
Journal of Computer Science 6 (3): 323-329, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Mohammad Syafrullah, Faculty of Computer Science and Information Systems,
 University Technology Malaysia, 81310, Skudai, Johor, Malaysia

323

Improving Term Extraction Using Particle Swarm Optimization Techniques

Mohammad Syafrullah and Naomie Salim

Faculty of Computer Science and Information Systems,
University Technology Malaysia, 81310, Skudai, Johor, Malaysia

Abstract: Problem statement: Term extraction is one of the layers in the ontology development
process which has the task to extract all the terms contained in the input document automatically. The
purpose of this process is to generate list of terms that are relevant to the domain of the input
document. In the literature there are many approaches, techniques and algorithms used for term
extraction where each of approaches, techniques and algorithms has the objective to improve the
precision of the extracted terms. Approach: We proposed a new approach using particle swarm
optimization techniques in order to improve the precision of term extraction results. We choose five
features to represent the term score. Results: The approach had been applied to the domain of Islamic
documents. We compare our term extraction method with TFIDF, Weirdness, GlossaryExtraction and
TermExtractor. Conclusion: The experimental results showed that our proposed approach achieves
better precision than those four algorithms.

Key words: Term extraction, particle swarm optimization, feature selection, text mining

INTRODUCTION

 Recently many experiments have been conducted
for term extraction task. Literatures provide many
examples of term extraction methods. Most of these are
based on linguistic method, terminology and NLP
method and the others based on statistical/information
retrieval method (Cimiano, 2006).
 Many linguistic methods use shallow text
processing techniques such as tokenizer, Part-Of-
Speech (POS) tagger and syntactic analyzer (parser).
For example, Text-to-Onto use linguistic method called
Saarbrucken Message Extraction System (SMES) in
their system architecture to produce list of terms from
the input text (Maedche and Staab, 2003). Another
system, SVETLAN, use syntactic analyzer Sylex to
find list of terms from the input text (Chalendar and
Grau, 2000).
 In the study of Frantzi et al. (2000), statistical
measurement of frequency occurrence is used for the
automatic extraction of multi-word terms, from English
medical corpus. Park et al. (2002) and Kozakov et al.
(2004) introduced term cohesion to calculate the
cohesion of the multi-word terms. The measure is
proportional to the co-occurrence frequency and the
length of the term. Panel and Lin (2001) present a
language independent statistical corpus-based term
extraction algorithm. In their algorithm, they collect

bigram frequencies from a corpus and extract two-word
candidates. After collecting features for each two-word
candidate, they use mutual information and Log
Likelihood Ratio to extend them into multi-word terms.
 In statistical method, statistical analysis will be
performed on the input and this analysis will identify
terms based on the statistical rank. Most of the
statistical methods for term extraction are based on
information retrieval method for term indexing (Salton
and Buckley, 1988; Yates and Neto, 1999). Other
methods use the notion of “weirdness” (Ahmad et al.,
1999), domain pertinence (Navigli and Velardi, 2004;
Sclano and Velardi, 2007) and domain specificity (Park
et al., 2002; Kozakov et al., 2004).
 Terminology and NLP approach emphasize on the
internal analysis for the term extraction within the
corpus, while statistical methods rely on the comparison
of frequencies between domain specific and general
corpora (external analysis).

Related works: Kea is one of the extraction systems
which are using statistical method. It uses TFIDF and
first occurrence in the document as its features to
determine the weight of each keyphrase. Kea’s
extraction algorithm has two stages, first is training
stage which has the task to create a model for
identifying keyphrases, using training documents. The
second one is extraction stage which will choose

