
over heterogeneous networks. By using the key, the
member can encrypt / decrypt the message and also it
provides authentication tools for better communication.
Table 1 shows Our proposed protocol takes O(1) as cost
of communication because only one message is needed
to transmit to the Cluster Controller regarding the
joining / leaving of the members in the network. Hence
our proposed Protocol incurs lesser communication cost
than that of the existing protocols.

Computational cost: Whenever group members
join/leave the group, the Group Key has to be refreshed
to achieve high level of security, forward and backward
secrecy. The key updating must be done immediately
and sent to all members in the group. The group key is
updated due dynamic changes in the group. It is nor
prudent to change the group key if the communication
takes place during the time of the changes. To solve this
problem, the group controller issues a key initially to the
newly joined members to take part in the
communication temporarily and then it will issue the
key later so that all the members can make use of the
new group key for further communications. Table 2 and
Fig. 5 shows the proposed protocol has only minimum
key computational complexity of log N/ Ma

⎡ ⎤⎣ ⎦ for the
computation of the group key in joining/leaving. An
effective ECC Algorithm is utilized for computation
along with CBHKDP Mechanism.

Fig. 3: Example of 8 Cluster Contollers under a Cluster Controller Head

J. Computer Sci., 7 (3): 328-340, 2011

335

Table 1: Communication Cost
 Join Leave

Techniques Multicast Unicast
Simple Application 1 1 n-1
Logical Key Hierarchy (LKH) 2 log n 12 − log n2 2 log n2

One-way Function Tree (OFT) log n 12 + log n 12 + log n 12 + +1

Key Graph log n2 log n 12 + log n 12 +
Logical Key Tree 1 1 1
Proposed Protocol 1 1 1

Table 2: Computation Cost
Protocols Join Leave
Simple application 1 n
LKH 2 log n 12 − 2 log n2

OFT log n 12 + log n 12 +

Key Graph log n 14 + 4 log n 14 −

Logical Key Tree log n|m2
⎡ ⎤⎢ ⎥ log n|m2

⎡ ⎤⎢ ⎥
Proposed Protocol log N/Ma

⎡ ⎤⎣ ⎦ log N/Ma
⎡ ⎤⎣ ⎦

Table 3: Number of rekey messages needed
 Number of rekey messages needed
 --
 Join Leave
Simple application 1 n
LKH d+1 2d
OFT d+1 d+1
OFCT log N 1d + (d 1) log Nd−

Our protocol log N/M 1a
⎡ ⎤ +⎣ ⎦ log N/M 1a

⎡ ⎤ −⎣ ⎦

Table 4: Encryption/decryption overhead
 Key server Member node
 --
 Join Leave Join Leave
Simple application 2 n 1− 1 1
LKH 3 log n2 2 log n2 log n2 log2 n

OFT 2 log n 22 + 2 log n 12 + log n2 2

Key graph log n 24 + 4 log n 14 − log n4 log4 n

Logical key tree log n|m 22
⎡ ⎤ +⎣ ⎦ log n|m2

⎡ ⎤⎣ ⎦ log n|m2
⎡ ⎤⎣ ⎦ 0

Proposed protocol log N/M 2a
⎡ ⎤ +⎣ ⎦ log N/Ma

⎡ ⎤⎣ ⎦ log N/M 2a
⎡ ⎤ +⎣ ⎦ 0

Table 5: Key Storage during Join and Leave Operations
Protocols Key server Member node
Simple application n 2
LKH 2n log n 12 +

OFT 2n 2 log n 12 +

Key graph d n
d 1
⎡ ⎤
⎢ ⎥
−⎢ ⎥

 log n 14 +

Logical key tree n 2m≤ 2m
n>2m 2(/)N M n⎡ ⎤ +⎢ ⎥ log N/M m 12

⎡ ⎤ + −⎢ ⎥

Proposed protocol []ln log N/M* aS ln a=∞ []()log N/M 1a +

Optimal mechanism for rekeying: Here an efficient
mechanism for rekeying is presented and this
mechanism reduces rekeying overhead that is the
number of encryptions, decryptions and the size of
multicast message during leaving and joining of nodes
are considerably reduced compared to other existing
schemes.
 Our focus is to distribute and manage the group key
among large group after the changes in membership.
 In our scheme, there is a twisted key server which is
responsible for generating required keys and distributing
those keys to the valid group members. Here all the
cluster controller heads act as key server.
 When a new member joins the group, the
SEK(Session Encryption Key) must be updated. The
SEK is generalized as:

{ }GSK (SEK) K K K KP m1 m2 mnGC
= × +

where ‘n’ depends on cluster size M.

