
Journal of Computer Science 7 (9): 1343-1352, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: B. Uma Maheswari, Department of MCA, St.Joseph’s College of Engineering,
 Old Mamallapuram Road, Chennai, 600119, Tamilnadu, India

1343

Algorithms for the Detection of Defects in GUI Applications

1B. Uma Maheswari and 2S. Valli

1Department of MCA, St. Joseph’s College of Engineering,
Old Mamallapuram Road, Chennai, 600119, Tamilnadu, India

2Department of CSE, College of Engineering, Guindy, Anna University Chennai,

Sardar Patel Road, Guindy, Chennai, 600025, Tamilnadu, India

Abstract: Problem statement: Developing software using graphical interfaces has grown rapidly in
recent years. Products developed by, using GUI have to be tested for the reliability and quality of the
software. The objective of software testing is to reveal all the errors in the desired software with
minimum cost. GUI application comprises of several controls for user interaction and each control has
several properties assigned to it. Even though default attributes and actions are available for the
controls, some performance problems exist, which are undetected. Approach: The VBCT tool is
developed to extract the incorrect statements in the code and various algorithms are written for
detecting the logical errors in the GUI Applications. Results: This study addresses the errors in the
visual applications and alerts the developer to modify the source code. This study performs structural
and behavioral testing for GUI based applications. Conclusion: Identifying and removing the
undetected logical errors in GUI based applications has been developed. Both white box and black box
testing is attempted. The written test scripts, work in a robust manner to detect the faults.

Key words: Software testing, visual applications, tokenizer, logical errors, software faults, GUI

applications, Visual Basic Control Testing (VBCT)

INTRODUCTION

 Visual Basic (VB) is an event driven programming
language and it is an Integrated Development
Environment provided by Microsoft. The VB
development environment has a default form, tool box,
project explorer window and property window. They
are used to develop GUI applications and to build many
complex applications in a rapid manner. Now-a-days,
the software interacts with the user with the help of
GUI. So the GUI software is tested to ensure its
correctness, reliability and quality.
 Software faults and failure data were analyzed by
(Hamill and Goseva-Popstojanova, 2009). They have
found that requirement faults, coding faults and data
problems are the common types of software faults.
There are various testing tools (HP.HpWinRunner)
such as capture/replay tools. If the size of the test
scripts grows, it becomes unreadable. In GUI Testing
Automation (GUITA) technical testers are required for
creating scripts. The initial work of building
frameworks and creating libraries is time consuming.
Building functional logic in the scripts for complex
applications is tedious.

 Errors can be classified as syntax errors, runtime
errors and logical errors. Syntax errors are introduced by
the programmers and the compiler will produce the alerts
if the written code is syntactically incorrect in the editor
window. They can be fixed in the coding environment
itself. Run time errors are those which occur on the
execution of the code. They can be fixed by modifying
the original code in the application. Logical errors are
those which produce unexpected results.
 Some logical errors are not shown by the Visual
Basic compiler. The objective of this study is to
improve the quality of the source code, which will
reveal the defects which are not detected by the
compiler. Even though default attributes and actions are
available for the controls, some performance problems
are not detected by the compiler. The aim of this study
is to identify these problems and to rectify them. The
proposed Visual Basic Control Testing (VBCT) detects
these kinds of errors in the VB program and produces
alert to the user, on how to perform property
assignment to the Visual Basic controls.
 The rest of the study is organized as follows. The
related works of software testing in various domains,
Visual Application Testing which describes the
implemented testing frame work, the working

J. Computer Sci., 7 (9): 1343-1352, 2011

1344

methodology of the VBCT tool and the various
algorithms used in detecting the logical errors in the
GUI Applications, the experimental results and the
conclusion with the directions for future work.

