
Journal of Computer Science 6 (1): 24-28, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Iman Omer, Department of Information Technology,
 Prince Abdullah Bin Ghazi Faculty of Science and Information Technology, Al-Balqa Applied University,

P.O. Box 19117, Al-Salt 19117, Jordan Tel: 00962786374910 Fax: 962-5-3530462
24

Arabic Short Text Compression

Iman Omer and Khalaf Khatatneh

Department of Information Technology,
Prince Abdullah Bin Ghazi Faculty of Science and Information Technology,

Al-Balqa Applied University, P.O. Box 19117, Al-Salt 19117, Jordan

Abstract: Problem statement: Text compression permits representing a document by using less
space. This is useful not only to save disk space, but more importantly, to save disk transfer and
network transmission time. With the continues increase in the number of Arabic short text messages
sent by mobile phones, the use of a suitable compression scheme would allow users to use more
characters than the default value specified by the provider. The development of an efficient
compression scheme to compress short Arabic texts is not a straight forward task. Approach: This
study combined the benefits of pre-processing, entropy reduction through splitting files and hybrid
dynamic coding: A new technique proposed in this study that uses the fact that Arabic texts have single
case letters. Experimental tests had been performed on short Arabic texts and a comparison with the
well known plain Huffman compression was made to measure the performance of the proposed
schema for Arabic short text. Results: The proposed schema can achieve a compression ratio around
4.6 bits byte−1 for very short Arabic text sequences of 15 bytes and around 4 bits byte−1 for 50 bytes
text sequences, using only 8 Kbytes overhead of memory. Conclusion: Furthermore, a reasonable
compression ratio can be achieved using less than 0.4 KB of memory overhead. We recommended the
use of proposed schema to compress small Arabic text with recourses limited.

Key words: Short text compression, Huffman coding, Arabic language, dynamic hybrid coding

INTRODUCTION

 Text compression permits representing a document
by using less space. This is useful not only to save disk
space, but more importantly, to save disk transfer and
network transmission time (Brisaboa et al., 2007).
Compression of short messages is a vital operation for
low complexity entities, such as mobile phones, for
achieving bandwidth savings and reducing costs, or
even enabling the wireless medium to be shared by
more devices (Rein et al., 2006b). With the continues
increase in the number of Arabic short text messages
sent by mobile phones, the use of a suitable
compression scheme would allow users to use more
characters than the default value specified by the
provider.
 There are two general approaches for text
compression: Statistical coding and dictionary coding.
Statistical coding schemes make use of the fact that
different symbols usually occur at different frequencies
and assign shorter codes to symbols that occur more

frequently and longer codes to less frequently used
symbols. They employ a statistical context model to
compute the appropriate probabilities (Rein et al.,
2006a). Then, the probabilities are coded with a proper
encoding such as Huffman (1952), Arithmetic coding
(Witten et al., 1987) or any entropy coder. Dictionary
coding schemes make use of the fact that certain groups
of consecutive characters (i.e., phrases) occur more than
once and assign a code to a certain phrase. Most of the
dictionary coders are based on LZ (Ziv and Lempel,
1977) and LZ78 (Ziv and Lempel, 1978) and are widely
employed to compress computer data. The statistical
coders give better compression performance than the
dictionary coders. However, generally, they require
large amounts memory (Rein et al., 2006a).
 One way to enhance the performance of text
compression schemes is to apply a lossless, reversible
transformation to a source file prior to applying an
existing compression algorithm. Therefore, it is easier
to compress the source file. Decompression works in
the reverse order (Fauzia and Mukherjee, 2001). BWT

J. Computer Sci., 6 (1): 24-28, 2010

25

is a well known algorithm that transforms the input text
into another (reversible form) and apply some
compression method on it. The compression is achieved
if the transformation has a property that it enlarges the
compressibility property of the text. In the decoding
process which is broken into two steps. Firstly, the
transformed text should be decoded and then the
inverse transformation should be applied.
 Generally, most text compression algorithms are
designed for general natural language texts or designed
for English text, as a result, they do not take advantage
of special features of Arabic text. The problem with
short text is that the redundancies within these texts are
limited which makes regular compression messages
inefficient. Few algorithms are designed for
compressing short data messages used in devices with
limited resources such as mobile phones and sensor
network devices. However, they have restrictions on
minimum length of the message to be compressed and
they need a non-ignorable memory amount.
Furthermore, no compression algorithm specifically
designed for short text messages written in Arabic.
 This study is an attempt to develop a compression
schema for Arabic short text messages that is suitable
for use in mobile phones.

