
Journal of Computer Science 7 (9): 1325-1329, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: S. Dharani, Department of CSE, St.Peter’s University, Avadi, Chennai, 54, India
1325

Fast Algorithms for Discovering Sequential Patterns in Massive Datasets

1S. Dharani, 2Justus Rabi and 3Nanda Kumar and 4Darly

1Department of CSE, St.Peter’s University, Avadi, 54, Chennai, India
2Department of EEE, Toc H institute of Science and Technology, 682 313, Cochin,

3Department of CSE, A.C.S. College of Engineering, 560074, Bangalore, India
4Department of IEEE, Anna University, Chennai, India

Abstract: Problem statement: Sequential pattern mining is one of the specific data mining tasks,
particularly from retail data. The task is to discover all sequential patterns with a user-specified
minimum support, where support of a pattern is the number of data-sequences that contain the pattern.
Approach: To find a sequence patterns variety of algorithm like AprioriAll and Generalized
Sequential Patterns (GSP) were there. We present fast and efficient algorithms called AprioriAllSID
and GSPSID for mining sequential patterns that were fundamentally different from known algorithms.
Results: The proposed algorithm had been implemented and compared with AprioriAll and
Generalized Sequential Patterns (GSP). Its performance was studied on an experimental basis. We
combined the AprioriAllSID algorithm with AprioriAll algorithm into a Hybrid algorithm, called
AprioriAll Hybrid. Conclusion: Implementation shows that the execution time of the algorithm to find
sequential pattern depends on total no of candidates generated at each level and the time taken to scan
the database. Our performance study shows that the proposed algorithms have an excellent
performance over the best existing algorithms.

Key words: Data mining, sequential pattern mining, apriori all hybrid, proposed algorithm, temporary

database, candidate sequences, minimum support

INTRODUCTION

 Data Mining is the process of extracting useful
information which is hidden in large databases. The
knowledge or pattern mined could be used to make
decisions. Sequential pattern mining is one of the major
areas of research in the field of data mining. Sequential
pattern mining is used to discover frequent sequences as
patterns in a database. Several algorithms have been
proposed to find sequential pattern (Changsheng et al.,
2009; Zhang et al., 2009). First AprioriAll algorithm
was introduced to find all sequential patterns. For
finding generalized sequential patterns GSP
(Generalized Sequential Patterns) was presented. To
find sequential patterns from large amount of transaction
data requires multiple passes over the database. We
propose efficient algorithms namely AprioriAllSID and
GSPSID to improve the performance by reducing the
scale of the candidate item set Ck and the spending of
I/O (Wang, 2010; Yong-Qing et al., 2009; Yang et al.,
2009).
 The original database is read only one time and we
introduce a new temporary database D’ for the next
iterations. After completing the first iteration, we can
find the candidate sequence of size-2 using temporary

database D. Then we can find the candidate k-size
sequences until the candidate sequence or temporary
database size is empty. At this stage the database size is
reduced as well as the number of candidate sequences
are also reduced (Suneetha and Krishnamoorti, 2010;
Liu, 2010). This feature is used for finding sequential
patterns easily and efficiently reduced the time
complexity. So the proposed methods are efficient than
all other methods like AprioriAll and Generalized
Sequential Patterns (GSP). Relative performance study
of AprioriAllSID and GSPSID is given.

Problem statement: The problem of mining sequential
patterns can be stated as follows: Let I = {i1,i2,..,im} be
a set of m distinct attributes, also called items. An
itemset is a non-empty unordered collection of items
(without loss of generality, we assume that items of an
itemset are sorted in increasing order). All items in an
itemset are assumed to occur at the same time. A
sequence is an ordered list of itemsets. An itemset i is
denoted as (i1,i2,…,ik), where ij is an item. An itemset
with k items is called a k-itemset. A sequence s is
denoted as (s1→s2→…→sq), where the sequence
element sj is an itemset. A sequence with k-items (k =

