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Abstract: Problem statement: Due to the ever growing amount of biomedical detkstored in
multiple tables, Information Extraction (IE) frorhase datasets is increasingly recognized as one of
the crucial technologies in bioinformatics. Howewer IE to be practically applicable, adaptabilify

a system is crucial, considering extremely divetsmands in biomedical IE application. One should
be able to extract a set of hidden patterns froesdhbiomedical datasets at low cdgpproach: In

this study, a new method is proposed, called Bidios Data Aggregation for Relational Attributes
(BioDARA), for automatic structuring information &action for biomedical datasets. BioDARA
summarizes biomedical data stored in multiple ®lheorder to facilitate data modeling efforts in a
multi-relational setting. BioDARA has the advantaga capabilities to transform biomedical data
stored in multiple tables or databases into a fe8pmce model, summarize biomedical data using the
Information Retrieval theory and finally extracefuent patterns that describe the characteristics o
these biomedical dataseResults: the results show that data summarization perfornyeBARA, can

be beneficial in summarizing biomedical dataseta aomplex multi-relational environment, in which
biomedical datasets are stored in a multi-levebié-to-many relationships and also in the case of
datasets stored in more than one one-to-many oekdtips with non-target tableSonclusion: This
study concludes that data summarization performe8ibDARA, can be beneficial in summarizing
biomedical datasets in a complex multi-relatiomalismnment, in which biomedical datasets are stored
in a multi-level of one-to-many relationships.

Key words: Information extraction, data summarization, relatib data mining, relational
database, biomedical datasets, summarization peefdr datasets stored, multiple
tables, relational attributes

INTRODUCTION of molecules (active and non-active molecules).sEhe
molecules can be represented in molecular strigture

Biomedical information extraction from structured representation, as shown in Fig. 1. At the sametifre
biomedical data stored in relational databaseggdte information of these molecules can be stored in
data summarization applied to relational biomedicarelational tables, as shown in Fig. 2.
data. One of the approaches of data summarization f
relational biomedical data is clustering. Clustgria a
process of grouping data that shares similar
characteristics into groups. Despite the increase i
volume of biomedical datasets stored in relational
databases, only few studies handle clustering acros
multiple relations (Kirsten and Wrobel, 1998; 2000)
a biomedical dataset stored in a relational datakéih
one-to-many associations between records, eack tabl
record (or object) can form numerous patterns of NO,
association with records from other tables. For
example, in a mutagenesis dataset, there are bgsed  Fig.1: An example of a molecular structure and togd
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clustering results. RDBC approach is also not able
generate interpretable rules. In our approach to
clustering in a multi-relational environment, we
consider all instances of an object when the digtan
between two objects is computed. By clustering aije
with  multiple instances, objects with the same
characteristics are grouped together and objects wi
) ] . ] ) different characteristics are separated into dffier
Fig. 2: A biomedical dataset stored in a relationalyoyps. Traditional clustering algorithms are based
database with two levels of one-to-manygne representation space, usually a vector space.
relationship However, in a relational database system, multiple
instances in a non-target table exist for eachabbje
the target table, due to the one-to-many assoniatio

In Fig. 2, the scenario in which a single objeas h

multiple instances is illustrated. In this scenario b ltile i d the obi ;
relation Molecules has a one-to-many relationshigh w etween multiple instances and the object. To efust

relations Atom and Bonding, through the associatibn multiple-instance data using the established method
field Mol. would require to restrict the analysis to a single

representation or to construct a feature space

Clustering in a multi-relational environment has = ;
comprising all representations.

been studied in Relational Distance-Based Clugierin . o
In this study, we present a data summarization

(RDBC) (Kirsten and Wrobel, 20(,)0)' Clusterllng approach, borrowed from the information retrieval
(Hofmann and Buhnmann, 1998; Hartigan, 1975) is afheory, to cluster such multi-instance data. Thiglg
unsupervised learning technique, that is, it caerale  proposes a technique that considers all available
on un-annotated data. However, it can be used&s tlinstances of an object for clustering and we shiosv t
first step of a supervised learning tool. For instg a evaluation results on the mutagenesis dataset. In
dataset split into classes can be clustered (withowaddition to that, the effect of the number of relev
making use of the class labels) and then assoggatio features on the classification performance is also
between clusters and classes learned using orleeof t€valuated. The rest of the study is organized ksuie.