MATERIALS AND METHODS

 There exists a large amount of literature on lossless
data compression and text compression. Most of the work
is designed for compressing large size text and does not
consider devices with limited resources. The researchers
of (Rein et al., 2006a) indicated that many of the well
known compression require memory from 0.5 to more
than 100 Mbyte. On the other hand, most of the sensor
networks’ data compression techniques use statistical
correlations between the typically larger data of multiple
sensors as they all observe the same phenomenon which
make them unsuitable for text compression.
 One of the oldest and best known compression
techniques is Huffman (1952) coding that maintains a
forest of binary trees representing disjoint subsets of the
alphabet with weight equal to the sum of probabilities
of the elements in the subset. Various methods have
been developed to improve Huffman coding such as,
Dynamic Huffman coding (Vitter, 1987), Length-
limited Huffman coding (Karp, 1961) and Huffman
coding with unequal letter costs (Golin et al., 2002).
Furthermore (Ghwanmeh et al., 2006) used dynamic
Huffman coding to compress Arabic text.
 Arithmetic coding (Witten et al., 1987) is a form of
variable-length entropy encoding that converts a string
into another representation that represents frequently

used characters using fewer bits and infrequently used
characters using more bits, with the goal of using fewer
bits in total. The basic idea of arithmetic coding scheme
is to represent a text by an interval of real number
between 0 and 1.
 Most practical dictionary coding algorithms belong
to a family of algorithms, known as Ziv-Lempel coding
(abbreviated as LZ coding), derived from Ziv and
Lempel’s work. These algorithms are based on the
idea of replacing the strings in the text with a pointer
to where they have occurred earlier in the text. This
family of algorithms are generally derived from one of
the two approaches namely LZ77 and LZ78,
respectively (Rein et al., 2006a).
 Prediction by Partial Matching (PPM) is one of the
most promising lossless data compression algorithms
using Markov source model of order D. It uses a set of
previous symbols in the source symbol stream to
predict the next symbol in the stream. In the reality, the
majority of symbols are encoded in inner nodes and the
Marko v model becomes rather conventional. In spite of
the fact that PPM algorithm achieves good results in
comparison with others, it is used rarely in practical
applications due to its high computational complexity
(Shkarin, 2002).
 The researchers of (Rein et al., 2006b) described a
low-complexity scheme for lossless compression of
short English text messages, a method which uses
arithmetic coding and a specific statistical context
model for prediction of single symbols. They used a
simple yet effective approach for storing highly
complex statistics in a succinct yet effective data model
that can easily be trained by text data. They achieved a
compression performance around 3.5 bits per byte for
short text sequences larger than 75 bytes and required
128 kBytes of memory.
 The researchers of (Rein et al., 2006a) used similar
approach to the one they previously used in (Rein et al.,
2006b) with a modified hash function in order to be able
to compress short English text larger than 50 bytes. They
achieved compression ranging from 4-3.2 bits byte−1
with memory requirements of 32-256 kBytes.
 The researchers of (Lansky and Zemlicka, 2006)
adapted well-known algorithms of adaptive Huffman
coding and LZW to use syllables and words instead of
characters for text compression of small or middle-
sized English text files. However, their short text file
should be larger than 3 kBytes.
 That the entropy of Arabic text files can be highly
reduced if the text is source mapped according to
characters frequencies and then the resulting file is
spitted into several sub-files each contains one or more
bits from the code word of the mapped file (Abdel-