J. Computer Sci., 7 (9): 1325-1329, 2011

1326

∑j |αj|) is called a k-sequence. For example, (B→ AC)
is a 3-sequence. An item can occur only once in an
itemset, but it can occur multiple times in different
itemsets of a sequence.
 A sequence p = (p1→p2→…→pn) is a subsequence
of another sequence q = (q1→q2→ …→qn), denoted as
p→q, if there exist integers i1< i2 < …<in, such that
pj⊆qij for all pj. For example the sequence (B→AC) is a
subsequence of (AB→E →ACD), since the sequence
elements B→ AB and AC→ACD. On the other hand
the sequence (AB→ E) is not a subsequence of (ABE)
and vice-versa. We say that p is a proper subsequence
of q, denoted as p⊂q, if p⊂q and p⊂q.
 A transaction T has a unique identifier and
contains a set of items, i.e., T ⊆ I. A customer C has a
unique identifier and has associated with it a list of
transactions {T1, T2,…,Tn}. We assume that no
customer has more than one transaction with the same
time-stamp, so that we can use the transaction-time as
the transaction identifier. We also assume that the list
of customer transactions is stored by the transaction-
time. Thus the list of transactions of a customer is
itself a sequence T1→T2→…→Tn called the customer
sequence. The database D consists of a number of
such customer sequences.
 A customer sequence C is said to contain a
sequence p, if p⊆q i.e., p is a subsequence of the
customer sequence C. The support or frequency of a
sequence C is denoted as σ (p), is the total number of
customers that contains this sequence. Given a user-
specified threshold called minimum support (denoted
min-sup) we say that a sequence is frequent if it
occurs more than minimum support times. The set of
frequent k-sequences is denoted as Fk. A frequent
sequence is maximal if it is not a sub sequence of any
other sequence.

The problem of finding sequential patterns can
be decomposed into two parts:

• Generate all combinations of customer sequences

with fractional sequence support (i.e., supportD

(C)/|D|) above a certain threshold called minimum
support m

• Use the frequent sequences to generate sequential
patterns

• The second sub problem is straightforward.
However discovering frequent sequences is a
non-trivial issue, where the efficiency of an
algorithm strongly depends on the size of the
candidate sequences

MATERIALS AND METHODS

AprioriAllSID: The AprioriAllSID algorithm has
shown in Fig. 1. An interesting feature of the proposed
algorithm is that the given customer transaction
database D is not use for counting support after the first
pass. Rather the set Ck is used for determining the
candidate sequences before the pass begins.
 Each member of the set Ck is of the form < SID,
{Sk} > where each Sk is a potentially frequent k-sequence
present in the sequence with identifier SID. For k=1, C1
corresponds to the database D, although conceptually
each sequence i is replaced by the sequence {i}. For k>1,
Ck is corresponding to customer sequence S is< s.SID,
{s<Ck | s contained in t}>. If s customer sequence does
not contain any candidate k-sequence, then Ck will not
have an entry for this customer sequence.
 Thus, the number of sequences in the database is
greater than the number of entries in Ck. The number of
entries in Ck may be smaller than the number of
sequences in database especially for large value of k. In
addition, for large values of k, each entry may be smaller
than the corresponding sequence because very few
candidate sequences may be contained in the sequence.
 However, for small values of k, each may be
larger than the corresponding sequence because an
entry in Ck includes all candidate k-sequences
contained in the sequence.

Algorithm AprioriAllSID: In Fig. 1, we present an
efficient algorithm called AprioriAllSID, which is
used to discover all sequential patterns in large
customer database.

Fig. 1: Algorithm AprioriAllSID

J. Computer Sci., 7 (9): 1325-1329, 2011

1327

Fig. 2: Example

Fig. 3: Algorithm GSPSID

 For example, consider the database in Fig. 2 and
assume that minimum support is 2 customer sequences.
By using candidate-gen procedure with size-1 of frequent
sequences gives the candidate sequence in C2 by iterating
over the entries in C’2 and generates C’

2 in step 6-11 of

Fig. 1. The first entry in C1
’ is < {(1) (5)} {2} {3} {4}>

corresponding to customer sequence 10. The Ct at step
7 corresponding to this entry s is {{(1) (5)} {2} {3}
{4}} are members of s.set-of-sequences.
 By using Candidate-gen procedure with L2 gives
C3. Making pass over the data with C’

2 and C3 generates
C3

’. This process is repeated until there is no sequence
in the customer sequence database.