 The key handled by the cluster controller is called
as “Group Session Key”(GSK) and the key generated /
handled by the group controller head is called “Domain
Key(DK):

{ }DK K K K K KP G1 G2 G3 GnDC
= × + + +

where ‘n’ depends on M. In this scheme the height of
the tree is considered as log N / Ma

⎡ ⎤⎣ ⎦ .For generating GSK
and DK, the server secrets K PGC

 and member secrets Kml
are used to ensure forward and backward secrecy.

Joining of a member: When a member joins the group,
it has to obtain GSK and DK to have communication
with the group members.
 Once a member joins the group, the key server has
to update the GSK and DK by transmitting following
messages:- One broadcast message to existing members,
one unicast message to the group controller head to
notice the arrival of a new member and update the DK.
Finally one unicast message is sent to the new member.
It is indicated as follows.
 Consider if M3 wants to join the group under GC1:

aif M 3, N M , a 2
2N 3 9

⎧ ⎫⎪ ⎪= = =⎨ ⎬
⎪ ⎪∴ = =⎩ ⎭

 If M3 sends a join request to GC1{key server}, GC1
has to send following messages:

J. Computer Sci., 7 (3): 328-340, 2011

336

{ } { }KS M ,M : K K1.11 1 1.1'→

{ }KS M : K K3 31.1'→

{ }KS GCH : K K00 '→

{ } { } { } { }GCK KS GC ,GC : K . K ,K2 3 0 ' 1.2 1.3→

 The number of rekey messages for joining a new
member is given as, log N /M 1a

⎡ ⎤ +⎣ ⎦ and this is the optimal
rekey messages compared to other schemes
 When the degree of the tree gets increased with
increase in number of members, the number of rekey
messages that must transmitted by the key server is
lesser and optimal.
 For example, if the degree of the tree is taken as 4,
cluster size equal to 8, the total member of members
become 4096. Then the total number of rekey messages
for joining is calculated as:

{ }

{ } { }

N 4096 4 4log 1 log 1 log 512 1 log 4 4 14 4 4 4M 8

4 4log 4 log 4 1 4 4 1 94 4

⎡ ⎤ ⎡ ⎤= + = + = + = + +⎢ ⎥ ⎣ ⎦⎣ ⎦

= + + = + + =

 The total number of rekey messages required is
lesser compared to other existing schemes.

Leaving of a member: When a member wants to leave
the group, the number of messages that must be text, is
calculated as follows.
 When an existing member wants to leave the group,
the keys server has to update GSK and DK, computing
as follows:

'
GSK K K K K K KP m m m P mGC 1 n n GC k

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬= × + + − ×
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

K is the number of member:

'
1

'
DK K GSK K KP GC GCDC n

⎧ ⎫⎪ ⎪
⎨ ⎬= × + +
⎪ ⎪⎩ ⎭

 When a member wants to leave the group, the
keyserver has to transmit following messages. One
broadcast message to the other members who belong to
the same group and the unicast message to the group
controller head to update DK and GSK. Hence the total
number of rekey messages required for the member to
leave is given as log N/ M 1a

⎡ ⎤ −⎣ ⎦ .
 For example, for M1 wants to leave the group CC1,
the keyserver has to transmit the following messages:

{ }KS M ,M : K .K1.12 3 '1.1

⎧ ⎫⎪ ⎪
⎨ ⎬→
⎪ ⎪⎩ ⎭

KS CCH : K .K0'0

⎧ ⎫⎪ ⎪
⎨ ⎬→
⎪ ⎪⎩ ⎭

 If a = 4, M = 8, N = 4096 the number of rekey
messages required is:

{ } { }4096 4 4log 1 log 4 log 4 1 4 4 1 74 4 48
⎡ ⎤

= − = + − = + − =⎢ ⎥
⎣ ⎦

 Hence when ‘N’ grows larger, the number of rekey
messages required is lesser and this scheme produces
optimal overhead.

Number of rekey messages needed: To retain the
forward and backward secrecy during the joining /
leaving operation, the concept of rekeying is used. The
proposed Protocol consumes less number of rekey
messages than that of the existing protocols. The cost of
rekey message is computed based on the dummy nodes
through which the message has been passed. Table 3
shows for any cluster size, it will take only one rekey
message for our proposed protocol. The subgroup size
may be 8,16,32,64 and so on.