J. Computer Sci., 6 (1): 24-28, 2010

26

Rahman et al., 2006). This is a great method for large
Arabic text but is does not work for short text.
 In order to enhance the compression ratio, the
researchers of (Abel and Teahan, 2005) proposed that
preprocessing such as capital conversion, end of line
encoding and token (diagrams, trigrams, word and
phrases) replacement can reduce the size of compressed
text. They proposed that the most frequently appearing
tokens in a specific text are replaced by shorter code-
words, then those token and their codes are inserted at
the beginning of the compressed file to simplify
decompression. However, because token frequency is
limited within a single short text, inserting the
frequently appearing tokens and their codes at the
beginning of the compressed file will not be beneficial.
 Because of the limited redundancy within short
Arabic text, using traditional dictionary based or
statistical compression do not work. The size of the
dictionary is too large and the encoding tree or table for
statistical encoding may not be compensated. In this
study, we propose the use of static Huffman tree in a
way similar to the method used for fax machines and
Morris codes where frequently appearing characters in
the Arabic language are given short codes and less
frequently appearing characters are given longer codes.
The code will, generally, reduce the size of the text,
even that the code may not be optimal for a specific
text.
 In order to enhance the compression ratio, we use a
technique similar to token replacement, described in
(Abel and Teahan, 2005). The authors of (Abel and
Teahan, 2005) showed that compression of large text
files can be improved using dictionaries built “on-the-
fly” and storing them within the compressed file.
However, embedding a dictionary within a compressed
file, can be considered as extra overhead that may not
compensated, and it may reduce the overall
compression ratio.
 Alternatively, we discover frequently appearing
diagrams and trigrams in the language and assign them
code-words in the alphabet. Using too many diagrams
and trigrams may be counterproductive because it
reduce redundancy when used with statistical coding.
On the other hand, using too few diagrams may have
little effect on the overall performance of the
compression schema As a result; we only used the 10
most frequent diagrams and trigrams.
 The authors of (Abdel-Rahman et al., 2006) proved
that the entropy of the least significant bits of Arabic
text files is very high and the entropy of the most
significant bits of Arabic text files is very low, such
that, the entropy of the most significant bit is 0, 0.0097
for the second and 0.3867 for the third most significant

bits. On the other hand the entropy of the least
significant bit is 0.9855, 0.9787 for the second, 0.9213
for the third, 0.8464 for the fourth and 0.7127 for the
fifth least significant bits.
 Based on the previous two observations and on the
fact that Arabic character can be encoded with 7 bits
only (less than 128 characters), we propose the use of
source mapping in a way similar to the one used in
(Abdel-Rahman et al., 2006) were the most frequently
appearing character is assigned the numerical 0 and the
next frequently appearing character is assigned the
numerical 1 code and so on. Then the resulting source
mapped text is to be split into two sub-files of unequal
length, one that contains the most significant bit (i.e.
The 7th bit) of each character and the other file contains
the remaining 6 least significant bits of each character.
We deviated from the equal length sub files proposed
in (Abdel-Rahman et al., 2006) because of the high
entropy of least significant bits, which makes their
compression very difficult especially for short Arabic
texts.
 It is well known that the Arabic language do not
has things like capital letters and small letters as
English language. Furthermore, lots of the non basic
characters as fatha, are used rarely, especially with
informal Arabic texts used in forums, emails and short
messages in mobiles and even in many memorandums
and books, simply because their meaning can easily be
figured out from the context .
 Furthermore, we proposes the use of what we call,
Dynamic Hybrid Encoding (DHE). The technique
dynamically determines the length of each character,
however the length of each character can only be 6 or 7
bits. The technique works as follows, the frequencies of
characters are calculated and numerical codes between
0 and 127 are assigned to each character according to
its frequency as indicated by (Abdel-Rahman et al.,
2006). Then, the most frequent diagrams and trigrams
are add to the alphabet and assigned unique numerical
values. Each token is scanned before being encoded, if
it contain a character whose numerical value greater
than or equal to 64, then each characters in that token
has to be encoded using 7 bits code. On the other hand,
if all characters in the token have numerical values less
than or equal 63, then each character is encoded using 6
bits code.
In other way, (Abdel-Rahman et al., 2006) proved that
all Arabic characters can be encoded with 7 bits only,
and most Arabic characters can be encoded using only 6
bits, so we propose the use of 6 bits only to encode each
character, and 7 bits when necessary. However, in
order to inform the decompression algorithm witch to
use 6 bit or 7 bits, we use a code for the space when