MATERIALS AND METHODS

Related work: There are various literatures in software
testing to discover the bugs in the software. The
software may have faults, some of which lead to
failures. Understanding the relationship between faults
and failures improves the quality of the software. The
classification of faults and failure data is done by
(Hamill and Goseva-Popstojanova, 2009). A failure is
the departure of the system’s behavior from its required
behavior. A fault is an accidental condition, which leads
to failure. Faults are problems noticed by the developer
and failures are problems noticed by the user.
 GUI testing has been attempted by (McMaster and
Memon, 2008). They have analyzed the sequence of the
active calls of an executing program, which was applied
to the Space application (Antenna Steering System)
developed by the Euro Agency and TerpOffice Suite.
(Pai and Dugan, 2007) used a Bayesian network model
to relate object oriented software metrics to software
fault content and proneness. They have addressed the
internal product metrics and external quality metrics.
 There are many approaches and capture and play
back tools for preparing test scripts, which do not
show the logical error of the program and if the lines
of the code of an application are more, the test scripts
are unreadable and unstructured. Data flow testing has
been attempted by (Harrold et al., 1997). They have
used the program dependence graph to detect faults
either at the structural level (modifying the structure
of the program) or at the statement level (modifying
the statement of the program).
 The GUI testing framework GUITAR (Xie and
Memon, 2006) is a tool which automates the creation
and execution of test cases. The outputs are compared
using the oracle procedure. The relationship between
the test-suite and fault-related factors in GUI testing is
analyzed by (Strecker and Memon, 2008). They found
that the statement coverage and GUI-event coverage are
statically related to detect certain kinds of faults.
 Sampath et al. (2007) used concept analysis for
testing web applications. User Session is the duration
between the arrival of a new IP address and the user
exit from the website. Client URL requests and name-
value pairs are collected for the concept analysis.

Extremely used 40 websites were tested for 15 minutes.
75% of these sites exhibited application failures, blank
pages, incomplete and incorrect pages. Five types of
faults namely, data store, logic faults, form faults,
appearance faults and link faults were seeded in the
original applications. Oracle comparators were used to
compare the original and the fault seeded applications.
 Chen et al. (2008) developed an object based
approach for testing the GUI applications. Component
abstractions modeled the structure of the GUI. Test
scripts were written using the GUI Testing Modeling
Language (GTML). Object Oriented testing was
performed by (Sarala and Valli, 2006). The authors
have developed flex rules to detect the missing new
operator in the context of dynamic memory allocation,
unhandled exceptions and missing operator in the
context of run time polymorphism and also
created rules for detecting the defects in console
based applications.
 Jones and Harrold (2003) developed test suite
reduction techniques. A test suite contains modified
conditions/decisions. Each decision statement is
evaluated for true and false conditions. The test suite is
reduced by eliminating uncovered modified condition /
decision coverage pairs. The weakest test cases are
discarded. Test suites are prioritized by selecting the
test case that has the highest entity coverage.
 Algorithms for regression test suite reduction
were analyzed by (Li et al., 2007) for Greedy,
Additional Greedy, 2-Optimal, Hill Climbing and
Genetic Algorithms. All the algorithms were used for
code coverage and inefficient for fault detections.
Automatic failure identification was done by
(Travison and Staneff, 2008) by using test
instrumentation and pattern matching.

Visual Application Testing: There are various GUI
controls available in Visual Basic. All the controls
have their own properties and actions. Actions are
performed by the event handlers. Even though default
attributes and actions are available for the controls,
some performance problems exists, which are not
detected by the Visual Basic compiler. The VBCT tool
reveals such problems to the user. The framework of
the tool, the working methodology and the various
algorithms developed for revealing the logical errors
of the Visual Basic controls, specifically, textbox
control are as follows.

Definition: A Visual Basic form has various controls,
with a fixed set of properties. A Form can be modeled
in terms of controls C = (c1, c2… cn) and their Properties
P = (p1, p2,…….,pn). P’s are assigned to C’s for
designing the forms during the product development.

J. Computer Sci., 7 (9): 1343-1352, 2011

1345

Fig. 1: (a) Visual basic controls and (b) properties of

the controls

Fig. 2: An overview of the VB Control Testing

Framework

Table 1: Assignment of Text property to the textbox control using

the code editor
HELLO.Text = “ VisualBasic’’ //Valid assignment
WORLD.Text = 34223 //Valid assignment
 JAVA.Text = VisualBasic //Invalid assignment

Table 2: Assignment of text property to the textbox control using the

property window
HELLO.Text = Text1
WORLD.Text = Text2
JAVA.Text = Visual basic

As in Fig. 1 the necessary controls are arranged in the
form during design. The properties are assigned at a
designed time using the application source code. The
discussion of VBCT tool and the working principle are
as follows.