Cost of encryption/decryption: The cost of encryption
while joining with the key server of proposed scheme is
log N /M 2a

⎡ ⎤ +⎣ ⎦ because the key server has to send two
encrypted messages to existing group members and the
new member who sends join request. The overhead of
encryption while leaving the key server is computed as
log N /Ma

⎡ ⎤⎣ ⎦ .
 The decryption overhead of proposed scheme is
log N /Ma

⎡ ⎤⎣ ⎦ at key server and it doesn’t require decryption
when a member node leaves the group. Hence the
decryption overhead at member node becomes 0. Thus
the proposed scheme produces optimal
encryption/decryption overhead compared to all other
existing schemes.
 The Table 4 displays the analytical result of
message encryption/decryption by proposed technique
along with other existing models.

Key storage at join and leave operations: The
following derivation is used to calculate the probability
of key storage when any member leaves/joins the group.

N-ray tree: To reduce the storage at GC, the group of
‘N’ members is divided into clusters of size ‘M’. To
obtain an optimal tree, as in Fig. 4 a tree is constructed
with the height of log [N / M]a and N=Ma, where ‘a’ is the
degree of the tree, M-cluster size, N – total number of
member nodes.

 M = 4 a = 2 N = Ma = (4)2 N = 16

 As per our proposed concept, the user needs to store

(){ }1 log N /Ma+ keys.
 ‘1’ represents DK & log N / Ma

⎡ ⎤⎣ ⎦ represents GSK.

J. Computer Sci., 7 (3): 328-340, 2011

337

Fig. 4: Cluster Controllers with 4 members and a CCH

This is the optimal storage of key which members
posses in the clusters.
 For example, a member at cluster 1 has to store his
secret key and GSK.
 When M1 leaves the cluster, the GSK alone must be
updated by CC1.
 CC1 has to update the GSK by calculating

GSK K K K K KR p p R pGC m m4 GC m11 1 1

⎡ ⎤⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪= × + − ×⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

therefore, the

total number of key update messages per member
leaving is denoted as:

()C (M 1) log N /Ma= − + (1)

 In the minimal storage scheme, GC uses a secret
key for generating SEK for each user.
 Therefore the number of keys stored by the cluster
controller is:

 S N /M 1⎡ ⎤= +⎣ ⎦ (2)
 1 represents storage required for GSK and N/M⎡ ⎤⎣ ⎦
represents storage for the group member’s public key
(or) KEK.

Minimizing storage at key server/GC: To minimize
the center storage it is necessary to take an optimal
cluster size ‘M’. Based on (1-2) the following
expressions are formed as:

S N/ M 1 w.r.t. M⎡ ⎤= +⎣ ⎦ (3)

()C (M 1) log N /M (N)a= − + ≤ β (4)

 Where (N)β is the number of key messages per
update and it is an application dependent design
parameter.

 The Eq. (3-4) are used to derive optimal cluster size
for the construction of n-array tree.

Theorem 1: For the optimal cluster size M that
minimizes the storage function S N /M 1⎡ ⎤= +⎣ ⎦ , by satisfying
the update communication budget C (M 1) log N /M (N)a

⎡ ⎤= − + ≥ β⎣ ⎦
is obtained by the largest root of the Equation M 1ln M− λ = μ
and 1

ln aλ = , 1 (N) log N/ Ma
⎡ ⎤μ = + β − ⎣ ⎦

Proof: Since the storage is the decreasing function of M,
the lowest value of M which satisfies the
communication constraint will be the solution.
 Hence, optimal value of the cluster size is computed
as:

[]{ }

[]{ }

* *
M ln M

* *M ln M 0

* *M ln M 1 (N) log N /M 0a

* *
M ln M 1 (N) log N /M 0a

− λ = μ

−λ −μ=

−λ − +β − =

− λ − −β + =

* *

M ln M log N /M 1 (N)a
⎡ ⎤− λ + − = β⎣ ⎦ (5)

 The update communication constraint (4-5) are
convex function of M and attain its minimum value at:

* *
M ln M log N/M 1 (M 1) log N /Ma a

* *
M ln M M

⎡ ⎤ ⎡ ⎤− λ + − = − +⎣ ⎦ ⎣ ⎦

− λ =

ln 0

[ln] 0

[ln]at M [ln]

λ − λ λ − λ =

λ λ =

λ λ = λ λ

Hence, the factor (N)β must satisfy the following
inequality function to solve (5):

{ }

(N) {ln }

1.44 ln1.44

1.44 * 0.364

0.524

β ≥ λ λ

≥ ∗

≥

≥

 (6)

 For larger value of ‘N’, the asymptotic lower bound
of (N)β approaches log Na and the equation (5) can be
rewritten as:

* *
M ln M− λ = μ (7)

Solution to storage optimization: The fixed point Eq.
(7) is the contradiction mapping in the range of interest
[λ,∞].
 Set the initial value of M0 = μ .