J. Computer Sci., 6 (3): 323-329, 2010

324

keyphrases from a test document, using the model that
has been made in the previous stage (Witten et al.,
1999).
 Turney (2000) treats the problem of keyphrase
extraction as supervised learning task. He presented two
approaches to the task of learning to extract keyphrases
from text. The first approach was to apply the C4.5 and
the second one was using genetic algorithm. Turney’s
program is called Extractor. One form of this extractor
is called GenEx, which is use Genitor genetic algorithm
to maximize the performance (fitness) on the training
process. Genitor is used to tune Extractor, but is no
longer needed once the training process is complete.
 GlossaryExtraction (Park et al. 2002; Kozakov et al.,
2004) is a GlossaryExtraction tool that uses two features
which are domain specificity and term cohesion for
calculating the term weight. GlossaryExtraction
algorithm has the two important parts which are
identification of candidate glossary items and glossary
item ranking and selection. After obtaining candidate
glossary items, the algorithm will rank them before
selecting the final set. In their research, they claim that
their method can improve the document-relevancy
ranking compared with log likelihood ratio and mutual
information.
 The term extraction algorithm called Kea++ is the
improvement of the original keyphrase extraction
algorithm Kea. Medelyan and Witten (2005) called
their new approach as index term extraction, because
they combine the advantages of both keyphrase
extraction and term assignment into a single scheme.
Their preliminary evaluations shows that the Kea++
significantly outperforms compared with Kea extraction
algorithm.
 Another term extraction systems called
TermExtractor (Navigli and Velardi, 2004; Sclano and
Velardi, 2007), use three features to compute their term
weight. Domain pertinence is used to perform a
contrastive analysis between domain of interest
documents and other domains documents. Domain
consensus is used to measure the distribution of terms in
a domain of interest, while the definition of lexical
cohesion similar to that already introduced in (Park et al.,
2002; Kozakov et al., 2004).

MATERIALS AND METHODS

 We propose a new approach of term extraction,
which takes into account several kinds of features,
including domain relevance, domain consensus, term
cohesion, first occurrence and length of noun phrase, to
produce a list of terms.

 Two steps are employed in our propose approach.
First, terms are ranked to emphasize the most relevant
from domain of input document; second, the score
function is trained by the particle swarm optimization
to obtain a suitable combination of feature weights.

Methodology: The goal of term extraction is to
generate list of terms that are relevant to the domain of
the input domain. Our proposed approach consists of
the following steps:

• Read the input document
• Preprocessing step consist of three sub tasks:

Syntactic parser does a syntactic analysis on every
input sentence from input document and produces a
list of syntactic information (Noun Phrase-NP).
Stop words should be filtered from each of the list
of NP. Finally, the list of NP should be stemmed to
produce list of clean NP, as the term candidate

• Each term candidate is associated with vector that
contains five features

• The five features are used to calculate the term
score and then rank the terms based on their score

 Our propose term extraction approach has two
stages:

• Training stages: This stage has the task to create a

model for identifying terms using training
documents. Features are extracted from training
documents and used to train the swarm
optimization model

• Extraction stages: This stage will choose terms
from a test document (this document is different
than that were used for training), using the model
that has been made in the training stage

 Figure 1 shows our proposed term extraction
model. Both stages choose a set of term candidate from
their input documents and then calculate the values of
certain features for each candidate.

Particle swarm optimization: Particle swarm
optimization first introduced by Eberhart and Kennedy
(1995a; 1995b) and Eberhart and Shi (1998), as an
optimization technique based on the movement and
intelligence of a swarm. It was inspired by the social
behavior and dynamics of movement of birds and fish.
PSO uses a number of particles that constitute a
swarm moving around in the search space to find the
best solution. Each particle is treated as a point in the
search space which adjusts its flight according to its
own flying experience and other particles flying
experience.

J. Computer Sci., 6 (3): 323-329, 2010

325

Fig. 1: The training and extraction stage processes

 Initially, the PSO algorithm randomly selects
candidate solutions within the search space. During
each iteration of the algorithm, each particle is
evaluated by the objective function being optimized,
determining the fitness of the solution. A new velocity
value for each particle is calculated using the following
equation:

i i 1 1 i i 2 2 iˆv (t 1) wv (t) c r [x (t) x (t)] c r [g(t) x (t)]+ = + + + − (1)

 The index of the particle is represented by i. So,
vi(t) is the velocity of particle i at time t and xi(t) is the
position of particle i at time t. Parameters w, c1 and c2
are user-supplied coefficients. The values r1 and r2 are
random values regenerated for each velocity update.
Value ix̂ (t) is the individual best candidate solution for

particle i at time t and g(t) is the swarm’s global best
candidate solution at time t. Once the velocity for each
particle is calculated, each particle’s position is updated
by applying the new velocity to the particle’s previous
position using Eq. 2. This process is then repeated until
some stopping condition is met. Figure 2 describes the
flowchart of PSO algorithm:

xi(t+1) = xi(t)+vi(t+1) (2)

