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Abstract:  Problem statement: Gaze estimation systems compute the direction of eye gaze based on 
observed eye movements. The need for gaze-contingent applications is the basis of the current research 
work. The gaze pointing systems is a substitute for the existing input devices. Approach: The gaze 
tracking methods are either feature based or appearance based. In this study, an appearance based 
approach for gaze tracking is proposed based on Run Length Coding (RLC). The experiment was 
conducted considering transitional changes and the class-intervals in iris pixels. The image acquisition 
begins from the center of the screen in anticlockwise direction. The center of the screen was the pivot 
point. Results: Using RLC, the recognition rate of 95% was achieved. The image analysis in different 
directions determines the gaze point. The directions was determined with respect to the pivot point. 
Conclusion: The proposed system provides a robust, less computational gaze tracking method using 
web camera.  
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INTRODUCTION 

 
 Eyes provide reliable and prominent features for 
communication using gaze enabled interfaces. The gaze 
tracking system captures intention of a person on the 
screen. The gaze point determines the direction of 
where an individual is looking at as shown in Fig. 1. 
Eye movements are categorized into fixations and 
saccades. A fixation occurs when focus of eye is on a 
particular object. The movements of our eyes from one 
fixation to another are known as saccades. As the 
human eye scans over the scene or image, the focus 
shifts about 25 times per second, to take in the disparate 
parts in its field of vision. The movements and 
information combine to form a cohesive vision of the 
scene. Analysis of the fixations and saccades are 
important for visual behavior. The major challenges are 
due to illumination, variability in position, faster 
saccades and eye blinks (Hansen and Ji, 2010). Existing 
eye gaze tracking systems are confined to controlled 
environments. The usability of the system under natural 
environments needs improvement (Zhu and Ji, 2004). 
Some methods require strict calibration procedure prior 
to gaze tracking. The accuracy of gaze tracking system 
depends on size of eye’s visual field, range of eyeball 
rotation, diameter of the fovea and radius of the eyeball. 
 The existing gaze tracking techniques are broadly 
classified into intrusive and non-intrusive. The intrusive 
techniques require attachments around the eye to 

determine the gaze. These include search coils, electro-
oculography, contact lens and head mounted devices. 
Non-intrusive techniques use video cameras under 
infrared or natural light sources. The non-intrusive or 
video based techniques are classified into Appearance 
based and Feature based techniques. Appearance 
based techniques use the image contents as to map 
directly to the screen coordinates (Hansen and Ji, 
2010). These methods require several significant 
calibration points to infer the gaze direction from the 
images. The analysis of the images at calibration 
points is important for gaze estimation. Explicit 
camera calibration is eliminated. In a morphable 
model developed by Rikert and Jones (1998), the 
texture for a set of prototype images is mapped to the 
reference image based on shape transformation. 
Neural network is used for training the prototypes 
with parameters for shape and texture of the eye 
region. Betke and Kawai (1999) determine gaze 
direction by gray scale unit images. During 
calibration, gray scale units are created in an elliptic 
pattern to form model images. Learning process use 
self-organizing map. The comparison of the pupil 
positions in model image with various regions in the 
trial image using correlation coefficient determines the 
gaze direction. The method by Tan et al. (2002) use 
appearance manifold for   gaze   estimation.   A   set 
of sample eye images with varying parameters and 
pose represent a continuous set  of   points   called 
appearance manifold in the   high  dimensional  space. 
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Fig. 1: Gaze tracking system 
 

 
 

Fig. 2: Region growing 
 
For a test image, the set of closest manifold points is 
determined by interpolation based on least squares 
criteria. In the method by Hansen et al. (2002), the 
shape and pixel intensity information of eye corners and 
pupil position is obtained by active appearance model. 
The mapping function is based on Gaussian process 
interpolation  method   considering mean value. Yoo 
et al. (2002) determined the gaze point on the screen 
based on the glint positions. The cross ratios in the 
image are mapped to the monitor screen to obtain the 
coordinates of the gaze point. The appearance models 
are used for tracking smaller eye movements compared 
to the size of the object. In feature based methods, the 
gaze estimation requires as prerequisite, a set of 
features. The pupil corneal reflection or the pupil-glint 
vector is the most common feature used in feature 
based   techniques (Morimoto and Mimica, 2005; Zhu 
et al., 2006; Baluja and Pomerleau, 1993). The local 
gaze features include pupil and limbus position, iris 
center, eye corner, inner eye boundary and sclera 
region. The global gaze features are face skin color 
interpupil distance, ratio between average intensity, 
shapes, sizes of both the pupil and orientation of pupil 
ellipse with respect to face pose (Zhu and Ji, 2004; 