various well known supervised learning tools. Tisis First, we present rglated Study on data mining in a
._multi-relational environment. Next, the problem is

the case in RDBC,_vyhere the role of this tool IStormalized and the proposed new pre-processing
performed by a decision tree learner. The approachethod for the purposes of clustering, called Dyicam
proposed in this study follows the same strategyAggregation of Relational Attributes (DARA) (Alfred
combining a novel clustering technique with C4.5. and Kazakov, 2006a; 2006b; 2007) is introduced.

In RDBC, the similarity between two objects is Finally, the experimental evaluation is discussed a
defined on the basis of the tuples that can beegbio  then the conclusion section summarizes the study an
each of them. In this way, each of the two objésts Presents some ideas for future research.
expanded into a set.of records and the two sets are MATERIALSAND METHODS
compared as follows: for each record in one set, th
closest match in the other set is found and thetadce Learning data in a multi-relational environment:
added. The distance between two such records i3 . A

) ; -~ The most popular approach to supervised learnirg in

measured in the usual ways, comparing each pair of

. . . : multi-relational environment is relational learnin
attributes in turn, depending on the types of lautés Relational learning is not a new research areahalssda\g
involved, e.g., as differences of numerical valu@sa 9

Hamming distance in the case of categorical valued2nd history. (Muggleton and DeRaedt, 1994) inteelu
However, the RDBC process of computing the distanc&® concept of Inductive Logic Programming (ILPHan
between two objects is very expensive, since thdlS t.heoryZ methods _and implementations in learning
process compares repeatedly components of firgrord multi-relational domains. ILP methods learn a skt o
instances where each comparison is eventually egtuc existentially quantified first-order Horn clausést can

to a propositional comparison of elementary feature b€ applied as a classifier (Saltetral., 1975; Srinivasan
addition to that, the RDBC approach only considees €t al., 1996). In a relational learner based on logic-
minimum distance measured between instances tbased propositionalization (Krameet al., 2001),
differentiate two objects and may not generate goodhstead of searching the first-order hypothesiscepa
clustering results, which leads to less meaningfuldirectly, one uses a transformation module to campu
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large number of propositional features and thers ase approach only considers the minimum distance
propositional learner. measured between instances to differentiate tweotdhj
Variants of relational learning include distance-and may not generate good clustering results, which
based methods (Horvatlet al., 2001; Emde and leads to less meaningful clustering results. RDBC
Wettschereck, 1996). The central idea of distarasetd ~ @pproach is also not able to generate interpretabds.
methods is that it is possible to compute the mutualn our approach, we transform the data representati
distance Emde and Wettschereck (1996) for each paf multi-relational environment into a vector space
of objects. Relational Instance-Based Learning (1B Model suitable or applicable to clustering operatidy
algorithms extend the idea of instance based legrii ~ clustering these objects, one can group bags with
relational learning (Emde and Wettschereck, 1996)Multiple instances that have similar charactesstfat
Instance-Based Learning (IBL) algorithms (Aftaal.,  €an be extracte_d, as an interpretable rule to ihestie
1991) are very popular and a well studied choicesluster's behaviors.
(Wettsschereck and Dietterich, 1995) for proposiio _ . _— ) ) .
learning problems. Probabilistic Relational Models M ulti-relational learning in DARA: We first describe

(PRMs) (Getookt al., 2001) provide another approach the concept of multi-relational setting for datarstl in
to relational data mining that is grounded in argbu a relational database. Then, we describe how desing

statistical framework. In PRMs, a model is introedc object stqred in a target table that is associatitt
that specifies, for each attributes of an objetd, i many Oti]edCt_s storetd In a non(—jtalrget table can be
(probabilistic) dependence on other attributes Heft t repr‘?ﬁ:nMeultimRael\;?igg;lsggﬁﬁgo el.
object and on attributes of related objects. Proyplest ; ] . .
) ) oyl In this subsection, we describe the representation

al. (2002) proposed a combined approach called : . . )
Structural Logistic Regression (SLR) that combinesdata for ob_Jects stored in multiple tables W't.h .
relational and statistical learning. many relations. Let DB be a database consisting of

