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Abstract: Problem statement: Sequential pattern mining is one of the specific data mining tasks, 
particularly from retail data. The task is to discover all sequential patterns with a user-specified 
minimum support, where support of a pattern is the number of data-sequences that contain the pattern. 
Approach: To find a sequence patterns variety of algorithm like AprioriAll and Generalized 
Sequential Patterns (GSP) were there. We present fast and efficient algorithms called AprioriAllSID 
and GSPSID for mining sequential patterns that were fundamentally different from known algorithms. 
Results: The proposed algorithm had been implemented and compared with AprioriAll and 
Generalized Sequential Patterns (GSP). Its performance was studied on an experimental basis. We 
combined the AprioriAllSID algorithm with AprioriAll algorithm into a Hybrid algorithm, called 
AprioriAll Hybrid. Conclusion: Implementation shows that the execution time of the algorithm to find 
sequential pattern depends on total no of candidates generated at each level and the time taken to scan 
the database. Our performance study shows that the proposed algorithms have an excellent 
performance over the best existing algorithms. 
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INTRODUCTION 
 
 Data Mining is the process of extracting useful 
information which is hidden in large databases. The 
knowledge or pattern mined could be used to make 
decisions. Sequential pattern mining is one of the major 
areas of research in the field of data mining. Sequential 
pattern mining is used to discover frequent sequences as 
patterns in a database. Several algorithms have been 
proposed to find sequential pattern (Changsheng et al., 
2009; Zhang et al., 2009). First AprioriAll algorithm 
was introduced to find all sequential patterns. For 
finding generalized sequential patterns GSP 
(Generalized Sequential Patterns) was presented. To 
find sequential patterns from large amount of transaction 
data requires multiple passes over the database. We 
propose efficient algorithms namely AprioriAllSID and 
GSPSID to improve the performance by reducing the 
scale of the candidate item set Ck and the spending of 
I/O (Wang, 2010; Yong-Qing et al., 2009; Yang et al., 
2009). 
 The original database is read only one time and we 
introduce a new temporary database D’ for the next 
iterations. After completing the first iteration, we can 
find the candidate sequence of size-2 using temporary 

database D. Then we can find the candidate k-size 
sequences until the candidate sequence or temporary 
database size is empty. At this stage the database size is 
reduced as well as the number of candidate sequences 
are also reduced (Suneetha and Krishnamoorti, 2010; 
Liu, 2010). This feature is used for finding sequential 
patterns easily and efficiently reduced the time 
complexity. So the proposed methods are efficient than 
all other methods like AprioriAll and Generalized 
Sequential Patterns (GSP). Relative performance study 
of AprioriAllSID and GSPSID is given. 
  
Problem statement: The problem of mining sequential 
patterns can be stated as follows: Let I = {i1,i2,..,im} be 
a set of m distinct attributes, also called items. An 
itemset is a non-empty unordered collection of items 
(without loss of generality, we assume that items of an 
itemset are sorted in increasing order). All items in an 
itemset are assumed to occur at the same time. A 
sequence is an ordered list of itemsets. An itemset i is 
denoted as (i1,i2,…,ik), where ij is an item. An itemset 
with k items is called a k-itemset. A sequence s is 
denoted as (s1→s2→…→sq), where the sequence 
element sj is an itemset. A sequence with k-items (k = 
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∑j |αj|) is called a k-sequence. For example, (B→ AC) 
is a 3-sequence. An item can occur only once in an 
itemset, but it can occur multiple times in different 
itemsets of a sequence.  
 A sequence p = (p1→p2→…→pn) is a subsequence 
of another sequence q = (q1→q2→ …→qn), denoted as 
p→q, if there exist integers i1< i2 < …<in, such that 
pj⊆qij for all pj. For example the sequence (B→AC) is a 
subsequence of (AB→E →ACD), since the sequence 
elements B→ AB and AC→ACD. On the other hand 
the sequence (AB→ E) is not a subsequence of (ABE) 
and vice-versa. We say that p is a proper subsequence 
of q, denoted as p⊂q, if p⊂q and p⊂q.  
 A transaction T has a unique identifier and 
contains a set of items, i.e., T ⊆ I. A customer C has a 
unique identifier and has associated with it a list of 
transactions {T1, T2,…,Tn}. We assume that no 
customer has more than one transaction with the same 
time-stamp, so that we can use the transaction-time as 
the transaction identifier. We also assume that the list 
of customer transactions is stored by the transaction-
time. Thus the list of transactions of a customer is 
itself a sequence T1→T2→…→Tn called the customer 
sequence. The database D consists of a number of 
such customer sequences. 
 A customer sequence C is said to contain a 
sequence p, if p⊆q i.e., p is a subsequence of the 
customer sequence C. The support or frequency of a 
sequence C is denoted as σ (p), is the total number of 
customers that contains this sequence. Given a user-
specified threshold called minimum support (denoted 
min-sup) we say that a sequence is frequent if it 
occurs more than minimum support times. The set of 
frequent k-sequences is denoted as Fk. A frequent 
sequence is maximal if it is not a sub sequence of any 
other sequence. 