Fig. 2: Flowchart of particle swarm optimization

algorithm

Feature definition: In order to characterize the noun
phrases in the documents we have adopted five
features. These five features are calculated for each
candidate term and used both in training and extraction
stage. The features used are: domain relevance, domain
consensus, term cohesion, first occurrence and length of
noun phrase.

f1: Domain relevance-domain relevance can be given
according to the amount of information captured in the

J. Computer Sci., 6 (3): 323-329, 2010

326

target document with respect to contrastive documents.
Let Di is the domain of interest (a set of relevant
documents) and {D1...Dn} is sets of documents in
another domain, domain relevance of a term t in class
Di is computed as (Navigli and Velardi, 2004; Sclano
and Velardi, 2007):

k

k
j

1 j n

D(t | D)
DR(t,D)

max(P(t | D))
≤ ≤

= (3)

where, (P(t|Dk)) estimated as:

k

t ,k
k

t ,kt D

f
E(P(t | D))

f ′′∈

=
∑

 (4)

f2: Domain consensus-domain consensus measures the
distributed use of a term in a domain Dk. Domain
consensus is expressed as follows (Navigli and Velardi,
2004; Sclano and Velardi, 2007):

k
k 2d D

1
DC(t,D) P(t | d).log

P(t | d)∈

=

∑ (5)

Where:

j k

t , j
j

t , jd D

f
E(P(t | d)

f
∈

=
∑

 (6)

f3: Term cohesion-term cohesion is used to calculate
the cohesion of the multi-word terms. The measure is
proportional to the co-occurrence frequency and the
length of the term (Park et al. 2002; Kozakov et al.,
2004):

1

10

iw t

| t | .log (f (t)).f (t))
TC(t)

f (w)
∈

=
∑

 (7)

f4: First occurrence-the main idea behind this feature is
that important terms tend to occur at the beginning of
documents. First occurrence is calculated as the number
of words that precede its first appearance, divided by
the number of words in the document. The resulting
feature is a number between 0 and 1 representing the
proportion of the documents before the term’s first
appearance (Witten et al., 1999; Medelyan and Witten,
2005).

f5: Length of noun phrase-candidate length is also a
useful feature in extraction as well as in candidate
selection, because the majority of terms are one or two
words in length. Length of noun phrase score is
calculated as its frequency times its length (in words)
(Barker and Corrnacchia, 2000).

Term generation: For a term t, a weighted score
function, as shown in the following equation, is used to
integrate all the feature scores, where wi indicates the
weight of fi:

1

5

i f
i 1

Score(t) w Score (t)
=

=∑ i (8)

 Moreover, the particle swarm optimization is used
to obtain an appropriate set of feature weights. We
have set the particle swarm optimization variables as
follows: Number of particles = 40, maximum number
of iterations = 500, c1 = 2, c2 = 2 and w =
(0.5+(random/2)). During each iteration of the
algorithm, each particle is evaluated using the fitness
function as in (9). By applying particle swarm
optimization, a suitable combination of feature weights
could be found:

|extracted|

i
i 1

Fitness max | t golds tandard |
=

= ∈

∑ (9)

Where:
|extracted| = A number of terms extracted by

the system
|ti ∈ goldstandard| = The number of terms that is a

member of the gold standard
(reference of correct terms)

RESULTS

 We use English translation to the meaning of the
Quran (focus on verses about prayer) as the input
document in the experiment. We separate the
documents into a training documents and test
documents (4 for training and 1 for testing). In the
experiment, we also use Reuters-21578, the documents
in the Reuters-21578 collection appeared on the Reuters
newswire in 1987. We converted all the documents into
22 plain text file (reut2-000.txt until reut2-021.txt) and
use it as contrastive documents. Beside that, we also
prepare the gold standard (reference of correct terms)
that contain list of the Quran terms (focus on verses
about prayer).