Visual Basic Control Testing (VBCT) Framework:
The VBCT tool given in Fig. 2 has several components,

such as the rich text converter, tokenzier, property
assignment checker and error handler.
 Visual Basic representation is a collection of
objects such as forms, controls, properties and the
values of those properties. The properties of the product
are converted into richtext by the richtext converter.
The tokenzier analyzes the coding and splits the entire
file into tokens using space as the delimiter. Some of
these tokens are given in Fig. 6.1 and 6.2. The property
assignment checker scans the tokens from the tokenzier
and extracts the assigned values. These assigned values
are used by the error handler for detecting the logical
errors in coding and produce alerts to the user to
indicate the existence of logical errors.

Algorithms for validating textbox control: The
working of the algorithm to detect the violations in the
code for property assignments, such as text,
alignment, backcolor, enabled, fontbold, fontitalic,
fontstrikethru, fontunderline, locked, height, left, top,
maxlength, passwordchar, visible, width and tabstop,
are discussed.

Text Property: Input box, text box, list box, combo
box and richtext box controls are used as input controls
for processing. List and combo boxes are restricted
input controls, using which the input can be entered
either by using the code editor or through the property
window. Text box and richtext box are unrestricted
input controls. Any content can be given for processing.
The text property is validated by examining the
assigned value using the property window assignment,
or with the help of the source code.
 The text assigned to the textbox JAVA is invalid in
Table 1, because the string should be assigned within
double quotations. But, if the text is assigned without
double quotes using the Visual Basic code editor, no
error alert is shown .On execution, the string Visual
basic is not assigned to the Textbox named JAVA,
even though the property window assignment is
VisualBasic as in Table 2.

Algorithm for detecting logical errors of Text
property of the textbox control: This module
identifies the Text property of all the Text Boxes in the
form. It checks if the value assigned to it begins with a
double quote in the case of a string, or it is a digit in the
case of a numeral:

Read the file to be tested

J. Computer Sci., 7 (9): 1343-1352, 2011

1346

/* tokens [] is an array of strings which holds the list of
tokens in the file.*/
tokens [] ← split the entire file into separate words,
using space as a delimiter
n ← count (tokens[])
 for i = 1 to n do
 begin If ((tokens [i] = “ *.Text ”) and
(tokens [i +1] = “ = ”)) then
testtext ← tokens [i + 2]
If ((left(testtext = “ “ ”)) or (left(testtext = “0 - 9”)))
then
write (“Valid Text property is assigned ”)
else
 write (“Invalid Text property is assigned.
It should start with double quotes or with any
numerals”)
end

Alignment property: The alignment property of the
text box assumes 0 for left justification, 1 for center and
2 for right justification. The assignment of the
alignment property using the code, suppresses the value
assigned using the property window.
 As given in Table 3 on execution, there is no
compilation errors and the alignment for entering into
the Textboxes PQR and XYZ is left, even if 2 (right) is
assigned in the property window. This is a logical error.

Algorithm for detecting logical errors of Alignment
property of textbox control
/* This module identifies Alignment property of all
Text Boxes in the form. It checks whether the value
assigned to it is 0 / 1 / 2 */
 Read the file to be tested
 /* tokens [] is an array of strings which holds the list
of tokens in the file */
 tokens [] ← split the entire file into separate words,
using space as a delimiter
n ←count (tokens[])
for i = 1 to n do
begin If ((tokens[i] = “ *.Alignment”) and
(tokens[i+1]=“ = ”)) then
testalignment ← tokens [i+2]
 If ((left (testalignment = 0)) or (left(testalignment = 1))
or (left(testalignment = 2))) then
write(“Valid Alignment property is assigned”)
else
write(“Invalid Alignment is assigned. It should
be 0 or 1 or 2”)
end

Backcolor Property: The background color
assignment should start with &H8000000 and should

end with any numerals. &H80000001, &H80000002,
&H80000003 and &H80000004 specify blue color
variations, &H80000005, &H80000006 and
&H80000009 represent white color, &H80000007 and
&H80000008 represent black color and &H80000000
represent ash color.

 In Table 4, the assignments to the textboxes PQR,
XYZ are arithmetic expressions. Hence background
color is black and it is a logical error.

