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Abstract: Problem statement: This research reported on new approach to improve speed of 

simulation time for free space electric wave propagation from an antenna. The existing method, Finite-

Difference Time-Domain (FDTD) have been proven to solve the problem accurately, however, one of 

the drawbacks of the method was it needs a long processing time to simulate problem. Research efforts 

to increase the speed of simulating the problem are needed. Approach: Our recent research had found 

a new method with lower complexity and can simulate the problem faster than the existing FDTD 

algorithm. The method was developed by implementing the second order accurate discretization 

technique. But the method, which was named as the High Speed Low order finite-difference time-

domain, had lower accuracy than the existing one. In this study, we reported on our new finding which 

used the O(h
4
) truncation error rather than O(h

2
) in our previous method. Results: The result found that 

we managed to recover the error and the new method still had computational complexity lower than 

the finite-difference time-domain. Conclusion: In terms of computation time, the new method also 

proved to solve problem faster than the conventional FDTD scheme with 9.03-63.66% reduction in 

computation time and also faster than the HO-FDTD with 82.48-88.99% reduction in computation time. 
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INTRODUCTION 

 

 In today’s era with highly advance computer 

technology, numerical simulation plays a major role in 

the development of science and technology. The 

method facilitates research and industrial development 

in the fields. The demands of advanced wireless devices 

create need of tools that can facilitate research and 

development in the field of electromagnetic. The 

Finite-Difference Time-Domain (FDTD) method is 

one of the most credible tool in simulating 

electromagnetic problem, since it covers a wide range 

of applications (Taflove and Hagness, 2005), such as 

antennas, wireless and wired communication, high 

speed electronic circuit, biomedical and 

semiconductors. All of those problems are solved via 

Maxwell equations (Taflove and Hagness, 2005). 

 FDTD is a finite difference approximation to the 

Faraday and Ampere’s laws using second order 

accurate in time and space. The method was first 

proposed by Yee (1966) used an Electric field (E), 

which was offset both spatially and temporally from a 

magnetic field grid to obtain update equations that yield 

the present fields throughout the computational domain 

in term of past fields. This method is the most 

commonly used to solve problem in time-domain 

because of its simplicity and directly adapted to 

homogeneous problem. Since then, the method has 

become one of the most powerful Maxwell equations 

solvers of electrodynamics. 

 The algorithm simplicity, robustness and potential 

for high complexity have attracted most researchers in 

computational electromagnetic field. However, there 

are drawbacks in the method. One of the drawbacks is it 

needs a long processing time to simulate problems. 
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 To increase the speed of FDTD, some researchers 

apply higher-order technique in FDTD method 

(Georgakopoulos et al., 2002; Lan et al., 1999; 

Propokidis and Tsiboukis, 2003). They developed a 

second order accuracy in time and fourth order in space. 

Result show that the higher-order method reduces the 

numerical dispersion and has improved stability. The 

implementation of higher-order truncation to Maxwell 

equations increase the complexity of the method, 

however by solving the problem in coarser grid will 

increase the speed of the processing time. Another 

approach is by taking advantages to advances in 

multiprocessor technology (Perlik et al., 1989). They 

apply the algorithm to connection machine. 

 Wave propagation in free space, is one of the 

problem in the propagation of electrical power between 

antennas (a transmitter to a receiver). This problem 

exist when the wave generated by a transmitter antenna 

propagate outward to the free space. In this research, 

we bound our research only up to a meter around the 

transmitter antenna. 

 In previous research, we propose a new algorithm 

called high speed low order FDTD algorithm (Hasan et al., 

2005). The method has been proven to compute faster 

than the conventional FDTD but reduce some small 

amount of accuracy.  

 The objective of this research is to develop a fast 

and accurate numerical algorithm for wave propagation 

in free space. To achieve this objective, we used the 

same concept in our previous method, since the method 

has the “fast” characteristic that we need in this 

objective. Now, our problem is to “cure” the error 

produce by our previous method. Since, previous study 

shows that high order truncation can results in less error 

outcome, we shall use it as the medication to “heals” 

the approach. 