Khosravi and Safabakhsha, 2008). The gaze mapping 
functions determine the screen coordinates. The 
mapping is an analytical function of either linear or 
second order polynomial. In the method by Kim and 
Ramakrishna (1999), the displacement of the iris center 
is based on linear approximation. The method by Zhu 
and Yang use eye corner-iris center vector as input for 
gaze angle calculation (Zhu and Yang, 2002). 
Interpolation is used to determine the gaze direction. 
Some nonlinear mapping functions use neural network, 
support vector machines and radial basis functions. The 
gaze detection system by Kiat and Ranganath (2004) 
use two Radial Basis Function Neural Network 
(RBFNN) to determine x and y coordinates of the gaze 
point on the screen. The pupil and glint parameters are 
used to train the RBFNN. In the method by Zhu and Ji 
(2004), six input parameters, the pupil glint 
displacement along x and y direction, ratio of major to 
minor axes of the ellipse that fits the pupil, pupil ellipse 
orientation and glint image coordinates are used for 
training the generalized regression neural networks. An 
extension of the work was developed using Support 
Vector Regression (SVR) to determine the gaze 
coordinates (Zhu et al., 2006). In this study, an 
appearance based model is presented for eye gaze 
tracking. The features are the pupil and iris pixels in the 
captured eye images. The gaze direction is estimated 
based on RLC. The sequence of transitional changes and 
class intervals remain unique for each gaze direction. 
 
Prologue: 
Region growing: The entire image region is 
represented by S. Region based segmentation partitions 
S into n subregions, S1, S2,…Sn, such that (a) The 

regions cover the whole image, 
n

i
i 1

S S
=

=∪  (b) S is a 

connected region, i=1,2,…,n. (c) The two regions are 
disjoint, i jS S∩ = φ , ∀i and j,i ≠ j where φ is the null 

set. (d) A region satisfies the logical predicate Pr(Si) 
defined over the points in set S.(e) i jPr(S S ) FALSE∪ =  

for any adjacent region Si and Sj. 
 Region growing groups pixels or subregions into 
larger regions based on predefined criteria. The pixel 
aggregation starts with a set of seed points Abas, 
(2010). The seed mark each of the objects to be 
segmented. Regions are iteratively grown by appending 
to each seed points those unallocated neighboring 
pixels that have similar properties. The region growing 
is shown in Fig. 2. 
 The distance between a pixel’s intensity value and 
the region’s mean, dist is used as a measure of 
similarity. The pixel with the smallest difference 
measured this way is allocated to the respective region. 
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This process continues until all pixels are allocated to a 
region. It stops when the intensity distance between 
region mean and new pixel become larger than a certain 
threshold value. This value is the region’s Maximum 
Intensity Distance (MID). The algorithm for region 
growing is given in Algorithm 1. 
 
Algorithm 1: Region Growing 
Let S be the image region with intensity values I. 
 The seed point, sp and MID values are initialized. 
 The q neighbor locations are determined and the 

neighboring pixel np is added to list L. For instance 
if q = 4, 4 neighboring pixels are added to L. 

 The mean value of the region, m(S) is computed. 
 The distance between pixel’s intensity value and 

region’s mean is computed, dist=I(S)-m(S). 
 For each pixel, np in L 
  if np ∉ R and dist<MID 
  np is added to L 
  np is assigned as region pixel rp, rp 

∉ R 
  The new mean value of the region 

is calculated 
  end 
 end 
 

 
 (a) (b) 
 

 
 (c) (d) 
 

 
 (e) (f) (g) 
 
Fig. 3: (a) Eye image; Region growing for (b) MID = 

0.01 (c) MID = 0.02 (d) MID = 0.03 (e) MID = 
0.04  (f) MID = 0.05 (g) MID = 0.06 

 

 
 
Fig. 4: Screen displaying directions  

 The segmentation results are dependent on the 
choice of seeds. Seed point selection is based on some 
user criterion like pixels in a certain gray-level range, 
texture, color and shape. The initial region begins as the 
exact location of these seeds. The MID determine the 
condition for region growing. The region growing for 
MID values ranging from 0.01-0.06 with seed point is 
shown in Fig. 3. It is observed that the optimum value 
of MID for region growing needs to be selected on trial 
and error basis. Even a small change in the value does 
not provide the complete region. 
  