Data stored in a multi-relational environment canOb]eCtS' Let R := {R1,...,Rm} be the set of different

be considered as multiple instances of an objecedt representations existing for objects in DB and ea<_:h
in the target table. As a result, learning multipleo?]eCthmay havE zhero or morehthan_ (_)ne representﬁno
instances can be applied in learning data in aimult ©' gac R" such that |m:" 0, where i = 1,...,m._Eac
relational environment. In Multi-Instance (MI) ledémg, Obje.Ct Oi DB, where 1 =1...n can.be despnbed by
instances are organized into bags that are labfeled maximally m d|ﬁ¢rent repres'entanons with - each
training, instead of individual instances. Multiple representation has its frequency:
instance learners assume that all instances, img b, := {R,(0):|R,(0)|:|Ob(R)
labeled negative, are negative and at least otanios | | R (0,):|R.(Oi)|:|Ob(R)[},
in a bag labeled positive is positive. Several apphes
have been designed to solve the multiple instancehere, Rj(Oi) represents the j-th representatiotiéni-
learning. Dietterich et al., (1997) described an th object and |Rj(Oi)| represents the frequencthefj-
algorithm to learn Axis-Parallel Rectangles (APRs)th representation in the i-th object and finallyo(R)j)|
from MI data. Maron introduced a framework called represents the frequency of object with j-th
Diverse Density to learn Gaussian concepts (Marzh a representation. If all different representationssefor
Lozano-Perez, 1998). Another approach using lazyi, then the total different representations foriOJOil
learning has been investigated in this context af w = m else [Oi] < m.
(Wang and Zucker, 2000). Unlike the former In relational instance-based learning, the distan
approaches, a framework for learning rules frommeasures are defined based on the attribute’s type
multiple data was introduced by Most of the apphesc (Horvath et al., 2001) and the distance between two
(Maron and Lozano-Perez, 1998; Wang and Zuckerpbjects is based on the minimum distance betwegn pa
2000) are not able to generate interpretable e @r  of instances from the two objects. In our approas,
decision trees. apply the vector-space model (Saltenal., 1975) to

In Relational Distance-Based Clustering (RDBC)represent each object. In this model, each objeds O
(Kirsten and Wrobel, 2000) the similarity betweamt considered as a vector in the representation-space.
objects is defined based on tuples joinable wigmth particular, we employed the rf-iof term weighting
The distance measure uses the idea of computingiodel borrowed from (Saltost al., 1975), where in
distances by recursively comparing the componehts ovhich each object Oi, i = 1,...,n can be represeated
first-orders instances, in which it is highly expae if
we have many tables. In addition to that, RDBC(rf;elog (n/of), rfzelog(n/of), . . ., rielog (n/ofy))
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where, rfj is the frequency of the j-th representain  2008). The encoding process to transform relational
the object, ofj is the number of objects that comthe  datasets into data represented in a vector-spadelmo
j-th representation and n is the number of objeEts. has been implemented in DARA (Alfred and Kazakov,
account for objects of different lengths, the léngt  2006a; 2006b). Given this data representation, ave c
each object vector is normalized so that it is oft u use clustering techniques (Hofmann and Buhnmann,
length (J|orfiof||= 1), that is each object is @toee on  1998; Hartigan, 1975) to cluster them, as a medns o
the unit hypersphere. In this experiment, we willaggregating them. DARA algorithm simply assigns
assume that the vector representation for eachcobjeeach record in the target table with the clustemimer.

has been weighted using rf-iof and it has beergach cluster then can generate more information by

normalized so that it is of unit length. In the @€  |ooking at the most frequent patterns that descedeh
space model, the cosine similarity is the mosty|yster.

