Journal of Computer Science 7 (9): 1325-1329, 2011
ISSN 1549-3636
© 2011 Science Publications

Fast Algorithmsfor Discovering Sequential Patternsin Massive Datasets

's.Dharani,Justus Rabi antNanda Kumar antDarly
lDepartment of CSE, St.Peter’s University, Avadi, GAennai, India
’Department of EEE, Toc H institute of Science aedhhology, 682 313, Cochin,
*Department of CSE, A.C.S. College of Engineeriréf)&4, Bangalore, India
4Department of IEEE, Anna University, Chennai, India

Abstract: Problem statement: Sequential pattern mining is one of the specifatadmining tasks,
particularly from retail data. The task is to digep all sequential patterns with a user-specified
minimum support, where support of a pattern isrthmber of data-sequences that contain the pattern.
Approach: To find a sequence patterns variety of algorithke liAprioriAll and Generalized
Sequential Patterns (GSP) were there. We pressntifal efficient algorithms called AprioriAlISID
and GSPSID for mining sequential patterns that iiendamentally different from known algorithms.
Results:. The proposed algorithm had been implemented andpamd with AprioriAll and
Generalized Sequential Patterns (GSP). Its perfocmavas studied on an experimental basis. We
combined the AprioriAllSID algorithm with AprioriAl algorithm into a Hybrid algorithm, called
AprioriAll Hybrid. Conclusion: Implementation shows that the execution time efdtgorithm to find
sequential pattern depends on total no of candidgdeerated at each level and the time taken to sca
the database. Our performance study shows thatptbposed algorithms have an excellent
performance over the best existing algorithms.

Key words: Data mining, sequential pattern mining, aprioritaibrid, proposed algorithntemporary
databasegandidate sequencesjnimum support

INTRODUCTION database D. Then we can find the candidate k-size
sequences until the candidate sequence or temporary
Data Mining is the process of extracting usefuldatabase size is empty. At this stage the datadizsés
information which is hidden in large databases. Theeduced as well as the number of candidate segsience
knowledge or pattern mined could be used to makere also reduced (Suneetha and Krishnamoorti, 2010;
decisions. Sequential pattern mining is one ofrtiagor Liju, 2010). This feature is used for finding secfisn
areas of research in the field of data mining. 8etial patterns easily and efficiently reduced the time
pattern mining is used to discover frequent seqeeas complexity. So the proposed methods are efficieant
patterns in a database. Several algorithms have be@|| other methods like AprioriAll and Generalized
proposed to find sequential pattern (Changsi@m., sequential Patterns (GSP). Relative performanagystu
2009; Zhanget al., 2009). First AprioriAll algorithm ¢ AprioriAlISID and GSPSID is given.
was introduced to find all sequential patterns. For
finding generalized sequential patterns GSP,
(Generalized Sequential Patterns) was presented. ‘IP
find sequential patterns from large amount of &atien o . :
data rgquires Enultiple passesgover the database. V\?eset Of_ m distinct attributes, also caIIec_i 'te“%_‘
propose efficient algorithms namely AprioriAllISIDhé |temset IS a non-empty_ unordered collectlo_n of gem
GSPSID to improve the performance by reducing thdWithout loss of generality, we assume that iterharo
scale of the candidate item set &d the spending of itemset are sorted in increasing order). All iteims&n
I/0 (Wang, 2010; Yong-Qingt al., 2009; Yancet al., itemset are assumed to occur at the same time. A
2009). sequence is an ordered list of itemsets. An iteniet
The original database is read only one time and wéenoted as {ji,,...,i), where jis an item. An itemset
introduce a new temporary database fér the next with k items is called a k-itemset. A sequence s is
iterations. After completing the first iterationewan denoted as (s-s;-...-5), where the sequence
find the candidate sequence of size-2 using tempora element sis an itemset. A sequence with k-items (k =