Run length coding: RLC provides compact 
representation of a binary image. The sequence of 
repeated intensity values is represented as a single value 
and count. The representation is useful for images 
which contains runs of data. The long sequence of same 
value is replaced by a two values. The intensity values 
v1, v2, v3,..., vn are mapped to pairs (a1, r1), (a2, r2),...,(an, 
rn) where ai represent image intensity and ri represent 
runs of pixels (Gonzalez and Woods, 2005). The 
algorithm for RLC is given in Algorithm 2. 
 
Algorithm 2: Run Length Coding 
Let seq be the sequence of intensity values of a binary 
image. 
 k=1; 
  for i=1 to length(seq) 
 if (seq(i)==1 and seq(i+1)==0) or 

(seq(i)==0 and seq(i+1)==1) 
 a(k) ← seq(i) 
 d(k) ← i, k=k+1 
 end 
 end 
 r(1)=d(1) 
 for j=2 to length(d) 
 r(j)=d(j)-d(j-1) 
 end 
 
 For the sequence of binary image seq = {1 1 1 1 0 
0 0 0 0 0 1 1 0 0 0} the following values are obtained. 
a={1 0 1 0}, d={4, 10, 12, 15} and r={4, 6, 2, 3}, where 
the intensity values are represented by a

�
 and 

cumulative count is represented by d. The vector r 
represents run length values with respect to a

�
. The RLC 

algorithm applied on iris images returns the number of 1s 
in each row. The number of 1s corresponds to the iris 
pixels, ip in the segmented image. 
 
Related work: The gaze estimation algorithm based on 
pupil-corneal reflection and second order polynomial 
calibration function was proposed by Morimoto and 
Mimica (2005). An average error was achieved for the 
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entire screen. Yamazoe et al. (2008) developed single-
camera-based gaze estimation algorithm. The method 
consists of facial feature detection, eye model estimation 
and gaze estimation. An average estimation error is 
obtained. The method proposed by Lee and Park (2009) 
used head-mounted display environment. The method 
used virtual eyeball model by analyzing 3D structure of 
the eyeball. A head based approach developed by 
Kaminski and Knaan (2009) determines 3D face 
orientation from the two glints and bottom point of 
nose. The gaze detection involves estimating the center 
of cornea. The method by Ohno et al. (2002) use pupil 
and centroid of the Purkinje image as input to the gaze 
detection based on eyeball model. The model determines 
two parameters, center of cornea curvature and center of 
pupil in the camera coordinate system. The method by 
Wang et al. (2003) estimates gaze using iris contours. 
Eye gaze is determined as the line joining the eyeball 
center and iris center in the eye model. A calibration free 
method by Shih and Liu (2004) estimates gaze direction 
directly by the orientation of the Line of Sight. In the 
study proposed by Park (2007), the pupil center and six 
boundary points of pupil are used for gaze estimation. 
The gaze vector is obtained by the average of six gaze 
vectors, where each vector is computed by the cross 
product of the pupil boundary points. 
 
Proposed system: 
Image acquisition: The system is initiated with image 
acquisition: 
 
vobj = vi(adn, dvid) (1a) 
 
pv(vobj, h) (1b) 
 
conf(vobj) (1c) 
 
fscreen(scr) (1d) 
 
 The video input object vobj is created to aid 
communication between the system and image 
acquisition device using (1a) where adn is the adapter 
and dvid indicates device identification. The video data 
for vobj is previewed using (1b) for positioning the eye. 
h contains the information of the image such as video 
resolution and the number of bands. The video 
resolution is 640×480. The capturing of the image is 
event driven. The trigger configuration and the number 
of frames per trigger is initialized using (1c). The 
directions screen depicted with degrees on the monitor 
is displayed in fullscreen mode with a resolution of 
1280×800 and a small preview window of size 
150×150 on the left bottom side of the screen using 
(1d). This is shown in Fig. 4. 

 The image capture begins with acquiring eye 
images pointing to center direction. This is the pivot 
point. The image capture continues in anticlockwise 
direction from 0° at an offset of 30°. The degrees in the 
screen are depicted as Di, i = 1,2,...,13 such that P, 0°, 
30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, 
330° maps to D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, 
D11, D12, D13. The directions D1, D2, D5, D8 and D11 are 
reference directions. Gaze directions D3, D4, D6, D7, D9, 
D10, D12 and D13 are non-reference directions. The non-
reference gaze directions are estimated with respect to 
reference directions. The images in each direction are 
captured as given in the Algorithm 3.  
 