Algorithm for detecting logical errors of the
BackColor property of the textbox control
/* This module identifies the BackColor property of all
the Text Boxes in the form. It checks if the value
assigned starts with &H8000000 and whether the last
character is between 0 - 9 */
Read the file to be tested
/* tokens [] is an array of strings which holds the list of
tokens in the file */
tokens [] ← split the entire file into separate words,
using space as a delimiter
n ←count (tokens[])
for i = 1 to n do
begin If ((tokens[i] = “ *.BackColor”) and
 (tokens [i+1]= “=)) then
 testbackcolor←tokens [i +2]
If ((left (testbackcolor = “&H8000000”) and
right (testbackcolor = “0-9”)) then
write(“Valid Textbox.BackColor property is assigned”)
else
write (“Invalid Textbox.BackColor is
assigned. It should start with &H800000 and end
with any numerals”)
end

Table 3: Assignment of the alignment property to the textbox control

using the code editor
Hello.Alignment = 0 //Valid assignment
World.Alignment = 1 //Valid assignment
Java.Alignment = 2 //Valid assignment
PQR.Alignment = HAI //Invalid assignment
XYZ.Alignment = A //Invalid assignment

Table 4: Assignment of the backcolor property to the textbox control

using the code editor
Hello.Back color = &H80000003 //Valid assignment
PQR.Back color = (A * B) // Invalid assignment
XYZ.Back color = A + B // Invalid assignment

Table 5: Assignment of the Enabled property to the textbox control

using the code editor
HELLO.Enabled = 1 // Valid assignment
WORLD.Enabled = 0 // Valid assignment
JAVA.Enabled = True // Valid assignment
PQR.Enabled = (a+b) // Invalid assignment
XYZ.Enabled = hei // Invalid assignment

J. Computer Sci., 7 (9): 1343-1352, 2011

1347

Table 6: Assignment of the font and locked properties to the Textbox
control using the code editor

XYZ.FontBold = hello // Invalid assignment
XYZ.FontItalic = hello // Invalid assignment
XYZ.FontStrikethru = heiil // Invalid assignment
PQR.FontUnderline = a + b - c * d // Invalid assignment
XYZ.FontUnderline = construction // Invalid assignment
JAVA.Locked = k // Invalid assignment
PQR.Locked = a // Invalid assignment
XYZ.Locked = construction // Invalid assignment

Table 7: Assignment of the height, width, left and top properties of

the textbox control using the code editor
HELLO.Height = 1000 // Valid assignment
JAVA.Height = False // Valid assignment
PQR.Height = a + b - c * d // Invalid assignment
WORLD.Width = GFDGDFG // Invalid assignment
WORLD.Left = "4000" // Valid assignment
JAVA.Left = k // Invalid assignment
XYZ.Left = construction // Invalid assignment
WORLD.Top = A // Invalid assignment
PQR.Top = FKSDFS // Invalid assignment

Enabled, font and locked properties: The string can
be entered in the textbox, when the enabled property is
true or 1 and if the enabled property is false or 0, the
value cannot be entered in the textbox.
 Even if true is assigned in the property window, it
is impossible to enter the data in the textboxes PQR and
XYZ, since programmatically enabled property is set to
an arithmetic expression and string respectively. On
compilation it is free of defects. But on execution, the
data cannot be entered in to the textboxes PQR, XYZ.
This is a logical error.

Algorithm for detecting logical errors of the
Enabled property of the textbox control
/* This module identifies the Enabled property of all the
Text Boxes in the form. It checks whether the value
assigned to it is 0 / 1 / true / false */.
Read the file to be tested
 /* tokens [] is an array of strings which holds the list
of tokens in the file. */
tokens [] ← split the entire file into separate words,
using space as a delimiter
 n ← count (tokens[])
for i = 1 to n do
begin If ((tokens[i] = “ *.Enabled”) and
(tokens [i +1] = “ = ”)) then
testenabled ← tokens [i+ 2]
If ((left (testenabled = 0)) or (left (testenabled = 1))
or (left(testenabled =“True”)) or
(left(testenabled = “False”))) then
write (“Valid Enabled property”)
else
 write (“Invalid Enabled property is assigned. It
 should be 0 or 1 or True or False”)
end

 Table 6 lists the invalid assignment of FontBold,
FontItalic, FontStrikethru, FontUnderline and Locked
properties in the Visual Basic code editor.If the
property is set as given in Table 5, the text in the
corresponding textbox is not bold, nor italic, nor
stroked and not underlined even if the correct property
is assigned in the property window. The data can be
entered in the textboxes JAVA, PQR, XYZ of Table 6,
even though the Locked assignment is True in the
property window and programmatic assignment is some
character or string.The algorithm for the Enabled
property can be used to detect logical errors by the
replacement of *.FontBold, *.FontItalic,
.FontStrikethru ,.FontUnderline and *.Locked in the
place of *.Enabled property.

