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N. Magaji and M.W. Mustafa

Department of Power System, Faculty of ElectriaadiBeering,
University Technology Malaysia, 81310, Skudai, Mala

Abstract: This study applies a neural-network-based optii@$C controller for damping oscillations.
Optimal neural network controller is related to rabokference adaptive control, the network corgral
developed based on the recursive “pseudo-lineaessipn”. Problem statement: The optimal NN
controller is designed to damp out the low freqyelacal and inter-area oscillations of the large
power systemApproach: Two multilayer-perceptron neural networks are usedhe design-the
identifier/model network to identify the dynamickthe power system and the controller network to
provide optimal damping. By applying this controlte the TCSC devices the damping of inter-area
modes of oscillations in a multi-machine power sgstwill be handled properlyResults: The
effectiveness of the proposed optimal controlledésnonstrated on two power system problems. The
first case involves TCSC supplementary dampingrobnivhich is used to provide a comprehensive
evaluation of the learning control performance. $heond case aims at addressing a complex system
to provide a very good solution to oscillation damgpcontrol problem in the Southern Malaysian
Peninsular Power GridConclusion: Finally, several fault and load disturbance simatatresults are
presented to stress the effectiveness of the peapb€SC controller in a multi-machine power system
and show that the proposed intelligent controlsrowp the dynamic performance of the TCSC devices
and the associated power network.
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INTRODUCTION generator or a group of generators against theofeéke
system. In contrast, inter-area oscillations aretha
The concept of Flexible Ac Transmission Systemdower part of the frequency range and comprise the
(FACTS) is made possible by the application of highoscillations among groups of generators.
power electronic devices for power flow and voltage To improve the damping of oscillations in power
control FACTS are being increasingly used to bettesystem, a Power System Stabilizers (PSSs) apphed o
utilize the capacity of existing transmission systeand  selected generators can effectively damp local
is a technology based solution to help the utilityoscillation modes while for interarea oscillatioas
industry deal with changes in the power deliverysupplementary controller can be applied to TCSC
business. A major thrust of FACTS technology is thedevices. Most of these controllers are designeé bas
development of power electric based systems thatonventional approach that is designed based on a
provide dynamic control of the power transfer Linearized model which cannot provide satisfactory
parameters transmission voltage, line impedance angerformance over a wide rangeageration points and
phase angl&?. under large disturband®s
Power system oscillations occur due to the lack of  Neural networks, enjoy a variety of advantages
damping torque at the generators rotors. The aficifi  (e.g., high speed, generalization capability amdrimg
of the generators rotors cause the oscillationtbéro  ability), are a viable choice for non-linear comtro
power system variables (bus voltage, bus frequencyesign. They have been successfully applied to the
transmission lines active and reactive powers). @ow identification and control of dynamical systems
system oscillations are usually in the range betm@é&  especially in the field of adaptive control by makiuse
and 2 Hz depending on the number of generatorsf on-line trainin§".
involved i, Local oscillations lie in the upper part Direct and indirect adaptive control with MLP and
of that range and consist of the oscillation ofiregle  RBF neural networks has been discuss&d’ifor such
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systems which relies on continuous online trainiig  Controlled Reactor (TCR) as shown in Fig. 1. Th&RTi€
the identifier and controller network. formed by a reactor in series with a bi-directichgtistor

The research on the application of neural networksalve that is fired with an angle ranging betwe@na@d
to the FACTS controllers design so far includesrenl  180° with respect to the capacitor volt[é‘ge

tuning of FACTS controller parametéfs?, the Consider a line I, having line reactance, X
implementation of indirect adaptive and direct dd@ connected between buses k and m. If the reactaince o
control FACTS controller {4, TCSC placed in the line | is Xc, the percentage of

Jung-Wooket al.*® Designed a supervised Neural compensation of TCSC (kc) is given by:
network Controller base on Proportional-Integral) (P
controller for series TCSC device using Dual Hdigris kc=& (1)
Programming (DHP) optimization approach. The X,
performance of the Pl based conventional internal
controller (CONVC) is compared with that of the DHP The line power flows are functions of the degrée o
controller with respect to damping low frequencycompensation of the TCSC. The real poweg,(rand
oscillations. This method, however need to haveethr ..o .\ /o power (@) in a line | (connected between
different neural network model, model of Identifier p cas Kk and m), with TCSC having degree of

model of DHP controller and critic. In addition tBeare  :qmnensation kand neglecting the line resistance, can
too many functions to store and training is base Ohe written as:

offline unlike MLP that is straightforward to impleent.