Algorithm 3: Capture of eye and screen images 
Let N be the number of eye images to be captured. 
Repeat for i=1 to N 
 The execution of vobj is initiated. 
  init(vobj) 
 The image acquisition from vobj is activated. An 

event is triggered for the capture of eye images. 
  act(vobj) 
 The eye images as seen in the preview are captured 

and buffered. 
  buffer eye(i)=cap_ eye(vobj) 
 The screen dimensions, width (wd) and height (hgt) 

are possessed to determine the rectangular 
coordinates. 

  [wd,hgt]=scr size(FC); rec [0 0 wd hgt] 
 The image is created by reading the pixels from the 

screen with respect to coordinates given by rec. The 
image  data is buffered to the input stream. 

 Buffer_ screen(i)=cap_scr(FC) 
end 
 

 
 (a) (b) (c) 
  

 
 (d) (e) (f) (g) 
 
Fig. 5: Preprocessing stages 
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 The center of screen is denoted by pivot P. It is the 
initial focus point and all other directions are 
determined with respect to this center point. The 
changes in the shape of the iris are observed. The 
system does not require exclusive calibration. With 
horizontal head movements parallel to screen, the 
position of the iris with respect to sclera of eye do not 
change remarkably as shown in the Fig. 5. The primary 
position of eye is defined anatomically by head and eye 
planes. Photographic and video analyses show that the 
primary position of the eyes is a natural constant 
position in alert normal humans (Jompel and Shi, 
1992). If axis of horizontal rotation of head and screen 
plane are parallel, the algorithm is independent of initial 
head position. 
 
Preprocessing: The eye images are captured using web 
camera. The RGB eye image is shown in Fig. 5a. The 
captured 640×480 sized eye images Img(x,y) are 
converted to grayscale as shown in Fig. 5b. Filtering is 
performed using a suitable mask to extract the exact 
position of the eye using (2a) as shown in Fig. 5c. The 
mask is of different sizes such as 6×6, 24×6 and 42×6 
of 1s. Each subject has a unique mask. The image is 
binarized and the maximum value of x- coordinate is 
determined using (2b). The rectangular coordinates for 
the exact eye position are given by (2c). The image is 
cropped using (2d). The filter response determines the 
bounding box for the eye region as shown in Fig. 5d: 
 
Img(x, y) = F(Img(x, y),M) where M is the mask(2a) 
 
maxx = max(Img(x)) (2b) 
 
R = [0,maxx − 120, ncols, 230] (2c) 
 
I(x, y) = C(Img(x, y),R) (2d) 
 
 An approximation of pupil center is determined by 
considering the summation of intensity values. The 
image Img is scanned row wise to obtain the summation 
of intensity values sx using (3a). The minimum of the 
summation value mx gives the x-coordinate of the darkest 
point in the image using (3b). Similarly, the summation 
of intensity values column wise is sy and the minimum 
summation value my provides the y-coordinate using 
(3c) and (3d). The (mx,my). 
 values correspond to the point in the pupil area 
with minimum intensity value: 
 

xs I(x),x 1,...,nrows= =∑  (3a) 

x xm min(s )=  (3b) 

 

ysum I(y), y 1,...,ncols= =∑  (3c) 
 

y ym min(s )=  (3d) 
 
 The value sp = (mx, my) represents the seedpoint to 
grow the iris region. Region growing is performed on 
the eye image as shown in Fig. 5e. Growing terminates 
when dist value exceeds MID using (4a) and (4b). In 
the proposed work, the optimum value of MID is 0.05:  
 
dist = I(x, y) − mean(I(x, y)) (4a) 
 

R(x, y) ⇐ I(x, y) if dist < MID (4b) 
 
 The reflections formed in the eye due to 
illumination are eliminated and smoothing is performed 
to define the contour of the iris region. The boundary of 
the iris is determined and iris region is extracted as 
shown in Fig. 5f. The MID determine the condition for 
region growing. The segmented iris is normalized to the 
size 25×25 as shown in Fig. 5i(g). 
 