OrobIem statement: The problem of mining sequential
patterns can be stated as follows: Let | Fifi.,in} be

Corresponding Author: S. Dharani, Department of CSE, St.Peter’s Univgrgivadi, Chennai, 54, India
1325

J. Computer i, 7 (9): 1325-1329, 2011

2 loy)) is called a k-sequence. For example,>(BC) MATERIALSAND METHODS

is a 3-sequence. An item can occur only once in an . o)
itemset, but it can occur multiple times in diffiere APrioriAllSID: - The AprioriAlISID = algorithm has
itemsets of a sequence shown in Fig. 1. An interesting feature of the pregd

A SEQUENCE P = (p+Pa ... -+ pr) iS a subsequence algorithm is that the given customer transaction

¢ h U q q database D is not use for counting support afeefitkt
of another sequence g =1(qg;~ ...~ 0y), denoted as pass. Rather the set, @ used for determining the

p-q, if there exist integersd i; < ...<i,, such that cangidate sequences before the pass begins.

piUg; for all p. For example the sequence<BC) is a Each member of the sef @& of the form < SID,

subsequence of (ABE - ACD), since the sequence (S} > where each Ss a potentially frequent k-sequence

elements B- AB and AC-ACD. On the other hand present in the sequence with identifier SID. Fot k&

the sequence (AB E) is not a subsequence of (ABE) corresponds to the database D, although conceptuall

and vice-versa. We say that p is a proper subsegueneach sequence i is replaced by the sequence {i}k¥b,

of q, denoted aslfy, if pfiq and flq. Cx is corresponding to customer sequence S is< s.SID,
A transaction T has a unique identifier and{s<Cy | s contained in t}>. If s customer sequence does

contains a set of items, i.e.,[TI. A customer C has a nhot contain any candidate k-sequence, themwiC not

unique identifier and has associated with it a ¢ist have an entry for this customer sequence. _

transactions {I, Ty....T.}. We assume that no Thus, the number of sequences in the database is

customer has more than one transaction with thassangreater than the number of entries ijp The number of

: . . entries in G may be smaller than the number of
time-stamp, so that we can use the transaction-tisne) X

S o _ sequences in database especially for large vallke lof
the transaction identifier. We also assume thatlitie

) : . addition, for large values of k, each entry masheller

of customer transactions is stored by the transaeti h5n the corresponding sequence because very few
itself a sequence,F-T,- ... - T, called the customer However, for small values of k, each may be
sequence. The database D consists of a number tfrger than the corresponding sequence because an
such customer sequences. entry in G includes all candidate k-sequences

A customer sequence C is said to contain &ontained in the sequence.

sequence p, if [iq i.e., p is a subsequence of theAlgorithm AprioriAllSID: In Fig. 1, we present an
customer sequence C. The support or frequency of gficient algorithm called AprioriAlISID, which is

sequence C is denoted @gp), is the total number of ysed to discover all sequential patterns in large
customers that contains this sequence. Given a usefystomer database.

specified threshold called minimum support (denoted

min-sup) we say th_aF a sequence -iS frequent if it L;={ Large size-1 sequences};/ Resultof
occurs more than minimum support times. The set of Litemset phase
. C = database D;
frequent K—sequgnce; |.s.denoted as A& frequent For(hk=2; Ly = 2ttty do Bagia
sequence is maximal if it is not a sub sequencangf C;.= New candidate sequences gencrated from
other sequence. L.‘-_..f-_ N
The prob_lem of finding sequential patterns can for sll-eihess e Oy o Degls
be deComDOSGd Into two parts: Determine candidate sequences
in Cy. contained in the sequence with
e Generate all combinations of customer sequences c ld(ﬂlriﬂérni-]SID
. . . "= {52C; | s-C[k]} £ s.set-of-sequences A (s-
with fractional sequence support (i.e., sgp@ort Ol & 550 o atquenceats
(C)/lDl) above a certain threshold called minimum for each customer sequence ¢ in the database
do
SUppOI’t m A increment the count of all candidate sequences
» Use the frequent sequences to generate sequential it C, that are contased i s
patterns if(C,= @) then Cy=C + < s5.8ID, C>:
. . End:
* The SeCOHFj SUb_ prOblem IS stralghtforwgrd. L;: = Candidate sequences in C; with minimum
However discovering frequent sequences is a support;
non-trivial issue, where the efficiency of an End;
Answer =14 L;:

algorithm strongly depends on the size of the
candidate sequences Fig. 1: Algorithm AprioriAllISID
1326

J. Computer i, 7 (9): 1325-1329, 2011

Customer Database N L,
IID|Sequence TID Set-of-Sequences Sequence | Support
10 J={1 5} {2} {3} {4} = 10 f=im)i 4= Jil] 1
N SURUECRSDEE | IRV SRECTORICTONES | e 2
30 =413 {23 {3} {4} = W R {33 4
40 =413 {3} {8} = a0 ks {43 4
50 f={4) {51 = 2 lwms {5} 4

C, cy I L,
[temset| 11D Set-of-Sequences ISequence Support]
a1 10 T{gl_:} {11_3}}{1 GAH2NIH2HE 1112} 2
an p 35 {45)= a3 f
a4 0 FA3A4UH{GNEHES> a4 3
a8 N AL 232480834 s 3
23 o kanaspsns e 2
24 30 =48] = a4 1
a4 gg | 3
38 {335} 2
{4 5} {45} 2

C;

3 c; L
[temset)

123 TID Set-of-Sequences S equence|Suppart]
“:” 10 =123 {124 {135 {145} {234}~ 113 2
34 0 =335 {145{345)= {124} 2
as 30 =428 03450834> 134] 3
115 40 =13 {15 35> {133} 3
234 {145} 2
) g | 2

c, o N
Ttemset 11D Set-of-Sequences ISequence Support
{1234} | 0 {1234} {1235} = I{IZJJ} 1

Izu inzag-
Fig. 2: Example

Compute T, a set of ancestor of each item, from
taxonomy T

L, = {Large size-1 sequences}: // result of litemset phase

C'y = database D; k=2

While (L, =) do begin

), = New candidate sequences generated from Ly ;:

If (k=2) then

Delete any candidate sequence in C, that consists of a sequence of item and its ancestors
Delete any ancestors in T" that are not present in any of the candidates in Cj

C=@

For all entries seC'.; do begin

// determine candidate sequences in C,, contained in the sequence with identifiers. SID
Ct= {seCy | s-C[k]) € s.set-of-sequences » (s-C[k]) € s.set-of-sequences}

For each customer sequence s in the database do

Add all ancestors of x in T" to s

Remove any duplicates from s

Increment the count of all candidate sequences in Cy, that are contained in s

If (G, = @) then Cy. = C. = <s.8ID, C>

End

1, = Candidate sequences in €y, with minimum support

End

Answer =y Ly

Fig. 3: Algorithm GSPSID

Fig. 1. The first entry in Cis < {(1) (5)} {2} {3} {4}>
corresponding to customer sequence 10. That Gtep
7 corresponding to this entry s is {{(1) (5)} {2}3}
{4}} are members of s.set-of-sequences.

By using Candidate-gen procedure with dives
Cs. Making pass over the data with,@nd G generates
C;. This process is repeated until there is no sempien
in the customer sequence database.

Algorithm GSPSID: In Fig. 3, we propose an efficient
algorithm called GSPSID, which is used to discosder
generalized sequential patterns in large custoatabese.

We add optimizations to GSP algorithm, which
gives the algorithm GSPSID. In GSPSID algorithm,
given original database D is not used for counting
after the first pass. The first pass of algorithm
determines the support of each item, like GSP
algorithm. At the end of first pass, the algorithm
knows which items are frequent, i.e., has minimum
support. We introduce the temporary database D
which is used to determine the candidate sequences
before the pass begins. The member of that tenyorar
database is of the form <SID, {S, where each Sis
a potentially frequent k-sequence present in the
sequence with identifier SID.