commonly used method to compute the similarity
between two objects Oi and Oj, sim(0i,0j), which is RESULTS
defined as cos(0i,0j) = Oi«Oj/([|Oi||*|[|O]||)- T¢wsine

formula can be simplified to cos(0i,0j) = Oi«Oj, &M In this experiment, we employ an algorithm, called

the record vectors are of unit length. This measur@ARA that converts the dataset representation in
(elatlonal model into a space vector model and aise

becomes one if the records are identical and zero i,; . . X
there is nothing in common between them. The idea 0d|stanced-based method to group objects with nieltip

our approach is to transform the data representiio representations occurrence. With DARA algorithnh, al
PP . : : rep ; representations of two objects are taken into
all objects in a multi-relational environment int

. S . consideration in measuring the similarity betwetggse
vector space model and find the similarity distance,y, ghjects. The DARA algorithm can also be seen as
measures for all objects to cluster them. Theseatbj 5, aggregation function for multiple instances of a

then are grouped based on the similarity of theifppiect and is coupled with the C4.5 classifier (8
characteristics, taking into account all possmleWEKA) (Witten and Frank, 2000), as an induction
representations and the frequency of eachgorithm that is run on the DARA’s transformed alat
representation for all objects. representation. We then evaluate the effectivenéss
each data transformation with respect to C4.5. Ch&
Dynamic Aggregation of Relational Attributes  |earning algorithm (Quinlan, 1993) is a state-a-trt
(DARA): In relational database, records are storedop-down method for inducing decision trees. All
separately in different tables and they are assstia experiments with DARA and C4.5 were performed
through the matching of primary and foreign keystiw using a leave-one-out cross validation estimatiath w
a high degree of one-to-many association, a singldifferent values of p, where p denotes the numier o
record, O, stored in a main table is associatett wit attributes being concatenated. We chose well-known
large volume of records stored in another tableoun ~ dataset, Mutagenesis (Srinivasil., 1995).
algorithm called the Dynamic Aggregation of  The mutagenesis data (Srinivasenal., 1996)
Relational Attributes (DARA), we convert the data describes 188 molecules falling in two classes,
representation from a relational model into a vectoMmutagenic (active) and non-mutagenic (inactive)s 12
space model. Let O denotes a set of n recordsdstore of these molecules are mutagenic. The description

the target table and let R denotes a set of mde@;, ~ COnsists of the atoms and bonds that make up the
Ty, Ts, ..., Tm) stored in the non-target table. Let Ri iscompound. Thus, a molecule is described by lisifag

: : : ; : toms atom (AtomID, Element, Type, Charge) and the
in the subset of R, ;R and is associated with a single a
record Oa stored in the target table, @ Thus, the bonds bond - (Atom1, Atom2, BondType) between

association of these records can be described,as O gg)CTS}C:Sr:Q'En%ﬁnggné1weB;Zenéhée:,)e_ differets sf
R;. Since a record can be characterized based drathe 9 ge- b, '
of term/records that are associated with it, we th&  B1: The atoms in the molecule are given, as wethas

vector space model to cluster these records, as ponds between them; the type of each bond is given
described in the study of Saltehal. (1975). In vector as well as the element and type of each atom. The
space model, a record is represented as a vectoa@r table for B1 has the schema Molecule(ID, ATOM1,
of terms’, i.e., by the terms it contains and their = ATOM2, TYPE_ATOML1, TYPE_ATOM2,
frequency, regardless of their order. These terms a BOND_TYPE), where each molecule is described
encoded based on the number of attributes combmed,  over several rows, listing all pairs of atoms with
and represent instances stored in the non-targpe ta bond and the type of each atom and the type of
referred by a record stored in the target tabldréal bond between them
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B2: Continuous values about the charge of atoms are DISCUSSION
added to all data in B1

B3: Two continuous values describing each molecule In B1, the predictive accuracy is the highest when
are added to all data in B2. These values areothe | is 2 or 5. When p = 2, the attributes used fortehiisg
of compound’s octanol/water partition coefficient are the following 3 compounds: [first atom, second
(logP) and energy of the compound’s Lowestatom], [first element’s type, second element's tyged
Unoccupied Molecular Orbitat(. UMO) [bondtype]. When p = 5, the only attribute usedfisst