RLC based on transitional changes: The result of 
preprocessing is the iris region. The image of the iris 
region is resized to 50×100. The binary image is 
scanned row wise and each row is given as input to 
RLC algorithm. The run length algorithm returns the 
count of the number of 1s and 0s row wise. The 
sequences are ‘1 0’, ‘0 1 0’, ‘0’, ‘1’ and ‘0 1’. Table 1 
and 2 show similar coding values for direction pointing 
to P, D1 of a subject. Table 3-4 show similar runlength 
values for direction 90°, D5 of a subject. The coding 
values for D1 and D5 are different for a subject. 
 The run length coding algorithm returns the count 
of runs of 0s and 1s. The first run length of zeros (FRZ) 
is considered. FRZ gives the count of first occurrence 
of the sequence of 0s. The FRZ values are similar for 
each direction. Figure 6 shows FRZ plot for direction D5.  
 
Table 1: Run length of sample 1 for direction D1 
Sample 1 
-------------------------------------------------------------------------- 
r1 r2 r3 r4 r5 
… … … … … 
99 1    
99 1    
21 2 1 75 1 
40 59 1   
44 55 1   
47 5 1 46 1 
65 34 1   
47 4 18 30 1 
75 24 1   
78 21 1   
… … … … … 
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Fig. 6: FRZ for samples in direction D5 
 
Table 2: Run length of Sample 2 for Direction D1 
Sample 2 
-------------------------------------------------------------------------- 
r1 r2 r3 r4 r5 
… … … … … 
99 1    
97 3    
24 1 2 72 1 
42 57 1   
43 56 1   
42 57 1 40 1 
64 35 1   
54 3 9 33 1 
73 26 1   
79 20 1   
… … … … … 
 
Table 3: Run length of Sample 1for Direction D5 
Sample 1 
------------------------------------------------------------------------------------ 
r1 r2 r3 r4 
… … … … 
1 98 1  
3 97   
1 2 51 46 
79 20 1  
91 8 1  
92 7 1  
97 2 1  
100    
100    
100    
… … … … 
  
 Figure 8 depicts the plot of FRZ in different gaze 
directions. It was observed that for row numbers in the 
range [20-40], there is variation in the values of FRZ. 
The variations are due to changes in position of upper 
eyelid and visible region of iris. The range of values is 
promising to identify the direction of gaze. Figure 7 
shows the plot of FRZ for directions, D1, D5, D8 and D2 
in the range [1-50] and [20-40].  

Table 4: Run length of Sample 2 for Direction D5 
Sample 2 
------------------------------------------------------------------------------------ 
r1 r2 r3 r4 
… … … … 
1 99   
1 99   
1 9 52 38 
73 26 1  
89 10 1  
87 11 2  
97 3   
100    
100    
100    
… … … … 
 
 It was observed that for row numbers in the range 
[20-40], there is variation in the values of FRZ. The 
corresponding values are shown in Table 5. The 
variations are due to changes in position of upper eyelid 
and visible region of iris. The range of values is 
promising to identify the direction of gaze. 
 The transitional changes are considered in this 
range. The change over from 1 to 0 is a negative 
transition represented by ‘-1’. Similarly, the change 
over from 0 to 1 is a positive transition indicated by 
‘+1’. The intensity values and transitional changes for 
direction D1 is listed in Table 6. The transitional 
changes for a D5 direction are shown in Table 7. It is 
evident that it is different from D1. Similar analysis is 
made for other directions. The count of positive 
transitions is considered for different gaze directions. 
The proposed system considers gazing pivot 
irrespective of initial head position. In this experiment 
it is evident that, all the other gaze directions can be 
identified with respect to pivot using difference in 
positive transition threshold values. 
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 (a) 

 

 
 (b) 

 

Fig. 7: (a) FRZ for rows in the range [1-50] (b) FRZ 
for rows in the range [20-40] 

 
Table 5: FRZ values for gaze directions 
Row D1 D5 D8 D2 
20 0 9 4 2 
21 0 10 4 4 
22 0 11 6 4 
23 0 12 5 3 
24 0 12 5 2 
25 0 13 6 2 
26 0 16 7 2 
27 0 16 7 2 
28 0 19 11 2 
29 0 19 13 5 
30 2 21 12 5 
31 3 22 14 7 
32 5 23 10 7 
33 7 24 16 2 
34 10 24 19 7 
35 12 27 19 10 
36 16 28 19 10 
37 19 31 22 13 
38 23 32 23 16 
39 25 32 26 23 
40 29 35 28 26 