J. Computer Sci., 6 (3): 323-329, 2010

327

Table 1: Term extraction precision for each feature
 No. of terms
Precision --
(feature) 25 50 150 250
f1 0.800 0.820 0.607 0.552
f2 0.880 0.760 0.673 0.596
f3 0.880 0.780 0.673 0.596
f4 0.800 0.740 0.650 0.610
f5 0.880 0.740 0.600 0.584

Table 2: Term extraction precision for different number of

training/test documents
 No. of terms
No. of --
Train/Test 25 50 150 250
1/1 0.960 0.860 0.673 0.612
2/1 0.920 0.880 0.673 0.612
3/1 0.960 0.860 0.673 0.612
4/1 0.960 0.860 0.673 0.616

Table 3: Weight of each feature for different number of training/test

documents
 Weight of each feature
No. of --
Train/Test f1 f2 f3 f4 f5
1/1 0.290 0.453 0.488 0.489 0.433
2/1 0.322 0.475 0.491 0.532 0.364
3/1 0.451 0.481 0.492 0.408 0.361
4/1 0.422 0.495 0.524 0.408 0.460

Fig. 3: Weight of each feature for different number of

training/test documents

 In the extraction stage, we evaluate the precision of
our propose methods at 4 points: Top 25, 50, 150 and
250 terms using the following equation:

|extracted|

ii 1
| t golds tan dard |

p recision
| extracted |

=
∈

= ∑ (10)

 We compare the terms extracted by the system with
the gold standard that we have prepare before. Table 1
shows the term extraction precision for each feature for
different number of terms evaluated. Table 2 shows the
term extraction precision for different number of
training/test documents. Table 3 and Fig. 3 shows the
weight of each feature for different number of
training/test documents.

Table 4: Comparison of the term extraction precision
 No. of terms
Precision ---
(algorithm) 25 50 150 250
TFIDF 0.840 0.800 0.607 0.560
Weirdness 0.760 0.600 0.607 0.588
GlossaryExtraction 0.840 0.740 0.633 0.592
TermExtractor 0.840 0.800 0.647 0.564
Swarm model 0.960 0.860 0.673 0.616

Fig. 4: Comparison of the term extraction precision

(Swarm Model, TFIDF, Weirdness,
GlossaryExtraction and TermExtractor)

DISCUSSION

 We compare the precision of our propose method
with four other known algorithms. The result show that
our propose method based on particle swarm
optimization can improve the precision of the extracted
terms. Table 4 and Fig. 4 show the comparison of the
precision between swarm model and the four other
algorithms (TFIDF, Weirdness, GlossaryExtraction and
TermExtractor).

CONCLUSION

 We have presented a particle swarm optimization
technique to improve term extraction precision. We
choose five features to represent the term score: domain
relevance, domain consensus, term cohesion, first
occurrence and length of noun phrase. In the
experiments, we use a translation of the meaning of the
Quran (focus on verses of prayer) as an input document,
both for training and testing phases. We separate the
documents between training documents and test
documents. Particles swarm optimization is trained
using the training documents to determine the
appropriate weight of each feature to produce the best
score for each term. We conduct tests with the test
document using the weight of each feature which is
generated from the training stage to calculate the final
score for each term to be extracted. Our experimental
results show the use of particle swarm optimization

J. Computer Sci., 6 (3): 323-329, 2010

328

technique can improve the precision of the extracted
terms compared with four other known algorithms
(TFIDF, Weirdness, GlossaryExtraction and
TermExtractor).

ACKNOWLEDGMENT

 This project is sponsored by the Ministry of
Science, Technology and Innovation Malaysia under E-
Science grant 01-01-06-SF0539.

REFERENCES

Ahmad, K., L. Gillam and L. Tostevin, 1999.

University of surrey participation in TREC 8:
Weirdness Indexing for Logical Document
Extrapolation and Retrieval (WILDER).
Proceeding of the 8th Text Retrieval Conference,
Nov. 16-19, Department of Commerce, National
Institute of Standards and Technology, USA.,
pp: 717-724.

http://trec.nist.gov/pubs/trec8/papers/surrey2.pdf
Barker, K. and N. Corrnacchia, 2000. Using noun

phrase heads to extract document keyphrases.
Lecturer Notes Comput. Sci., 1822: 40-52. DOI:
10.1007/3-540-45486-1_4

Chalendar, G. and B. Grau, 2000. SVETLAN’ or How
to Classify Words Using Their Context. In:
Knowledge Engineering and Knowledge
Management Methods, Models and Tools,
Chalendar, G. and B. Grau (Eds.). Springer
Berlin/Heidelberg, Germany, ISBN: 978-3-540-
41119-2, pp: 99-112.

Cimiano, P., 2006. Ontology Learning and Population
from Text: Algorithms, Evaluation and
Applications. 1st Edn., Springer, Germany, ISBN:
10: 0-387-30632-3, pp: 3-5.