Height, Width, Left and Top Properties: The Design
of the textbox height,width,space from the left of the
form and from the top of the form are obtained by the
height,width,left and top properties.The valid and invalid
assignments of these properties are given in Table 7.
 Even if the correct values are assigned in the
property window, incorrect height, incorrect negligible
width, no space from the left and no space from the top
of the window results, when the property is assigned as
given in Table 7 in the code editor. This is a logical error.

Algorithm for detecting logical errors in the height
property of the textbox control
/* This module identifies the Height property of all the
Text Boxes in the form. It checks whether the value
assigned to it is numerals or the numerals are within
double quotes */.
Read the file to be tested
/* tokens [] is an array of strings which holds the list of
tokens in the file. */
tokens [] ← split the entire file into separate words,
using space as a delimiter
 n ← count (tokens[])
 for i = 1 to n do
 begin If ((tokens[i] = “ *. Height”) and
 (tokens [i +1] = “= ”)) then
testheight←tokens [i+2]
 If ((left(testheight = “ “ ”)) or (left(testheight = “0-9”)))
then
write (“Valid Height assignment”)
 else
write (“Invalid Height is assigned. It should start with
any number or numerals within double quotes!”)
end

 The same algorithm can be used to detect errors for
width, left and top properties with the replacement of
*.Width, *.Left, *.Top in place of *.Height.

J. Computer Sci., 7 (9): 1343-1352, 2011

1348

Table 8: Assignment of the maxlength property of the textbox
control using the code editor

Hello.Max length = 60 // Valid assignment
World.Max length = 3 // Valid assignment
Java.Max length = 0 // Invalid assignment
PQR.Max length = "3443” // Invalid assignment
XYZ.Max length = heiil // Invalid assignment

Table 9: Assignment of the passwordchar property to the textbox

control using the code editor
Hello.Password char = "2" // Valid assignment
World.Password char = 4 // Valid assignment
Java.Password char = "g" // Valid assignment
PQR.Password char = A + B + C * B // Invalid assignment
XYZ.Password char = h // Invalid assignment

Table 10: Assignment of visible and tab stop properties to the

textbox control using the code editor
Java.Visible = jksadas //Invalid assignment
PQR.Visible = fhkgm //Invalid assignment
Java.Tab stop = aaa // Invalid assignment

Maxlength property: The maximum number of
characters the textbox can accommodate is 65535.
Table 8 shows the invalid assignment to the maxlength
property in spite of valid length in the property window.
The Maxlength assignments in Table 8 do not show the
compilation errors. The number of characters to be
entered in case of invalid assignments depends upon the
size of the text and the width of the textbox.

Algorithm for detecting logical errors in the
MaxLength property of the textbox control
 /* This module identifies the MaxLength property of
all the Text Boxes in the form. It checks whether the
value assigned to it is any numerals 1-9 and it should be
< 65535 */.
Read the file to be tested
 /* tokens [] is an array of strings which holds the list
of tokens in the file. */
 tokens [] ← split the entire file into separate words,
using space as a delimiter,
 n ← count (tokens[])
 for i = 1 to n do
 begin If ((tokens[i] = “ *. MaxLength ”) and
(tokens [i +1]=“= ”)) then
testmaxlength ← tokens[i+2]
 If ((left (testmaxlength = 1-9) or
(left(testmaxlength < 65535)) then
 write
 (“Valid MaxLength property is assigned”)
else
write(“Invalid MaxLength is assigned. It
should start with 1-9 and the value must be < 65535")
end

PasswordChar Property: The decryption character is
a single alphabet within double quotes, or a numeral. In
Table 9, the PQR textbox is assigned an arithmetic
expression and the XYZ textbox is assigned a single
character without double quotes.
 As in Table 9, if invalid expressions are assigned to
password character, the password character is taken as
zero. The characters without double quotes are not
considered and the typed text is not decrypted. This is a
logical error.