J. Computer Sci., 6 (1): 24-28, 2010

27

followed by a token that need to be encoded using 7 bit
for each character, and a different code for the space
when followed by a token that can to be encoded using
6 bit for each character.
 In order to avoid the overhead of embedding
Huffman trees within compressed files, one can use
dynamic Huffman. However, with short texts, dynamic
Huffman do not have good chances for compression,
because of low redundancy of characters. Alternatively,
Static Huffman and be used in a way similar to
Huffman coding used for fax machines and the Morris
codes where frequently appearing characters in the
language-rather than in individual files, are given short
codes and less frequently appearing characters are
given longer codes. The code will, generally, reduce
the size of source text, even that the code may not be
optimal for specific texts. This approach is used in this
study, and a static Huffman tree is used .
 In order to build a generic Huffman tree, a large
amount of short Arabic texts is gathered from different
sources such as newspapers, forums web sites and web
portals. The frequencies of letters and tokens are
calculated and numerical codes between 0 and 127 are
assigned to each character as described previously.
Then the gathered short Arabic texts are source mapped
according to the assigned numerical codes, and encoded
using the dynamic hybrid coding technique described
previously. The least significant 6 bits of each character
are stored in a single sub-file and the remaining bit- if
exists- is stored in a single sub-file. After that, for each
sub-file, the well known Huffman algorithm is used to
construct a generic encoding tree for the sub file the
contains 6 bits of each character. The resulting generic
tree can be used later to compress and decompress short
Arabic texts. After that, for each sub file, the well
known Huffman algorithm is used to construct a
generic encoding tree that assign a single code for each
12 bits or 6 bits. The resulting generic tree can be used
later to compress and decompress short Arabic texts.

RESULTS

 In order to study the performance of the proposed
schema, the schema applied on short text files gathered
from different sources, then the proposed schema and the
traditional Huffman are applied to texts of different
lengths for 6 and 12 bit ectentions. All experiments were
done on Intel Celeron 1 MHz processor, 1 G RAM,
running Windows XP. Java language is used to
implement booth algorithms. Arabic texts used to setup
the Huffman tree were gathered from different sources
such as e-newspapers, forums web sites and web portals.
Arabic short texts used to measure the performance of
the proposed schema also gathered is the same way.

Fig. 1: Compression ratio of ASTC-12 and ASTC-6

compared with Huffman

In order to avoid extreme conditions, the average of
compressing hundred different short texts of the same
size is considered. Those hundred texts are constructed
as follows; all gathered Arabic short texts were placed
in a single file, then a continuous sequence of the
required length is extracted from a random location and
place in a different file. The process of selecting text
and placing it in a file is repeated hundred times. A
simple Java program is used to perform this task .
 Because no previous work specifically investigated
the compression of short Arabic texts, this we compared
the compression ration achieved by the proposed
schema, with the well known two pass Huffman
compression. Figure 1 shows the compression ratio of
the proposed schema, the 6 bits extension (ASTC-6)
and the 12 bits extensions ASTC-12, compared with the
Huffman compression for different text lengths.

DISCUSSION

 As the length of text increases, the redundancy of
characters within the text increases, and the chance to
reduce the size of the text increases. Furthermore, the
possibility that popular diagrams and trigrams appear in
the text also increase, as the length of the text increases.
However, it is also true that as the length of text
increase, the possibility that rarely used characters
appear in the text also increase, which negatively affect
the compression ratio.
 We can see that at very small text length, the
proposed schema outperforms the two pass Huffman
compression because the two pass Huffman
compression embed the encoding trees into the
compressed files. With very small files, such overhead
may not paid back by the size reduction achieved by the
compression. On the other hand, larger text files, this

J. Computer Sci., 6 (1): 24-28, 2010

28

overhead can be compensated because of the higher
characters redundancy .
 From Fig. 1, it is also clear that the compression
ratio of the proposed schema when using 12 bits
extension, is only slightly better than that when using
only 6 bits extinction. However, the size of the generic
Huffman tree is about 8 KB when using 12 bit
extension compared to less than 0.4 KB when using
6 bits only.
 We used a combination of text preprocessing,
entropy reduction, our technique and Huffman coding
to achieve a compression performance around 4.6 bits
per byte for very short text sequences of 15 Bytes and a
round 4 bits per byte for 50 Bytes text sequences, using
only 8 kBytes overhead of memory. Furthermore, a
reasonable compression ratio can be achieved using less
than 0.4 KB of memory overhead. Our further
investigations will concern the use of a more efficient
offline context models, and the use of effective dynamic
coding schema.