The problem of finding sequential patterns can 
be decomposed into two parts: 
 
• Generate all combinations of customer sequences 

with fractional sequence support (i.e., supportD 

(C)/|D| ) above a certain threshold called minimum 
support m 

• Use the frequent sequences to generate sequential 
patterns 

• The second sub problem is straightforward. 
However discovering frequent sequences is a 
non-trivial issue, where the efficiency of an 
algorithm strongly depends on the size of the 
candidate sequences  

MATERIALS AND METHODS 
 
AprioriAllSID: The AprioriAllSID algorithm has 
shown in Fig. 1. An interesting feature of the proposed 
algorithm is that the given customer transaction 
database D is not use for counting support after the first 
pass. Rather the set Ck is used for determining the 
candidate sequences before the pass begins.  
 Each member of the set Ck is of the form < SID, 
{Sk} > where each Sk is a potentially frequent k-sequence 
present in the sequence with identifier SID. For k=1, C1 
corresponds to the database D, although conceptually 
each sequence i is replaced by the sequence {i}. For k>1, 
Ck is corresponding to customer sequence S is< s.SID, 
{s<Ck | s contained in t}>. If s customer sequence does 
not contain any candidate k-sequence, then Ck will not 
have an entry for this customer sequence. 
 Thus, the number of sequences in the database is 
greater than the number of entries in Ck. The number of 
entries in Ck may be smaller than the number of 
sequences in database especially for large value of k. In 
addition, for large values of k, each entry may be smaller 
than the corresponding sequence because very few 
candidate sequences may be contained in the sequence. 
 However, for small values of k, each may be 
larger than the corresponding sequence because an 
entry in Ck includes all candidate k-sequences 
contained in the sequence. 
 
Algorithm AprioriAllSID: In Fig. 1, we present an 
efficient algorithm called AprioriAllSID, which is 
used to discover all sequential patterns in large 
customer database. 
 

 
 
Fig. 1: Algorithm AprioriAllSID  
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Fig. 2: Example 
 

 
 

Fig. 3: Algorithm GSPSID 
 

 For example, consider the database in Fig. 2 and 
assume that minimum support is 2 customer sequences. 
By using candidate-gen procedure with size-1 of frequent 
sequences gives the candidate sequence in C2 by iterating 
over the entries in C’2 and generates C’

2 in step 6-11 of 

Fig. 1. The first entry in C1
’ is < {(1) (5)} {2} {3} {4}> 

corresponding to customer sequence 10. The Ct at step 
7 corresponding to this entry s is {{(1) (5)} {2} {3} 
{4}} are members of s.set-of-sequences. 
 By using Candidate-gen procedure with L2 gives 
C3. Making pass over the data with C’

2 and C3 generates 
C3

’. This process is repeated until there is no sequence 
in the customer sequence database. 
 
Algorithm GSPSID: In Fig. 3, we propose an efficient 
algorithm called GSPSID, which is used to discover all 
generalized sequential patterns in large customer database. 
 We add optimizations to GSP algorithm, which 
gives the algorithm GSPSID. In GSPSID algorithm, 
given original database D is not used for counting 
after the first pass. The first pass of algorithm 
determines the support of each item, like GSP 
algorithm. At the end of first pass, the algorithm 
knows which items are frequent, i.e., has minimum 
support. We introduce the temporary database D’ 
which is used to determine the candidate sequences 
before the pass begins. The member of that temporary 
database is of the form <SID, {Sk}>, where each Sk is 
a potentially frequent k-sequence present in the 
sequence with identifier SID.  
 For k = 1, the C1 is the corresponding temporary 
database D’. If k = 2, then we add three optimizations, 
to reduce the size of the database. If a customer 
sequence does not contain any candidate k-sequence, 
then Ck

’ will not have an entry for this customer 
sequence. Thus, the number of sequences in the 
database is greater than the number of entries in Ck

’. 
Conversely, the number of entries in Ck

’ may be smaller 
than the number of sequences in database especially for 
large value of k. In addition, for large values of k, each 
entry may be smaller than the corresponding sequence 
because very few candidate sequences may be 
contained in the sequence. For small values of k, each 
may be larger than the corresponding sequence because 
an entry in Ck includes all candidate k-sequences 
contained in the sequence.  
 