Algorithm GSPSID: In Fig. 3, we propose an efficient
algorithm called GSPSID, which is used to discover all
generalized sequential patterns in large customer database.
 We add optimizations to GSP algorithm, which
gives the algorithm GSPSID. In GSPSID algorithm,
given original database D is not used for counting
after the first pass. The first pass of algorithm
determines the support of each item, like GSP
algorithm. At the end of first pass, the algorithm
knows which items are frequent, i.e., has minimum
support. We introduce the temporary database D’
which is used to determine the candidate sequences
before the pass begins. The member of that temporary
database is of the form <SID, {Sk}>, where each Sk is
a potentially frequent k-sequence present in the
sequence with identifier SID.
 For k = 1, the C1 is the corresponding temporary
database D’. If k = 2, then we add three optimizations,
to reduce the size of the database. If a customer
sequence does not contain any candidate k-sequence,
then Ck

’ will not have an entry for this customer
sequence. Thus, the number of sequences in the
database is greater than the number of entries in Ck

’.
Conversely, the number of entries in Ck

’ may be smaller
than the number of sequences in database especially for
large value of k. In addition, for large values of k, each
entry may be smaller than the corresponding sequence
because very few candidate sequences may be
contained in the sequence. For small values of k, each
may be larger than the corresponding sequence because
an entry in Ck includes all candidate k-sequences
contained in the sequence.

Apriori All Hybrid algorithm: We combine the
AprioriAllSID and AprioriAll algorithms to get the
Apriori All Hybrid. This shows that the first iteration of
AprioriAll algorithm and in the later iteration with
AprioriAllSID gives the Apriori All Hybrid algorithm.
Both algorithms are efficient, but when compared with
AprioriAllSID, Apriori All Hybrid is faster.
 Both algorithms use same data structures. Each
candidate sequence is assigned a unique number called
its SID. Each set of candidate sequence Ck

’ is kept in an
array indexed by the IDs of the sequences in Ck. So, a
member of Ck

’
 is of the form 〈SID, {ID} 〉. Each Ck

’
 is

stored in a sequential structure.

J. Computer Sci., 7 (9): 1325-1329, 2011

1328

 There are two additional fields maintained for each
candidate sequence. They are:

• Generators: This field of sequence Ck stores the IDs

of the two maximal (k-1) sequence whose join
generated Ck

• Extensions: This field stores IDs of all the
sequences Ck+1 obtained as an extension of Ck

 Now, s.set-of-sequence of C’k-1 gives the IDs of all
the (k-1)-candidate sequence contained in transaction
s.SID. For each such candidate sequence Ck-1

’ the
extensions field gives Sk the set of IDs of all the
candidate k-sequences that are extensions of Ck-1. For
Ck in Sk the generators field gives the IDs of the two
sequences that generated Ck. If these sequences are
present in the entry for s.set-of-sequences, Ck is present
in customer sequence s.SID. Hence we add Ck to Ct, by
using this data structure we can efficiently stored and
processed the candidate sequences.

RESULTS

 We describe the experiments and the performance
results of AprioriAllSID algorithms. We also compare
the performance with the AprioriAll and GSP
algorithms. We performed our experiments on an IBM
Pentium machine. Using data set generator, we have
simulated the data and test algorithms like AprioriAll,
AprioriAllSID, GSP and GSPSID

Performance evaluation: We have used the simulated
data for the performance comparison experiments. The

data sets are assumed to simulate a customer-buying
pattern in a retail environment.
 In the sets. The Table 1 and 2 shows the
performance of AprioriAll, GSP, AprioriAllSID and
GSPSID for minimum support 1-5% for different
volume of data. Even though AprioriAllSID and
GSPSID seems to bperformance comparison, we used
the five different date nearly equal, for massive volume
of data, the performance of AprioriAllSID and GSPSID
will be for better than AprioriAll and GSP algorithms.

DISCUSSION

 In Table 1 and 2 shows the execution times for the
five data sets for an increasing value of minimum
support (say 1-5%). The execution times increase for
both AprioriAllSID and AprioriAll algorithms and GSP
and GSPSID as the minimum support is decreased
because the total number of candidate sequence
increases. AprioriAll algorithm and GSP are the
multiple passes over the data.