REFERENCES

Abdel-Rahman, M.J., M.I. Irshid and T.T. Nassar,

2006. Entropy reduction of Arabic text files. Asian
J. Inform. Technol., 5: 578-583.
http://medwelljournals.com/fulltext/ajit/2006/578-
583.pdf

Abel, J. and W. Teahan, 2005. Universal text
preprocessing for data compression. IEEE Trans.
Comput., 54: 497-507. DOI: 10.1109/TC.2005.85

Brisaboa, N.R., A. Fariña, G. Navarro and J.R. Paramá,
2007. Lightweight natural language text
compression. Inform. Retriev., 10: 1-33.
http://portal.acm.org/citation.cfm?id=1210461

Fauzia, S.A. and A. Mukherjee, 2001. LIPT: A lossless
text transform to improve compression.
Proceedings of the International Conference on
Information Technology: Coding and Computing,
Apr. 2-4, IEEE Xplore Press, Las Vegas, NV.,
USA., pp: 452-460. DOI:
10.1109/ITCC.2001.918838

Ghwanmeh, S., R. Al-Shalabi and G. Kanaan, 2006.
Efficient data compression scheme using dynamic
Huffman code applied on Arabic language. J.
Comput. Sci., 2: 885-888.
http://www.scipub.org/fulltext/jcs/jcs212885-
888.pdf

Golin, M.J., C. Kenyon and N.E. Young, 2002.
Huffman coding with unequal letter costs.
Proceedings of the 34th Annual ACM Symposium
on Theory of Computing, May 19-21, ACM Press,
Montréal, Québec, Canada, pp: 785-791.
http://portal.acm.org/citation.cfm?id=509907.510020

Huffman, D.A., 1952. A method for the construction of
minimum-redundancy codes. Proc. Inst. Radio
Eng., 40: 1098-1101. DOI:
10.1109/JRPROC.1952.273898

Karp, R., 1961. Minimum-redundancy coding for the
discrete noiseless channel. IRE Trans. Inform.
Theor., 7: 27-38. DOI: 10.1109/TIT.1961.1057615

Lansky, J. and M. Zemlicka, 2006. Compression of
small text files using syllables. Proceedings of the
Data Compression Conference, Mar. 28-30, IEEE
Xplore Press, Snowbird, UT., USA., pp: 458. DOI:
10.1109/DCC.2006.16

Rein, S., C. Gühmann and F. Fitzek, 2006a.
Compression of short text on embedded systems.
J. Comput., 1: 1-10.
http://www.academypublisher.com/jcp/vol01/no06/
jcp01060110.pdf

Rein, S., C. Gühmann and F.H.P. Fitzek, 2006b. Low-
complexity compression of short messages.
Proceeding of the Data Compression Conference,
Mar. 28-30, IEEE Xplore Press, Snowbird, UT.,
pp: 123-132. DOI: 10.1109/DCC.2006.45

Shkarin, D., 2002. PPM: One Step to practicality.
Proceeding of the Data Compression Conference,
(DCC’02), IEEE Xplore Press, USA., pp: 202-211.
DOI: 10.1109/DCC.2002.999958

Vitter, J.S., 1987. Design and analysis of dynamic
Huffman codes. J. ACM, 34: 825-845.
http://portal.acm.org/citation.cfm?id=31846.42227

Witten, I.H., R.M. Neal and J.G. Cleary, 1987.
Arithmetic coding for data compression. Commun.
ACM, 30: 520-540.
http://portal.acm.org/citation.cfm?id=214762.2147
71

Ziv, J. and A. Lempel, 1977. A universal algorithm for
sequential data compression. IEEE Trans. Inform.
Theor., 23: 337-343.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&a
rnumber=1055714&isnumber=22696

Ziv, J. and A. Lempel, 1978. Compression of
Individual sequences via variable-rate coding.
IEEE Trans. Inform. Theor., 24: 530-536.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1055934