J. Computer Sci., 7 (3): 328-340, 2011

338

 (a) (b)

Fig. 5: shows computational cost on member joining (a) and member leaving (b)

 (a) (b)

Fig. 6: Key Storage during Joining (a) and Leaving (b) Operations of Proposed protocol (Key Server)

 (a) (b)

Fig. 7: Key Storage during Joining (a) and Leaving (b) operations of Proposed protocol (Member Node)

J. Computer Sci., 7 (3): 328-340, 2011

339

Theorem 2: When N grows larger (∞) and M grows
larger (∞) at CC requires ()ln log N/ Ma

ln a with the constraint
that a 2≥ .

Proof: Assume that the initial value of M is M0 = μ , then
(7) can be written as:

* *
M ln M= μ − λ

*
ln

*1 ln

= μ − λ μ

⎡ ⎤λ⎢ ⎥= μ − μ
⎢ ⎥μ⎣ ⎦

 After applying some approximation, M is given as:

i*
M 1 ln

i 1

⎧ ⎫∞ ⎛ ⎞λ⎪ ⎪∏= μ − μ⎜ ⎟⎨ ⎬μ= ⎝ ⎠⎪ ⎪⎩ ⎭

 The asymptotic value of M when N→∞ , is given as:

i*
M lim 1 ln

i 1N

⎧ ⎫∞ ⎛ ⎞λ⎪ ⎪∏= μ − μ⎜ ⎟⎨ ⎬∞ μ= ⎝ ⎠→∞ ⎪ ⎪⎩ ⎭

i

lim 1 ln
N i 1

i
lim 1 ln

N i 1 i 1

⎧ ⎫∞⎪ ⎪⎛ ⎞λ⎨ ⎬= μ − μ∏ ⎜ ⎟
μ⎪ ⎪⎝ ⎠→∞⎩ = ⎭

⎧ ⎫∞ ∞⎪ ⎪⎛ ⎞λ⎨ ⎬= μ −μ μ∏ ∏ ⎜ ⎟
μ⎪ ⎪⎝ ⎠→∞⎩ = = ⎭

i

lim ln
N i 1

⎧ ⎫∞⎪ ⎪⎛ ⎞λ⎨ ⎬= μ−μ μ∏ ⎜ ⎟
μ⎪ ⎪⎝ ⎠→∞⎩ = ⎭

 (8)

 After the series of approximation, (8) becomes:

lnlim
1N

ln0

⎧ ⎫⎪ ⎪μ
⎨ ⎬= μ + λ

λ−⎪ ⎪→∞ μ⎩ ⎭

⎧ ⎫⎪ ⎪μ
⎨ ⎬= μ + λ ⋅
μ⎪ ⎪⎩ ⎭

ln= μ + λ ⋅ μ (9)

 Where M = µ and N → ∞
 After applying the values of µ and λ, (9) becomes:

(){ } 1
1 (N) log N/ M lna ln a= +β − + ⋅ μ (10)

(){ }
()

() (){ }{ }
[]

1
1 (N) log N/ M lna ln a

1
1 (N) log N/ M lna ln a

11 (N) log N /M ln 1 (N) log N/ Ma aln a

ln log N/ Ma
ln a

= +β − + ⋅ μ

= + β − + ⋅ μ

= +β − + +β −

=

 By solving (10) the result of storage constraint
becomes as follows:

[]ln log N / M* aS ln a=∞ Where a 2≥ and N → ∞

 S* is the generalized notation for storage cost.
 Hence the constraint optimization leads to the
optimal growth of storage at member node as

[]()log N / M 1a + . The Table 5, Fig. 6 and 7 shows how our
proposed protocol is far better than all other schemes in
Key Storage during Joining/Leaving operations for
Key Server and Member Node.

CONCLUSION

 Our proposed protocol comparatively produces
better results than the existing protocols in terms of less
key computational cost and communication cost. The
number of keys stored in the key server/member and the
number of rekey messages needed by the introduction of
the clustering technique are comparatively less. The
cluster sizes of 8, 16, 32 and 64 have been empirically
tested. The proposed architecture is efficient in the view
of cost effective secure group communication in the
context of distributed environment by applying the ECC.
Our proposed model does not need any trusted key
center for the distribution of the keys. The Cluster
Controllers and the Cluster Controller Heads look after
the root key formation for intra/inter communication
between the members. Our proposed model can be
extensively applicable to large groups, either wired or
wireless with a low bandwidth channels or wide area
network environment. As future scope of work, further
reduction in computational cost and the time needed for
rekeying while members joining/leaving can be focused.