Algorithm for detecting logical errors in the
PasswordChar Property of the Textbox Control
/* This module identifies the PasswordChar property of
all the Text Boxes in the form. It checks whether the
value assigned to it is any numerals or begins with
double quotes in case of alphabets. */.
Read the file to be tested
/* tokens [] is an array of strings which holds the list of
tokens in the file. */
 tokens [] ← split the entire file into separate words,
 using space as a delimiter
 n←count (tokens[])
 for i = 1 to n do
 begin
 If((tokens[i]=“*.PasswordChar”)and
(tokens[i+1]=“=”)) then
 testpasswordchar ←tokens[i+2]
If ((left (testpasswordchar = 0 to 9) or
left(testpasswordchar = “ “ ”)) then
write (“Valid PasswordChar is assigned”)
else
 write (“Invalid PasswordChar is assigned. It should
 be 0-9 or any character input which starts
 with double quotes”)
 end

Visible and TabStop Properties: The textbox control
should be visible and receives the focus only if the
visible property is true in the property window. If the
source code is used for assignment it works with respect
to the source code. The assignment in the property
window is ignored.
 The incorrect assignments and the resulting
logical errors in Table 10 are handled by the algorithm
which follows. Even if the visible, tabstop properties
are set to true in the property window, due to the
assignment in the program using Table 10, logical
errors such as “text box is not seen”, “tab control is
not focused” arise in the form.

J. Computer Sci., 7 (9): 1343-1352, 2011

1349

Algorithm for detecting logical errors in the Visible
property of the textbox control:
/* This module identifies the Visible property of all the
Text Boxes in the form. It checks whether the value
assigned to it is true / false / 0-9 / any numerals within
double quotes */.
Read the file to be tested
 /* tokens [] is an array of strings which holds the list
of tokens in the file. */
 tokens [] ← split the entire file into separate words,
using space as a delimiter
n ← count (tokens[])
for i = 1 to n do begin
 If ((tokens[i] = “ *. Visible ”) and
(tokens[i+1] =“= ”)) then
 testvisible ←tokens [i+2]
If ((left (testvisible = 0 to 9)) or (left(testvisible = “ “ ”)
or (left(testvisible = “True”)) or left (testvisible =
“False”))) then
write (“Valid Visible property is assigned”)
 else
write (“Invalid Visible property assignment .It should
be True or False or 0 to 9 or any numeral which starts
with double quotes!”)
end

 The algorithm detects errors for the tabstop
property with the modification of *.TabStop in the
place of *.Visible. Thus, all the algorithms efficiently
analyze the source code, scan the appropriate properties
of the textbox control and alert the developer by giving
suggestions on how to rectify the code.

RESULTS

 In the above Fig. 4.1-4.3 the HELLO textbox is
assigned “Text1”, the WORLD text box is assigned
“Text2” and the JAVA textbox is assigned “Visual
Basic”. After the compilation of the above code, the VB
compiler does not show any syntax error. It displays the
form as in Fig. 5. The HELLO and WORLD textboxes
are assigned correctly as “VisualBasic” and “34223”
according to the coding in Table 11. The JAVA text box
is empty and the developer can enter any string since in
Table 11, the assignment to the JAVA text box is set as
Visual Basic without double quotations. The VBCT
identifies these kinds of incorrect assignments in the
source code as in the Fig. 6.1-6.2

Table 11: Assignment of the Text property to the textbox control
using the code editor

Hello.Text = "Visual basic" //Valid assignment
World.Text = 34223 // Valid assignment
JAVA.Text = Visual basic //Invalid assignment

Fig. 4.1: Assignment of the text property for Java
textbox in the property window

Fig. 4.2: Assignment of the text property for Hello

textbox in the property window

Fig. 4.3: Assignment of the text property for World
textbox in the property window

Fig. 5: Textboxes as a result of Fig. 4.1-4.3 and
Table 11

J. Computer Sci., 7 (9): 1343-1352, 2011

1350

Fig. 6.1: The Visual Basic Control Testing (VBCT) tool result

Fig. 6.2: The Visual Basic Control Testing (VBCT) tool result

DISCUSSION

 The following Fig. 7.1-7.3 explain the logical
errors detected by the VBCT and the VB compiler. The
VBCT finds the logical errors in the properties such as
text, alignment, backcolor, enabled, font, locked,
height, left, top, maxlength, passwordchar, visible,
width and tabstop which are not detected by the

compiler. Logical errors partially detected by the
compiler and the VBCT tool, for the properties such as
appearance, borderstyle, dragmode, forecolor, index,
mouseicon, mousepointer and mulitline are also
mentioned in the following graphs.
 Thus the VBCT tool finds the properties of the text
box with the help of the tokenzier, detects the invalid
assignments in the source code and alerts the developer.