 In this research, we extend the method to apply 

O(h
4
) truncation instead of O(h

2
). The new method 

which is called the High Speed High Order FDTD 

(HSHO-FDTD) method is shown to be more potential 

as an alternative to FDTD method because the new 

method can execute faster and has higher accuracy than 

the conventional FDTD method. 

 

MATERIALS AND METHODS 

 

 In order to develop the new method I discretize the 

transverse electric mode in one dimensional Maxwell 

equations time-domain form with ordinary central 

difference Taylor approximation for the temporal 

domain in both Ampere’s and Faraday’s law and with 

3h higher order central difference Taylor approximation 

for the spatial domain in both Ampere’s and Faraday’s 

law. The idea of this type of approximation is gathered 

from some previous research in other applications in 

numerical method (Sulaiman et al., 2004) and our 

previous research (Hasan et al., 2005). This procedure 

is mathematically present as follows: 

 

Ampere’s law: 
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where Ex, Hy, ε0 and µ0 are the electric fields, magnetic 

fields, electric permittivity and magnetic permeability, 

respectively. Discretizing (1) and (2) with the relevant 

approximation, gives: 
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 Equation 3 and 4 with g = 3, will be used to solve 

problem in solution domain given by Fig. 1b with the 

black square and circle is the magnetic and electric 

fields have to be solved in the main HSHO(3)-FDTD 

algorithm. The uncalculated node, the white square and 

circle will be solved later only at T after the entire black 

node have been calculated. The standard FDTD will be 

executed on solution domain given by Fig. 1a. 

 To show the difference between the conventional 

FDTD, high order FDTD and the HSHO (3)-FDTD, we 

graphically display the computational molecule as in 

Fig. 2-4 with coefficient P, P1, P2, P3 and P4 are given 

by: 
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 From this Fig. 2-4, we can find that the 

conventional FDTD has short “hand” at both direction, 

but for high order FDTD and HSHO (3)-FDTD, there 

are also “elbows” at both directions. For high order 

FDTD, the distance between “elbows” is h and between 

“palms” is 3 h. Meanwhile, for HSHO (3)-FDTD, the 

distance between “elbows” is 3h and between “palms” 

is 9 h. For conventional FDTD, the distance between 

“palms” is h. There are only two same thing between all 

three methods are the distance between the “head” and 

“leg”, which is t and all three methods are symmetrical 

in shape. “Head” and “leg” is actually the update of 

temporal and the difference in “hands” is the update in 

spatial domain. 
  

 
 (a) 
 

 
 (b) 
 
Fig. 1: (a) Solution domain for standard FDTD method 

and (b) Solution domain for HSHO (3)-FDTD 

method 
 

 
 
Fig. 2: Conventional FDTD computational molecule 

 To calculate the remaining point exist in HSHO 

(3)-FDTD method, we have to assume that there is no 

further varying time exist. Therefore, we assume at the 

pre-specified time step, the time varying field becomes 

the static field without the existing volume charge 

density. This assumption means that the electric field 

will follow the Laplace behavior. For one dimensional 

case: 

 
2

2
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x

∂
=

∂
 (5) 

 
 Applying the central difference approximation to 

(5) yields: 
 

x 1 x x 1
E 2E E 0
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− − =  (6) 

 
 Let look at solution domain in Fig. 5. 

 The node points in Fig. 5, can be represents by two 

equation below: 
 

1 2 3
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and: 
 

2 3 4
E 2E E 0− + =  (8) 

 
 We can rewrite these two equations in matrix form 

as below:  
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Fig. 3: High order FDTD computational molecule 

 

 
 

Fig. 4: HSHO (3)-FDTD computational molecule 
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 Therefore the unknown E2 and E3 can be calculate 

by the following matrix relation: 

 

2 1

3 4

E E2 11

E E1 23

−− −    
=     −− −    

 

 

 Extracting from the matrix equation above yields: 

 

2 1 4 2 1 4 1

1 1
E (2E E ) E E (E E )

3 3
= + → = + −  (9) 

 

and: 

 

3 1 4 3 1 4 1

1 2
E (E 2E ) E E (E E )

3 3
= + → = + −  (10) 

 

 Equation 9 and 10 will be used for the calculating 

the remaining node points base on the nearest neighbor 

node points. 