REFERENCES

Al-Saadoon, G.M.W., 2009. A flexible and reliable

architecture for mobile agent security. J. Comput.
Sci., 5: 270-274. DOI: 10.3844/jcssp.2009.270.274

Al-Talib, S.A., B.M. Ali and S. Khatun, 2009. An
approach to improve the state scalability of source
specific multicast. Am. J. Applied Sci., 6: 1347-
1351. DOI: 10.3844/ajassp.2009.1347.1351

Amir, Y., Y. Kim, C. Nita-Rotaru, J. Schultz and J.S.G.
Tsudik, 2004. Secure group communication using
robust contributory key agreement. IEEE Trans.
Parallel Distributed Syst., 5: 468-480. DOI:
10.1109/TPDS.2004.1278104

Kim, H., S.M. Hong, H. Yoon and J.W. Cho, 2005.
Secure group communication with multiplicative
one-way functions. Proceedings of the International
Conference on Information Technology: Coding
and Computing, (ITCC’05), IEEE Computer
Society Washington, DC, USA., pp: 685-690. DOI:
10.1109/ITCC.2005.252

J. Computer Sci., 7 (3): 328-340, 2011

340

Kulkarni, S.S. and B. Bruhadeshwar, 2010. Key-update
distribution in secure group communication.
Comput. Commun., 33: 689-705.
DOI:10.1016/j.comcom.2009.11.014

Lee, F.Y. and S. Shieh, 2004. Scalable and lightweight
key distribution for secure group communications.
Int. J. Network Manage., 3: 167-176.
DOI: 10.1002/nem.515

Manz, D., P. Oman and J.A. Foss, 2010. A framework
for group key management protocol assessment
independent of view synchrony. J. Comput. Sci., 6:
229-234. DOI: 10.3844/jcssp.2010.229.234

Mao, Y., Y. Sun, M. Wu and K.J.R. Liu, 2004. JET:
Dynamic join-exit-tree amortization and scheduling
for contributory key management. IEEE Trans.
Network., 14: 1128-1140. DOI:
10.1109/TNET.2006.882851

Micciancio, D. and S. Panjwani, 2008. Optimal
communication complexity of generic multicast key
distribution. IEEE/ACM Trans. Network., 16: 803-813.
DOI: 10.1109/TNET.2007.905593

Poovendran, M.L.R. and D.A. McGrew, 2004.
Minimizing center key storage in hybrid one-way
function based group key management with
communication constraints. Inform. Proc. Lett., 93:
191-198. DOI: 10.1016/j.ipl.2004.10.012

Pour, A.N., K. Kumekawa, T. Kato and S. Itoh, 2007. A
hierarchical group key management scheme for
secure multicast increasing efficiency of key
distribution in leave operation. Comput. Networks,
51: 4727-4743. DOI: 10.1016/j.comnet.2007.07.007

Prathap, P.M.J. and V. Vasudevan, 2009. Analysis of
the various key management algorithms and new
proposal in the secure multicast communications.
IJCSIS, 2: 8.

Rafaeli, S. and D. Hutchison, 2003. A survey of key
management for secure group communication.
ACM Comput. Survey, 35: 309-329. DOI:
10.1145/937503.937506

Saroit, I.A. S.F. El-Zoghdy and M. Matar, 2009. A
scalable and distributed security protocol for
multicast communications. Int. J. Network Secur.,
12: 61-74.

Sudha, S., A. Samsudin and M.A. Alia, 2009. Group re-
keying protocol based on modular polynomial
arithmetic over galois field GF(2n). Am. J. Applied
Sci., 6: 1714-1717. DOI:
10.3844/ajassp.2009.1714.1717

Wong, C.K., M. Gouda and S.S. Lam, 2000. Secure
group communications using key graphs.
IEEE/ACM Trans. Network., 8: 16-30. DOI:
10.1109/90.836475

Yi, X., 2005. Security of Chien's Efficient Time-bound
hierarchical key assignment scheme. IEEE Trans.
Knowledge Data Eng., 17: 1298-1299. DOI:
10.1109/TKDE.2005.152

Zheng, S., D. Manz and J. Alves-Foss, 2006. A
communication-computation efficient group key
algorithm for large and dynamic groups. Comput.
Networks, 51: 69-93. DOI:
10.1016/j.comnet.2006.03.008