 The significant information for shape analysis is 
given by the number of 1s. The shape of the iris 
depends on the bent in the eyelid and variations in the 
iris pixels for each direction. The variations are 
indicated in the binarised image in terms of growth or 
shrinkage of iris pixels ip. The shape of the iris is 
different for different directions. The number of 1s 
from the RLC algorithm is different for each direction 
in each row. The eye images in different directions are 
shown in Fig. 8. 
 The count of ip is considered. The class-interval is 
defined to determine the variations in the ip. The iris 
pixels are assigned to specific class intervals. The class 
intervals considered are, 1-5, 6-10, 11-15, 16-20 and 
21-25. The intervals are denoted by the grades A, B, C, 
D and E respectively. The sequence of grades forms a 
unique pattern for each direction. For instance, the 
sequence {BEEEEEEEEEDDDDDDDDDCCCCBB} 
represents direction of eye gaze pointing to D1. The eye 
samples pointing to the same direction acquire similar 
Sequence Of Grades (SOG). The grades for direction 
D1 and D5 are given in Table 8 and 9. The grades are 
shown for two samples of a subject. 
 The sequence signifies the shape of the iris. In 
direction D1, the iris pixels are more concentrated 
towards the initial few rows and decreases for the other 
rows. This gives a bulged appearance of the iris. D1 
denotes center of the screen. As the gaze moves to the 
direction D5 which denotes 90°, the iris shape becomes 
elongated and appears lean. The iris pixels are 
uniformly distributed for most of the rows in the eye 
image. Similar analysis is done for other directions. The 
SOG is unique for each direction. There is variation in 
the grades for iris pixels in the boundary of the class 
intervals leading to different SOG for the same 
direction. This is highlighted in the Table 8-9. In order 
to attain equal weights for ip, the summation of iris 
pixels is considered segment wise in horizontal and 
vertical directions. The horizontal segment, hs is the 
summation of iris pixels every 5 rows using (5). The 
vertical segment, vs corresponds to summation of iris 
pixels every 5 columns using (6): 
 

b 5

i p
b

hs i (b)
+

=∑  (5) 

 
Where: 
b = 1, 5, 10, 15, 20  
i = 1, 2, 3, 4, 5 
 

c 5

j p
c

vs i (c)
+

=∑  (6) 

 
Where: 
c = 1, 5, 10, 15, 20  
j = 1, 2, 3, 4, 5 
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Table 6: Transitional changes for direction D1 
Row a1 a2 a3 a4 Transitional changes 
20 1 0 1  {-1,+1} 
21 1 0 1  {-1,+1} 
22 0 1   {+1} 
23 0 1   {+1} 
24 0 1   {+1} 
25 0 1   {+1} 
26 0 1   {+1} 
27 0 1   {+1} 
28 0 1   {+1} 
29 0 1   {+1} 
30 0 1   {+1} 
31 0 1   {+1} 
32 0 1   {+1} 
33 0 1 0 1 {+1, -1, +1} 
34 0 1 0 1 {+1, -1, +1} 
35 0 1 0 1 {+1, -1, +1} 
36 0 1 0 1 {+1, -1, +1} 
37 0 1 0 1 {+1, -1, +1} 
38 0 1 0 1 {+1, -1, +1} 
39 0 1 0 1 {+1, -1, +1} 
40 0 1 0 1 {+1, -1, +1} 

 
Table 7: Transitional changes for direction D5 
Row a1 a2 a3 a4 a5 Transitional changes 
20 1 0 1   {-1,+1} 
21 1 0 1   {-1,+1} 
22 1 0 1 0 1 {-1, +1, -1, +1} 
23 1 0 1 0 1 {-1, +1, -1, +1} 
24 1 0 1 0 1 {-1, +1, -1, +1} 
25 1 0 1 0 1 {-1, +1, -1, +1} 
26 1 0 1 0 1 {-1, +1, -1, +1} 
27 1 0 1 0 1 {-1, +1, -1, +1} 
28 1 0 1 0 1 {-1, +1, -1, +1} 
29 1 0 1 0 1 {-1, +1, -1, +1} 
30 1 0 1 0 1 {-1, +1, -1, +1} 
31 1 0 1 0 1 {-1, +1, -1, +1} 
32 1 0 1 0 1 {-1, +1, -1, +1} 
33 1 0 1 0 1 {-1, +1, -1, +1} 
34 1 0 1 0 1 {-1, +1, -1, +1} 
35 1 0 1 0 1 {-1, +1, -1, +1} 
36 1 0 1 0 1 {-1, +1, -1, +1} 
37 1 0 1 0 1 {-1, +1, -1, +1} 
38 1 0 1 0 1 {-1, +1, -1, +1} 
39 1 0 1 0 1 {-1, +1, -1, +1} 
40 1 0 1   {-1, +1} 