Dashet al" Presents single-neuron and multi- P =V.V.B(x,) sinG, 6. ) @
neuron Radial Basis Function Controller (RBFNN) for
the UPFC control in single machine-infinite-bus and

three-machine power systems and claimed to provid@’mk =~ Fn (3)
the best transient stability performance of the gow
system. This is because output layer of RBF can b&km =\ (Y, + B)- V,V, (Y,.+ B) cos@,-6,,) 4)
optimized fully using traditional linear modeling
techniques but, before linear optimization can begmk=\? (v_+B)- V.V (Y, +B)cos@, -6,) (5)

applied to the output layer of an RBF network, the
number of radial units must be decided and their the
centers and deviations must be set. Although falsser
MLP training, the algorithms to do this are equally
prone to discover sub-optimal combinations. RBF'sB(xc) =
requires a lot of units to adequately model most
functions. Another drawback of RBF solution is will . . .
tend to be slower to execute and more space congumi  1he TCSC reactance is varied by varying the real
than the corresponding MLP. power error (RrP).

In this study, on-line trained neural networks are
employed to design an adaptive neural network TCS@®ptimal adaptive neuro controller design: For
controller for a multi-machine power system. The€ngineering purposes, the neural network can be
proposed neural network TCSC controller design ighought of as a black box model which accepts sput
started by designing a dynamic neuroidentifierttee ~ Processes them and produces outputs accordingrte so
TCSC device incorporated in a multimachine poweronlinear transfer functiétf.
system; then designing a neurocontroller for the&sTC
device using the MLP network and train using Madifi — .
Recursive Prediction Error Algorithm (MRPEA). >
Finally compare the performance of the optimal

neurocontroller with the conventional state feedtbac L“:ﬁw\_ ™~
controller for a number of operating conditions.

The equivalent substance of the TCSC, is given by:

XclX, ke
x@-xhx) (-1 ©)

11:cr

MATERIALSAND METHODS TCR.

TCSC mode: A typical TCSC module consists of a
Fixed series Capacitor (FC) in parallel with a Tétgr  Fig. 1: TCSC model
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(o s [ AG@Y=1+azi+ gzt 7 ©)

T+ " B(z™")= blz_l +b Z%+ ) z ©)
Optirnal u e
-U . CO?”JeuC‘)‘O T (T Plast H
3l ) The variables y(t), u(t) and(t) are the system
yy(z;fz) D) output, system input and white noise respectiveby.
£ e . the purpose of identification, Eq. 7 can be writtethe
= i LY o S form of:
— vt arameter .
-@‘M o)
L =prted
y() =87 (D6(1) +2(1) (10)
|
= Where:

Fig. 2: Optimal neural network controller model

B(t)=[a, & a h b K (11)

Neural network has been applied very successfully
in the identification and control of dynamic sysgem .
The universal approximation capabilities of the ¢(t){—Y(t—1) -y(t-2) —Y(t—3)} (12)
multilayer perceptron MLP make it a popular chdime u(t-1) u(t-2) u(t-3)
modeling nonlinear systems and for implementing
general-purpose nonlinear controller. The foIIowingwhere,e(t) and ¢(t) are the parameter vector and the
describes the process of design of the neural metwo measurement variable vector, respectively. Thecapi
controller. There are typically two steps that ivenl  structure of the MLP neural Network identifier is
when using neural network for control. shown in Fig. 3. The network has six input neurons,
five neurons in the hidden layer and a single layfer
neuron in the output layer. MLP perceptron is used
track the dynamics of the system and modeled gadtsha
weights have a one-to-one relationship with the ARM
parameters. The plant Identifier receives the plgnit u

System identification:

Control design: In system identification stage, a model
for the system that needs to be controlled shoald b
developed. In control stage the developed modailgho

be used in training the controller. This controllses a .
neural network model to predict future plant regam and plant output y at one step of time (t-1) (283l (t-3),

to potential control signals. An optimization prese and give out J_[he estimated outpyithrough the AR_MA
then computes the control signal that optimizes thénethod explained above. The parameters of theifigent
future plant performan@@]. The optimal neuro- &€ updated based on the error between the plgnitou

controller design consists of two separate neurafnd its desired outpuky o

networks, namely the neuro-controller and the neuro In this research the network is trained in advance
identifier. The structure for the training of theumo-  With the nnarx function in the NNSYSID toolB&X
identifier and the neuro-controller is shown in .Fiy The variables defining the network includes inpotl a