 The data gathered above have been fed into 

worksheets to perform accuracy and wave behavior 

analysis on the results.  

 

Algorithm and analysis: The ultimate objective of this 

study is to develop an algorithm that is not only fast in 

computation but also accurate in simulating problem. 

Using (3), (4), (9) and (10) we develop the HSHO (3)-

FDTD algorithm. The HSHO (3)-FDTD algorithm can 

be written in either direct-domain or temporary-domain 

approach. In this study, we will only consider the 

direct-domain approach. The algorithm is as follows: 

 

• Initialize all variable 

• Setting all coefficient 

• For every time steps until Nt time step 

• Update electric field with Eq. 3 for points in 

0+3j with j from 1 until<Np 

• Generate Gaussian pulse source at the centre 

of electric field 

• Update magnetic field with Eq. 4 for points in 

2+3j with j from 1 until<Np 

• Calculate the remaining point with (9) and (10) 

 

 
 

Fig. 5: Electric field node points after main HSHO (3)-

FDTD loop 

 The prime differences of FDTD, high order FDTD 

and HSHO (3)-FDTD algorithm is the calculation for 

the electric and magnetic field. Assume that every 

calculation of electric and magnetic fields operation as 

O(5). This is because both update equation (equation 

(3) and (4)) use five point on the right hand side of 

equations. The calculations for electric field loop are 

done For Np grid point for high order FDTD and 

FDTD, but Np/3 for HSHO (3)-FDTD. Suppose that Nt, 

is the total time step in the simulation, therefore the 

total operation complexity is θ(5NpNt) for high order 

FDTD and total operation complexity for FDTD is 

θ(3NpNt) but θ(5NpNt/3) for HSHO (3)-FDTD. That is 

not all for HSHO (3)-FDTD. In HSHO (3)-FDTD, we 

also have to calculate the computational complexity for 

the remaining node points. From Eq. 9 and 10, the 

complexity is θ (4Np/3), so the overall computational 

complexity for HSHO (3)-FDTD is θ (5NpNt/3+4Np/3). 

The scenario is the same for calculation of magnetic 

field.  

 

RESULTS 

 

 In this study, we execute the direct domain 

approach of HSHO (3)-FDTD method. The 

effectiveness of the method is analyzed by executing a 

one dimensional free space wave propagation problem 

with Gaussian pulse as the point source. We generate a 

2.4 GHz Gaussian pulse at the middle of the solution 

domain of 2 m, truncated with simple absorbing 

boundary condition. To ensure the accuracy of the 

simulated result, the solution domain is discretize into 

600 grid points with cell size of 0.0033 m and time slice 

size  of  5.5×10
−12

  sec. The wave length of frequency 

2.4 GHz is divided by 37 cells. The experiment was run 

on Intel Pentium 3 of Mobile CPU 1 GHz 727 MHz 

256 MB of RAM with LINUX Operating system. The 

result of simulations are analyzed and summarized in 

Table 1 and Fig. 6. 

 

 

 

Fig. 6: Comparison of computation time for FDTD, 

HO-FDTD and HSHO (3)-FDTD 
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Table 1: Comparison of global error for HSHO (3)-FDTD and FDTD 

compared relatively to HO-FDTD 

 Method 

 --------------------------------------------------------- 

Time step HSHO (3)-FDTD Conventional FDTD 

200 0 2.38E-17 

400 3.38E-11 2.03E-10 

600 5.53E-13 4.14E-12 

800 1.47E-12 1.52E-11 

1000 4.78E-10 6.53E-10 
 

DISCUSSION 
 
 The objective of this research is to develop a fast 

and accurate numerical algorithm for wave propagation 

in free space. To analyze whether the newly proposed 

algorithm achieved the objective, we analyze the 

accuracy of the method by comparing global error and 

computation time by both method and the high order 

FDTD method. 