 
  MATERIALS AND METHODS 
 
  The Smart Infocomm digital webcam is used in 
the experiments for image acquisition. The USB color 
webcam captures 30 frames per second with a 
resolution of 640×480. The data format is RGB24. The 
focal distance is 3cm with 62° view angle.  
 The class-intervals are defined as 1-25, 26-50, 51-
75, 76-100 and 101-125. The grades are assigned as 
A, B, C, D and E for horizontal direction and F, G, H, 
I and J for vertical direction. Each horizontal and 
vertical segment is assigned a grade. 

Table 8: SOG for direction D1 
 Sample 1  Sample 2 
 -------------------------- ---------------------------- 
Row ip  Count Grade ip Count Grade 
1 7 B 6 B 
2 22 E 22 E 
3 25 E 25 E 
4 25 E 25 E 
5 24 E 24 E 
6 24 E 24 E 
7 24 E 24 E 
8 24 E 23 E 
9 23 E 22 E 
10 22 E 21 E 
11 22 D 20 D 
12 20 D 20 D 
13 20 D 19 D 
14 19 D 19 D 
15 19 D 18 D 
16 18 D 18 D 
17 17 D 17 D 
18 16 D 17 D 
19 16 D 16 D 
20 15 C 15 C 
21 14 C 15 C 
22 13 C 13 C 
23 11 C 11 C 
24 9 B 6 B 
25  6 B 4 B 
 
Table 9: SOG for direction D5 
 Sample 1  Sample 2 
 -------------------------- ---------------------------- 
Row ip  Count Grade ip Count Grade 
1 11 C 12 C 
2 15 C 14 C 
3 22 E 20 D 
4 21 E 21 E 
5 19 C 19 D 
6 18 D 19 D 
7 18 D 19 D 
8 17 D 19 D 
9 16 D 18 D 
10 16 D 18 D 
11 16 D 18 D 
12 17 D 18 D 
13 17 D 17 D 
14 16 D 16 D 
15 16 D 16 D 
16 14 C 16 D 
17 13 C 15 C 
18 12 C 14 C 
19 11 C 12 C 
20 10 B 10 B 
21 10 B 10 B 
22 9 B 10 B 
23 7 B 9 B 
24 6 B 7 B 
25 4 A 4 A 
 

RESULTS AND DISCUSSION 
 
 The SOG form similar patterns for same direction. 
Table 10-11 show SOG for directions D1 and D5 for two 
samples of a subject. Similar analysis has been made for 
all other directions. The segment-wise SOG values 
determine the gaze direction. The correct recognition rate 
of 95% was achieved. 
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Table 10: Segment-wise SOG for direction D1 
 Sample 1  Sample 2 
 ---------------------------- ----------------------------- 

 Row pi∑    Grade pi∑   Grade 

hs1 72 C 75 C 
hs2 116 E 116 E 
hs3 106 E 107 E 
hs4 86 D 87 D 
hs5 50 B 49 B 
vs1 57 H 61 H 
vs2 100 J 102 J 
vs3 83 I 87 I 
vs4 110 J 107 J 
vs5 50 G 50 G 

 
Table 11: Segment-wise SOG for direction D5 
 Sample 1  Sample 2 
 ----------------------------- -------------------------- 

Row pi∑   Grade pi∑  Grade 

hs1 95 D 89 D 
hs2 103 E 101 E 
hs3 91 D 91 D 
hs4 79 D 73 D 
hs5 46 B 43 B 
vs1 53 H 49 H 
vs2 113 J 110 J 
vs3 123 J 120 J 
vs4 96 I 93 I 
vs5 28 G 26 G 

 
CONCLUSION 

 
 A simple gaze tracking technique using webcam 
has been developed. The value of MID = 0.05 is 
determined as optimum value for region growing. The 
variation in eyelid position and shape of the iris 
determine the gaze direction. For each gaze direction, a 
unique SOG is generated. Further, the distance between 
camera and the screen can be varied to analyze the gaze 
directions. The distance between direction D1 and other 
directions can be investigated to fix the radius of vision 
with respect to pivot point. 
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