In B1, there are five attributes that describe arf!om. second atom, first element's type, second
individual molecule, namely first atom, second atom €lément's type, bondtype]. A test using the cotigte
first element's type, second element's type andased feature selection (CFS in WEKA) function ¢evit
bondtype. There are typically several records faizshe and Frank, 2000) provides a possible explanation of
molecule. We performed a leave-one-out crosghese results. We find that the two attributesst fir
validation estimation using the C4.5 classifierfor 1, element’s type and second element’s type, are yhighl
2, 3,4, 5 (pis the number of attributes combireijve  correlated with the class membership, yet uncdaela
have a total of five attributes for dataset B1. [€ab  with each other. This means that an attribute combi
shows that the predictive accuracy of the decisiee  these two would be relevant to the learning tasksaiit
learned. the instance space in a suitable manner. The data

In B2, two attributes are added into B1, which arecgniains this composite attribute when p = 2, 4%rialit
the charges of both atoms. We performed a leave-one.; for the cases of p=1and 3.

out cross validation estimation using the C4.5gifis In B2, when p = 5, we have two compound
for pl}{1,2,3,4,5,6,7}, as we now have a total of SEVENttributes, [first atom, second atom, first elensetype,

agrigu'ies for gataset hBZH With dz_:ldtglitional two mforesecond element’s type, bondtype] and [first elersent
attributes, we have a higher prediction accuracthe charge, second element’s charge]. Table 1 shows tha

decision tree when p = 5, compared to learning fBdm drop in performance when p = 1 and 2. In contrast,

when p =5, as shown in Table 1. have higher prediction accuracy when p = 5. We have
In B3, two more attributes are added to the exgst shown above that in the case of B1, the attribfites

dataset B2 and we now have the following row of | , :
attributes: [first atom, second atom, first elenehtpe element's type and second element's type are highly
' ; i orrelated with the class membership. For B2, wesha

second element's type, bondtype, first element's

charge, second element's charge, log €RUMO] used the same technique to find that the first eldis
Table 1 indicates that the prediction accuracy of £harge and the second element's charge are albty hig

leave-one-out cross validation of C4.5 is the haghe correlated with the class membership, yet uncaeela
when p = 4 and 8. with each other. This explains the higher predictio

Table 2 shows the DARA+C4.5 performance in thedccuracy for B2 and p = 5, as in this case 2 useful
case of the mutagenesis dataset, using leave-dne-otPmpound attributes are formed: [first elementsety
cross-validation and the J48 implementation of C4.5econd element’'s type] and [first element's charge,
(Witten and Frank, 2000). second element’s charge].

o ' In B3, when p = 4, we have the following

Table 1: Predictive performance of C4.5 on mutagendatasets B1, Compound attributes [first atom, second atom, first

B2 and B3 based on 10-fold cross-validation , , .
Nurmber of features considered, p element’s type, second element’s type], [bondtyipst,
element’s charge, second element’s charge, log®] an
Datasets 1 2 3 4 5 6 7 8 9 finally [ELUMO]. Each of the first two subsets of

Bl 809 814 777 788 812 - - - attributes contains a pair of attributes that aigghly
B2 795 80.0 812 80.3 828 818 795 - - lated with the ol bershio. Again. thi
B3 795 816 79.1 827 802 79.1 79.0 82.7 78.6 correlated wi € class membership. Again, tais ¢

be used to explain the high prediction accuracyafor
Table 2: Comparison on performance accuracies ¢agenesis datasets ~ leave-one-out cross validation of C4.5 when p = 4

Algorithms B1(%) B2(%) B3(%)  with dataset B3.