For k = 1, the gis the corresponding temporary
database DIf k = 2, then we add three optimizations,
to reduce the size of the database. If a customer
sequence does not contain any candidate k-sequence,
then G will not have an entry for this customer
sequence. Thus, the number of sequences in the
database is greater than the number of entries,in C
Conversely, the number of entries ip @ay be smaller
than the number of sequences in database espédoially
large value of k. In addition, for large valueskpfeach
entry may be smaller than the corresponding seguenc
because very few candidate sequences may be
contained in the sequence. For small values ofikhe
may be larger than the corresponding sequence ecau
an entry in ¢ includes all candidate k-sequences
contained in the sequence.

Apriori All Hybrid algorithm: ~ We combine the
AprioriAlISID and AprioriAll algorithms to get the
Apriori All Hybrid. This shows that the first itetian of
AprioriAll algorithm and in the later iteration it
AprioriAllSID gives the Apriori All Hybrid algoritim.
Both algorithms are efficient, but when comparethwi
AprioriAllSID, Apriori All Hybrid is faster.
Both algorithms use same data structures. Each

For example, consider the database in Fig. 2 andandidate sequence is assigned a unique numbed call

assume that minimum support is 2 customer sequencsts SID. Each set of candidate sequengestkept in an
By using candidate-gen procedure with size-1 afifemt array indexed by the IDs of the sequences,inS0, a
sequences gives the candidate sequencelig ierating member of ¢ is of the form(SID, {ID}). Each G is
over the entries in €and generates £in step 6-11 of stored in a sequential structure.

1327

J. Computer i, 7 (9): 1325-1329, 2011

There are two additional fields maintained forteac data sets are assumed to simulate a customer-buying
candidate sequence. They are: pattern in a retail environment.
In the sets. The Table 1 and 2 shows the
performance of AprioriAll, GSP, AprioriAlISID and
of the two maximal (k-1) sequence whose joinGSPSID for minimum support 1-5% for different
volume of data. Even though AprioriAlISID and
generaFed € o GSPSID seems to bperformance comparison, we used
* Extensions: This field stores IDs of all the ye five different date nearly equal, for massietume
sequences ¢, obtained as an extension of C of data, the performance of AprioriAlISID and GSBSI
will be for better than AprioriAll and GSP algornitis.

e Generators: This field of sequencgstores the IDs

Now, s.set-of-sequence of G'gives the IDs of all

the (k-1)-candidate sequence contained in t(armacti DISCUSSION
s.SID. For each such candidate sequenge the
extensions field gives Sthe set of IDs of all the In Table 1 and 2 shows the execution times for the

candidate k-sequences that are extensions,@f Ebr five data sets for an increasing value of minimum
Ck in S the generators field gives the IDs of the twosupport (say 1-5%). The execution times increase fo
sequences that generateq. @ these sequences are both AprioriAlISID and AprioriAll algorithms and GS
present in the entry for s.set-of-sequenceds @resent and GSPSID as the minimum support is decreased
in customer sequence s.SID. Hence we adth@, by because the total number of candidate sequence
using this data structure we can efficiently stosedi increases. AprioriAll algorithm and GSP are the
processed the candidate sequences. multiple passes over the data.
RESULTS CONCLUSION
The execution time is increased with increase of
We describe the experiments and the performancthe customer transactions in the database. In Table
results of AprioriAlISID algorithms. We also compar and 2, we can conclude that the AprioriAlISID
the performance with the AprioriAl and GSP algorithm is 2 times faster than AprioriAll algdmih
algorithms. We performed our experiments on an 1Bmand GSPSID algorithm is 3 times faster than GSP for
Pentium machine. Using data set generator, we hav@mall volume of data and more than order of mageitu
simulated the data and test algorithms like ApAtyi for the large volume of data. The data sets rafiges
AprioriAlISID, GSP and GSPSID giga bytes to tera bytes the_prpposed algorithntisbei
very much faster than AprioriAll and GSP. Thus we
Performance evaluation: We have used the simulated conclude that the proposed algorithms are very much
data for the performance comparison experiments. Thsuitable for massive databases.