Apriori All Hybrid algorithm:  We combine the 
AprioriAllSID and AprioriAll algorithms to get the 
Apriori All Hybrid. This shows that the first iteration of 
AprioriAll algorithm and in the later iteration with 
AprioriAllSID gives the Apriori All Hybrid algorithm. 
Both algorithms are efficient, but when compared with 
AprioriAllSID, Apriori All Hybrid is faster. 
 Both algorithms use same data structures. Each 
candidate sequence is assigned a unique number called 
its SID. Each set of candidate sequence Ck

’  is kept in an 
array indexed by the IDs of the sequences in Ck. So, a 
member of Ck

’
 is of the form 〈SID, {ID} 〉. Each Ck

’
 is 

stored in a sequential structure. 
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 There are two additional fields maintained for each 
candidate sequence. They are: 
 
• Generators: This field of sequence Ck stores the IDs 

of the two maximal (k-1) sequence whose join 
generated Ck 

• Extensions: This field stores IDs of all the 
sequences Ck+1 obtained as an extension of Ck 
 

 Now, s.set-of-sequence of C’k-1 gives the IDs of all 
the (k-1)-candidate sequence contained in transaction 
s.SID. For each such candidate sequence Ck-1

’ the 
extensions field gives Sk the set of IDs of all the 
candidate k-sequences that are extensions of Ck-1. For 
Ck in Sk the generators field gives the IDs of the two 
sequences that generated Ck. If these sequences are 
present in the entry for s.set-of-sequences, Ck is present 
in customer sequence s.SID. Hence we add Ck to Ct, by 
using this data structure we can efficiently stored and 
processed the candidate sequences.  
 

RESULTS 
  

 We describe the experiments and the performance 
results of AprioriAllSID algorithms. We also compare 
the performance with the AprioriAll and GSP 
algorithms. We performed our experiments on an IBM 
Pentium machine. Using data set generator, we have 
simulated the data and test algorithms like AprioriAll, 
AprioriAllSID, GSP and GSPSID 
  
Performance evaluation: We have used the simulated 
data for the performance comparison experiments. The 

data sets are assumed to simulate a customer-buying 
pattern in a retail environment. 
 In the sets. The Table 1 and 2 shows the 
performance of AprioriAll, GSP, AprioriAllSID and 
GSPSID for minimum support 1-5% for different 
volume of data. Even though AprioriAllSID and 
GSPSID seems to bperformance comparison, we used 
the five different date nearly equal, for massive volume 
of data, the performance of AprioriAllSID and GSPSID 
will be for better than AprioriAll and GSP algorithms. 
 

DISCUSSION 
 
 In Table 1 and 2 shows the execution times for the 
five data sets for an increasing value of minimum 
support (say 1-5%). The execution times increase for 
both AprioriAllSID and AprioriAll algorithms and GSP 
and GSPSID as the minimum support is decreased 
because the total number of candidate sequence 
increases. AprioriAll algorithm and GSP are the 
multiple passes over the data. 
 

CONCLUSION 
 
 The execution time is increased with increase of 
the customer transactions in the database. In Table 1 
and 2, we can conclude that the AprioriAllSID 
algorithm is 2 times faster than AprioriAll algorithm 
and GSPSID algorithm is 3 times faster than GSP for 
small volume of data and more than order of magnitude 
for the large volume of data. The data sets ranges from 
giga bytes to tera bytes the proposed algorithms will be 
very much faster than AprioriAll and GSP. Thus we 
conclude that the proposed algorithms are very much 
suitable for massive databases.  

 
Table 1: Performance evaluation between AprioriAll and AprioriAllSID algorithms 

 AprioriAll (Execution time in sec) (%)   AprioriAllSID (Execution time in sec) (%) 
 ------------------------------------------------------------------------- ----------------------------------------------------------------------------- 
DB size 1 2 3 4 5 1 2 3 4 5 

100 K 187 199 211 228 245 98 121 148 164 183 
200 K 325 339 351 367 384 174 192 221 246 265 
300 K 428 447 465 489 510 269 281 301 324 356 
400 K 559 587 611 638 669 346 371 392 415 458 
500 K 678 691 726 758 793 489 514 561 592 636  

 
Table 2: Performance evaluation between GSP and GSPSID algorithms 

 GSP (Execution time in sec) (%)   GSPSID (Execution time in sec) (%) 
 -------------------------------------------------------------------------- ------------------------------------------------------------------------------ 
DB size 1 2 3 4 5 1 2 3 4 5 

100 K 149 188 213 249 274 67 98 121 149 162 
200 K 251 289 308 329 368 123 146 178 204 238 
300 K 339 368 392 421 467 212 258 298 332 378 
400 K 426 467 493 527 569 320 357 398 435 481 
500 K 512 541 570 518 536 404 449 481 523 556  
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