Egﬁ‘?gn';égg%ﬁiﬁiﬁelrzgs)1996) 7683 8175 8383 Based on the comparison shown in Table 2, the
TILDE ' 75 75 85 results show that for each of the other algorithisted
RDBC (Maron and Lozano-Perez, in Table 2, there is a dataset on which our alborit
1998; Wang and Zucker, 2000) 83 84 82 performed better than the other relational dataimgin
DARA (Hofmann and approaches. For instance, our approach outperforms
Buhnmann, 1998; Hartigan, 1975) 81 83 83 RDBC when all available tables are used. Unlike
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RDBC, our approach computes the distance betweeAlfred, R. and D. Kazakov, 2007. Aggregating Mukip

two different objects based on the representatfoitso Instances in Relational Database Using Semi-
instances (concatenated attributes). As a resulgdch Supervised Genetic Algorithm-based Clustering
cluster, we can find the representations (by takineg Technique. York University.

representation with highest weight) that best descr alfred, R., 2008. DARA: Data Summarisation with
the clusters and these representations can beassa«d Feature Construction. Proceedings of the 2nd Asia
mtt_erpreta_ble rule_s fo_r clustering or classifyingsaen International Conference on Modelling and
objects with multiple instances. Simulation, May, 13-15, IEEE Xplore Press, Kuala

CONCLUSION Lumpur, pp: 830-835, DOl:

10.1109/AMS.2008.131
This study presents an algorithm transformingDietterich, T.G., R.H. Lathrop and T. Lozano-Perez,
biomedical datasets in a multi-relational settingpia 1997. Solving the multiple instance problem with
vector space model that is suitable to clustering axis-parallel rectangles. Artificial Intell., 89131.
operations, as a means of aggregating or summarizin DOI: 10.1016/S0004-3702(96)00034-3
multiple instances. We carried out an experimeat th Emde, W. and D. Wettschereck, 1996. Relational

clusters the objects in a multi-relational setliimgsed_on instance-based learning. Proceedings of the 13th
the patterns formed. The results show that varyieg International Conference on Machine Learning,
number of concatenated attributes p before clusgeri (ML’96), Morgan Kaufmann, pp: 122-130.

has an influence on the predictive accuracy of thesaioor. L. N. Friedman. D. Koller and A. Pfeffer
decision tree learned by the C4.5 classifier. Weeha 2001. Learning Probabilistic relational models. In:

found that an increase in accuracy coincides with t Relational Data mining, Dzeroski, S. and N
cases of grouping together attributes that are Iyigh Lavrac, (Eds). S ri’n or Be,rlin. ISBN'.
correlated with the class membership. However, the 35404é2897 '_'307_:?339 ' ’ .
prediction accuracy is degraded when the number of PP . .
attributes concatenated is increased further. Bhalis ~ artigan, J.A., 1975. Clustering Algorithms. 1stnkd

indicate that limiting the number of attributes mizg Wiley, New York, ISBN: 047135645X, pp: 351.
desirable. At the same time, it is beneficial tombine ~ Hofmann, T. and J.M. Buhnmann, 1998. Active data
attributes that are highly correlated with the slas clustering. Psroceeding of the Advance in Neural
membership together. In this study, keeping thebrarm Information Processing System, (ANIPS'98), MIT
of concatenated attributes n relatively small (8.g.5), Press Cambridge, MA, USA., pp: 528-534.

results in the best performance in terms of prémhct Horyath, T., S. Wrobel and U. Bohnebeck, 2001.
accuracy as measured by leave-one-out cross- Relational instance-based learning with lists and

\Ié?rtigl?tior;hoefﬂr]gsiﬁf 2ﬁgivsviort1hta:?edata summarization terms. Machine Learn., 43: 53-80. DO
Y: 10.1023/A:1007668716498

performed by DARA, can be beneficial in summarizing . . .
biomedical datasets in a complex multi-relationalKirstén, M. and S. Wrobel, 1998. Relational dis&@nc

environment, in which biomedical datasets are state based clustering. Introductive Logic Programm.,
a multi-level of one-to-many relationships and also ~ 1446: 261-270. DOI: 10.1007/BFb0027330.
the case of datasets stored in more than one ene-tirsten, M. and S. Wrobel, 2000. Extending k-means
many relationships with non-target tables. clustering to first-order representations.
Introductive Logic Programm., 1866: 112-129.
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