 From Table 1, HSHO (3)-FDTD algorithms have 

shown very similar results to HO-FDTD 

(Georgakopoulos et al., 2002; Lan et al., 1999; 

Propokidis and Tsiboukis, 2003) compared with 

conventional FDTD (Yee, 1966). This means that 

HSHO (3)-FDTD has better accuracy in term of global 

errors of all simulation results. Albeit we use the second 

neighbor instead of the nearest neighbor that used in 

standard FDTD, the high order error introduce by O(h
4
) 

truncation have recover the error introduce by the 

jumping point method. The results are shown in power 

density unit. These findings fulfill the objective of 

developing an accurate numerical algorithm. 

 The comparison of computation time is given in 

Fig. 6. From Fig. 6, we can see that the new schemes 

simulate the problem faster than the conventional 

FDTD scheme with 9.03-63.66% reduction in 

computation time and also faster than the HO-FDTD 

with 82.48-88.99% reduction in computation time. The 

jumping point approach which has been recommended 

by Sulaiman et al. (2004) and Hasan et al. (2005) is 

very useful to reduce computational complexity. This 

successful implementation of the jumping point concept 

to the fourth order FDTD approach fulfills our objective 

of developing fast algorithm. We believe that the saving 

of execution time by this new method will be very 

significant   if   larger problem with higher time level is 

solved. From these findings we recommend to 

implement higher order discretization with the jumping 

point approach for increasing the speed of methods and 

accuracy.  
 

CONCLUSION 
 
 The ultimate objective of this study was to develop 

a new algorithm that has lower overall computational 

complexity for finite-difference time-domain scheme. 

The low computational complexity will off course 

speed-up the computational time of the scheme. We 

also wish that an additional characteristic of the new 

scheme will also have high accuracy criteria. 

 In this study, we have developed a method call 

high speed high order (3)-FDTD method. The method 

is develop by using Taylor series approximation with 

O(h
2
) truncation in temporal domain and O(h

4
) 

truncation in spatial domain for both Ampere’s and 

Faraday’s law. However, this type of truncation will 

leads to higher complexity. However by solving only 

one-third of node points in the solution domain, overall 

complexity per solution domain is still reduce, i.e., less 

complexity than the conventional FDTD or even less 

than the conventional high order FDTD. 

 The amount of computational complexity for 

HSHO(3)-FDTD, θ(5NpNt/3) which have been 

calculated previously is clearly less than computational 

complexity for high order FDTD, θ(5NpNt) and 

computational complexity for FDTD, θ(3NpNt). 

 In this study, we also conduct some numerical 

experiment. Our numerical experiment show that the 

HSHO (3)-FDTD has the faster computational time 

speed and then follow by FDTD and high order FDTD. 

This findings is as expected since the complexity of 

HSHO(3)-FDTD is less complex than FDTD and High 

order FDTD.  

 From the numerical experiment, HSHO (3)-FDTD 

also produce a very good simulation result compare to 

result produce by the conventional FDTD and high 

order FDTD. These findings are because of the order of 

truncation used by each method. 

 The HSHO (3)-FDTD method give us the 

opportunity to solve 1/3 grid point of the solution 

domain in the main loop of HSHO (3)-FDTD and the 

remaining point only at the required time step. Albeit 

the complexity per node point increases, the overall 

complexity in the solution domain for HSHO (3)-FDTD 

is far less then the conventional FDTD. This is the 

reason why HSHO (3)-FDTD has better speed than 

FDTD algorithm. The O(h
4
) truncation used in HSHO 

(3)-FDTD also gives advantage to the new method 

instead of the conventional FDTD in terms of accuracy. 

 Performance of this scheme was tested for problem 

in one dimensional free space propagation with 

perfectly conducting boundary condition and compared 

to the conventional FDTD. The accuracy of both 

methods is then compared relatively to HO-FDTD 

result. The major advantages of this scheme are that it 

requires less processing time and has higher accuracy 

than the conventional FDTD. However, this new 

method has been used only in the problem of free space 
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wave propagation. We have not tried it to solve 

scattering problem or other more complicated problem. 

Up to this moment, we limit our method only to solve 

the free space problem with absorbing boundary and 

perfectly boundary condition only.  

 It is clearly shown that HSHO (3)-FDTD is better 

than conventional FDTD in one-dimension for free 

space wave propagating simulation. 

 In the future, we will apply this method to solve 

more complex problem and also implement the strategy 

used in this study to develop new methods for other 

area as well. 
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