Eberhart, R.C. and J. Kennedy, 1995a. A new optimizer
using particle swarm theory. Proceeding 6th
International Symposium on Micro Machine and
Human Science, Oct. 04-06, IEEE Service Center,
Piscataway, NJ., Nagoya, Japan, pp: 39-43. DOI:
10.1109/MHS.1995.494215

Eberhart, R.C. and J. Kennedy, 1995b. Particle swarm
optimization. Proceedings of the IEEE
International Conference on Neural Networks,
Nov. 27-Dec. 01, IEEE Xplore Press, Perth,
Australia, pp: 1942-1948. DOI:
10.1109/ICNN.1995.488968

Eberhart, R.C. and Y.H. Shi, 1998. Comparison
between genetic algorithms and particle swarm
optimization. Lecture Notes Comput. Sci.,
1447: 611-616. DOI: 10.1007/BFb0040812

Frantzi, K., S. Ananiadou and H. Mima, 2000.
Automatic recognition of multi-word terms: The C-
value/NC-value method. Int. J. Digital Libraries,
3: 115-130. DOI: 10.1007/s007999900023

Kozakov, L., Y. Park, T. Fin, Y. Drissi, Y. Doganata
and T. Cofino, 2004. GlossaryExtraction and
utilization in the information search and delivery
system for IBM technical support. IBM Syst. J.,
43: 546-563.

 http://www.research.ibm.com/people/y/yurdaer/pap
ers/ibmsysjournal2004a.pdf

Maedche, A. and S. Staab, 2003. Mining Ontologies
from Text. In: Knowledge Engineering and
Knowledge Management Methods, Models and
Tools, Maedche, A. and S. Staab (Eds.). Springer
Berlin/Heidelberg, Germany, ISBN: 978-3-540-
41119-2, pp: 169-189.

Medelyan, O. and I.H. Witten, 2005. Thesaurus-based
index term extraction for agricultural documents.
Proceeding of the 6th Workshop on Agricultural
Ontology Service, European Federation for
Information Technology in Agriculture (EFITA)
and WCCA (World Congress on Computers in
Agriculture), July, Vila Real, Portugal, pp: 1-8.
http://www.cs.waikato.ac.nz/~olena/publications/ef
ita2005_kea.pdf

Navigli, R. and P. Velardi, 2004. Learning domain
ontologies from document warehouses and
dedicated web sites. Comput. Linguist., 30: 151-170.
DOI: 10.1162/089120104323093276

Panel, P. and D. Lin, 2001. A statistical corpus-based
TermExtractor. Lecture Notes Artif. Intell.,
2056: 36-46. DOI: 10.1007/3-540-45153-6_4

Park, Y., R. J. Byrd, and B. K. Boguraev, 2002.
Automatic glossaryextraction: Beyond terminology
identification. Proceedings of the 19th International
Conference on Computational Linguistics, Aug.
26-30, Association for Computational Linguistics
(ACL), Taipei, Taiwan, pp: 772-778.
http://www.aclweb.org/anthology/C/C02/C02-
1142.pdf

Salton, G. and C. Buckley, 1988. Term-weighting
approaches in automatic text retrieval. Inform.
Process. Manage., 24: 515-523. DOI:
10.1016/0306-4573(88)90021-0

Sclano, F. and P. Velardi, 2007. Termextractor: a web
application to learn the shared terminology of
emergent web communities. Proceedings of the 3rd
International Conference on Interoperability for
Enterprise Software and Applications, Mar. 28-30,
Springer, Funchal, Portugal, pp: 287-298. DOI:
10.1007/978-1-84628-858-6_32

J. Computer Sci., 6 (3): 323-329, 2010

329

Turney, P.D, 2000. Learning algorithms for keyphrase
extraction. J. Inform. Retriev., 2: 303-336. DOI:
10.1023/A: 1009976227802

Witten, I.H, G.W. Paynter, E. Frank, C. Gutwin and
C.G. Nevill-Manning, 1999. KEA: Practical
automatic keyphrase extraction. Proceedings of the
4th ACM Conference on Digital Libraries, Aug.
11-14, ACM Publisher, Berkeley, California,
USA., pp: 254-256. DOI: 10.1145/313238.313437

Yates, B. and R. Neto, 1999. Modern Information
Retrieval. 1st Edn., Addison-Wesley, USA., ISBN:
0-201-39829-X, pp: 544.