CONCLUSION

 The execution time is increased with increase of
the customer transactions in the database. In Table 1
and 2, we can conclude that the AprioriAllSID
algorithm is 2 times faster than AprioriAll algorithm
and GSPSID algorithm is 3 times faster than GSP for
small volume of data and more than order of magnitude
for the large volume of data. The data sets ranges from
giga bytes to tera bytes the proposed algorithms will be
very much faster than AprioriAll and GSP. Thus we
conclude that the proposed algorithms are very much
suitable for massive databases.

Table 1: Performance evaluation between AprioriAll and AprioriAllSID algorithms

 AprioriAll (Execution time in sec) (%) AprioriAllSID (Execution time in sec) (%)
 --- ---
DB size 1 2 3 4 5 1 2 3 4 5

100 K 187 199 211 228 245 98 121 148 164 183
200 K 325 339 351 367 384 174 192 221 246 265
300 K 428 447 465 489 510 269 281 301 324 356
400 K 559 587 611 638 669 346 371 392 415 458
500 K 678 691 726 758 793 489 514 561 592 636

Table 2: Performance evaluation between GSP and GSPSID algorithms

 GSP (Execution time in sec) (%) GSPSID (Execution time in sec) (%)
 -- --
DB size 1 2 3 4 5 1 2 3 4 5

100 K 149 188 213 249 274 67 98 121 149 162
200 K 251 289 308 329 368 123 146 178 204 238
300 K 339 368 392 421 467 212 258 298 332 378
400 K 426 467 493 527 569 320 357 398 435 481
500 K 512 541 570 518 536 404 449 481 523 556

J. Computer Sci., 7 (9): 1325-1329, 2011

1329

REFERENCES

Changsheng, Z., L. Zhongyue and Z. Dongsong, 2009.

An improved algorithm for apriori. Proceedings of
the 1st International Workshop on Education
Technology. Computer Science, Mar. 7-8, IEEE
Xplore Press, Wuhan, Hubei, pp: 995-998. DOI:
10.1109/ETCS.2009.227

Liu, Y., 2010. Study on application of apriori algorithm
in data mining. Proceedings of the 2nd
International Conferences on Computer Modeling
and Simulation, Jan. 22-24, IEEE Xplore Press,
Sanya, Hainan, pp: 111-114. DOI:
10.1109/ICCMS.2010.398

Suneetha, K.R. and R. Krishnamoorti, 2010. Advanced
version of a priori algorithm. Proceedings of the 1st
International Conference on Integrated Intelligent
Computing, Aug. 5-7, IEEE Xplore Press,
Bangalore, pp: 238-245. DOI:
10.1109/ICIIC.2010.64

Wang, X., 2010. Study of data ming based on Apriori
algorithm. Proceedings of the 2nd International
Conference on Software Technology and
Engineering, Oct. 3-5, IEEE Xplore Press, San
Juan, PR. pp: 400-403. DOI:
10.1109/ICSTE.2010.5608780

Yong-Qing, W., Y. Ren-Hua and L. Pei-Yu, 2009. An
improved Apriori algorithm for association rules of
mining. Proceedings of the IEEE International
Symposium on IT in Medicine and Education,
Aug. 14-16, IEEE Xplore Press, Jinan, pp: 942-
946. DOI: 10.1109/ITIME.2009.5236211

Yang, G., H. Zhao, L. Wang and Y. Liu, 2009. An
implementation of improved apriori algorithm.
Proceedings of the International Conference on
Machine Learning and Cybernetics, Jul. 12-15,
IEEE Xplore Press, Baoding, pp: 1565-1569. DOI:
10.1109/ICMLC.2009.5212246

Zhang, C. and J. Ruan, 2009. A modified apriori
algorithm with its application in instituting cross-
selling strategies of the retail industry. Proceedings
of the International Conference on Electronic
Commerce and Business Intelligence, Jun. 6-7,
IEEE Xplore Press, Beijing, pp: 515-518. DOI:
10.1109/ECBI.2009.121