Table 1: Performance evaluation between Aprioradtl AprioriAllSID algorithms

AprioriAll (Execution time in sec) (%) AprioriA8ID (Execution time in sec) (%)
DB size 1 2 3 4 5 1 2 3 4 5
100 K 187 199 211 228 245 98 121 148 164 183
200 K 325 339 351 367 384 174 192 221 246 265
300 K 428 447 465 489 510 269 281 301 324 356
400 K 559 587 611 638 669 346 371 392 415 458
500 K 678 691 726 758 793 489 514 561 592 636

Table 2: Performance evaluation between GSP an&ES&gorithms

GSP (Execution time in sec) (%) GSPSID (Executime in sec) (%)
DB size 1 2 3 4 5 1 2 3 4 5
100 K 149 188 213 249 274 67 98 121 149 162
200 K 251 289 308 329 368 123 146 178 204 238
300 K 339 368 392 421 467 212 258 298 332 378
400 K 426 467 493 527 569 320 357 398 435 481
500 K 512 541 570 518 536 404 449 481 523 556

1328

J. Computer i, 7 (9): 1325-1329, 2011

REFERENCES Yong-Qing, W., Y. Ren-Hua and L. Pei-Yu, 2009. An
improved Apriori algorithm for association rules of

Changsheng, Z., L. Zhongyue and Z. Dongsong, 2009. mining. Proceedings of the IEEE International

An improved algorithm for apriori. Proceedings of Symposium on IT in Medicine and Education,
the 1st International Workshop on Education Aug. 14-16, IEEE Xplore Press, Jinan, pp: 942-
Technology. Computer Science, Mar. 7-8, IEEE 946. DOI: 10.1109/ITIME.2009.5236211

Xplore Press, Wuhan, Hubei, pp: 995-998. DOl:yang, G., H. Zhao, L. Wang and Y. Liu, 2009. An
10.1109/ETCS.2009.227 implementation of improved apriori algorithm.

Liu, Y., 2010. Study on application of apriori atghm Proceedings of the International Conference on

in data mining. Proceedings of the 2nd Machine Learning and Cybernetics, Jul. 12-15,
International Conferences on Computer Modeling IEEE Xplore Press, Baoding, pp: 1565-1569. DOI:
and Simulation, Jan. 22-24, IEEE Xplore Press, 10.1109/ICMLC.2009.5212246

Sanya, Hainan, pp: 111-114. DOI; Zhang, C. and J. Ruan, 2009. A modified apriori

10.1109/ICCMS.2010.398 algorithm with its application in instituting cress

Suneetha, K.R. and R. Krishnamoorti, 2010. Advanced selling strategies of the retail industry. Procegsli
version of a priori algorithm. Proceedings of tis 1 of the International Conference on Electronic
International Conference on Integrated Intelligent ~ Commerce and Business Intelligence, Jun. 6-7,
Computing, Aug. 5-7, IEEE Xplore Press, IEEE Xplore Press, Beijing, pp: 515-518. DOI:
Bangalore, pp: 238-245. DOl: 10.1109/ECBI.2009.121

10.1109/ICIIC.2010.64

Wang, X., 2010. Study of data ming based on Apriori

algorithm. Proceedings of the 2nd International
Conference on Software Technology and
Engineering, Oct. 3-5, IEEE Xplore Press, San
Juan, PR. pp: 400-403. DOl:
10.1109/ICSTE.2010.5608780

1329