J. Computer Sci., 7 (9): 1343-1352, 2011

1351

Fig. 7.1: VBCT Logical error detection

Fig. 7.2: VBCT Logical error detection

Fig. 7.3: VBCT Logical error detection

CONCLUSION

 Since every user wishes to work with fault free
software, revealing the logical errors is vital. Some of
the performance problems are not identified by the
compilers of the appropriate software languages. This
study addresses the design and coding errors which are
not identified by the Visual Basic compiler. The VBCT
tool uncovers the problems and alerts the programmer,
on how to modify the source code and control the

properties of the textbox. There are various controls
available in the visual environment. These kinds of
issues may be present in those controls also. Analyzing
and solving those issues in the rest of the Visual Basic
controls and finding the logical errors which are not
found by the compiler are taken up for future research
study. This approach can be extended to other visual
environments such as VC++, VB.net and Visual Studio,
which may also have such problems. Identifying and
removing the undetected logical errors in GUI based
applications has been attempted.

REFERENCES

Chen, W.K., Z.W. Shen and C.M. Chang, 2008. GUI

test script organization with component abstraction.
Proceedings of the 2nd International Conference on
Secure System Integration and Reliability
Improvement, Jul. 14-17, IEEE Xplore Press,
Yokohama, pp: 128-134. DOI:
10.1109/SSIRI.2008.16

Hamill, M. and K. Goseva-Popstojanova, 2009.
Common trends in software fault and failure data.
IEEE Trans. Software Eng., 35: 484-496. DOI:
10.1109/TSE.2009.3

Harrold, M.J., A.J. Offutt and K. Tewary, 1997. An
approach to fault modeling and fault seeding using
the program dependence graph. J. Syst. Software.,
36: 273-295. DOI: 10.1016/S0164-1212(96)00175-6

Jones, J.A. and M.J. Harrold, 2003. Test-suite reduction
and prioritization for modified condition/decision
coverage. IEEE Trans. Software Eng., 29: 195-209.
DOI: 10.1109/TSE.2003.1183927

Li, Z., M. Harman and R.M. Hierons, 2007. Search
algorithms for regression test case prioritization.
IEEE Trans. Software Eng., 33: 225-237. DOI:
10.1109/TSE.2007.38

McMaster, S. and A.M. Memon, 2008. Call-stack
coverage for GUI test suite reduction. IEEE Trans.
Software Eng., 34: 99-105. DOI:
10.1109/TSE.2007.70756

Pai, G.J. and J.B. Dugan, 2007. Empirical analysis of
software fault content and fault proneness using
Bayesian methods. IEEE Trans. Software Eng., 33:
675-686. DOI: 10.1109/TSE.2007.70722

Sampath, S., S. Spernkle, E. Gibson, L. Pollock and
A.S. Greenwald, 2007. Applying concept analysis
to user-session-based testing of web applications.
IEEE Trans. Software Eng., 33: 643-657. DOI:
10.1109/TSE.2007.70723

J. Computer Sci., 7 (9): 1343-1352, 2011

1352

Sarala, S. and S. Valli, 2006. Algorithms for defect
detection in object oriented programs. Inform.
Technol. J., 5: 876-883.
http://www.doaj.org/doaj?func=abstract&id=60066
7&openurl=1&uiLanguage=en

Strecker, J. and A.M. Memon, 2008. Relationships
between test suites, faults and fault detection in
GUI testing. Proceedings of 1st International
Conference on Software Testing Verification and
Validation. Apr. 9-11, IEEE Xplore Press,
Lillehammer, pp: 12-21. DOI:
10.1109/ICST.2008.26

Travison, D. and G. Staneff, 2008. Test instrumentation
and pattern matching for automatic failure
identification. Proceedings of 1st International
Conference on Software Testing Verification and
Validation,, Apr. 9-11, IEEE Xplore Press,
Lillehammer, pp: 377-386. DOI:
10.1109/ICST.2008.69

Xie, Q. and A.M. Memon, 2006. Studying the
characteristics of a "Good" GUI test suite.
Proceedings of 17th Symposium on Software
Reliability Engineering, Nov. 7-10, IEEE Xplore
Press, Raleigh, NC, pp: 159-168. DOI:
10.1109/ISSRE.2006.45