These two phases are carried out in series. Thenga WO delayed inputs signals, output and two delayed
algorithm and process of the neuro controller arutput of the system as mention already togethén wi
described in detail in section below. initial weights of the network and then the numbaed

types of neurons in hidden and output layer. Simila
Neural network identifier: In order to provide a closer variable is specified as controller initials areltiure.
approximation to the dynamic behavior of the power
system a Nonlinear Auto Regressive Moving AverageNeuro-controller model: The neuro-controller is also a
(NARMA) modef*” is employed in this study, which is multi-layer feedforward network trained with Modil
identified by means of artificial neural networkshe  Recursive Prediction Error AlgorithifMRPE). The
neuro-identifier developed is a 3rd order modett&f  number of neurons in input, hidden and output lager

form: six, five and one respectively, each hidden neuuses!
B . tangent activation functions and a linear funciiorthe
Az )y(t) =Bz Hu(t)+ (1) (7)  output. The inputs to the Neuro-controller are actu

plant output y and its two previous values plustthe
where, A(z") and B(z') are polynomials in the previous values of output of the Neuro-controller u
backward shift operator’zand are defined as: together with reference signal.
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wt-3) | and:

A(t) = o, (DAL =1) + o (D, (e, (D-pu(t-1)))  (15)

=4

&
°
I

Penalty on squared differenced
) S controls

e am(t) andag(t) = The momentum and learning rate
; respectively

y(t-2)

yit-1) &

Fig. 3: Network of MLP model am(t) andag(t) can be arbitrarily assigned to some
values between 0 and 1 and the typical value of are
closed to 1 and O respectively,(t) anday(t) used in
this study are varied to further improve the cogeece
rate of the RPE algorithm according to:

Training algorithm: There are so many types of
training algorithm of neural network most of theamde
viewed as a straight forward application of optiatian
theory and statistical estimation. They include:ciBa
propagation by gradient descent, Recursive Predicti %m() =0 (t-1)+a (16)
Error algorithm (RPE), BFGS, CG. In this project a
Modified Recursive Prediction Error Algorithm (MRPE and:
explained by is adapted here.

ay(t) =a,(t)A-a,(t) 17)
Modified recursive prediction error algorithm:
Recursive Prediction Error algorithm (RPE) was

originally derived by Ljung and Soderstr6hf! and o
o 2] 7 . normally initialized to Gay,(0)<1. Y(t) represents the
modified by?? to train MLP networks. RPE algorlthmI gradient of the one step ahead predicted output wit

is a Gauss-Newton type algorithm that will gengral respect to the network parameters:
give better performance than a steepest descent typ

algorithm such as back propagation algorithm. la th N

present study, the convergence rate of the RPE]J(t,O):[M} (18)
algorithm is further improved by using the optindze dé

momentum and learning rate. The momentum and

learning rate in this research are varied comptréde  P(t) in Eq. 19 is updated recursively according to:
constant values in Cheet al.??. The RPE algorithm

modified by Cheret al.?? minimizes the following cost c _ T _
y g P(t)zdy(t,e){P(t_ 1 P(t— 1 (tw" ()P (t 1)} (19)

where, a is a small constant (typically a = 0.08%);

function:

v, (9) =ﬁg§(t,(§)/\'1s(t,é) (13)  Y=AMI+WTOP(-1w(t) (20)

where, A (t) is the forgetting factor, O£t)<1 and

By updating the estimated parameter vectornormally been updated using the following scheme:
(consists of w's and b’s), recursively using Gauss-
Newton algorithm: Where(t) andA are the prediction  A(t) =AA(t-1)+ (1-A,) (22)
error and mxm symmetric positive definite matrix
respectively and m is the number of output nodé® . T where, A, and the initial forgetting factox(0) are the
weights (specified by the vectér or alternatively by  design values. Initial value of covariance matrig),P
the matrices w and W) are the adjustable parameters p(0) is normally set tal where | is the identity matrix
the network and are determined through the procesgnda is a constant, typically between 10-10000. Small

called training: value ofa will cause slow learning however too large
A A may cause the estimated parameters do not converge
B(t) = B(t —1) + P(DA (t) (14)  properly?.
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Training of the neural network identifier: The  Prediction Error algorithm (RPE) mention in section
training process of the neuro-identifier is onlgited  above for minimizing the above objective function.
around some stable operating point, it is necedsary

to be trained online to adapt to the cases whetemsys RESULTS

states change. TO. obtai_n ”aimng c_zlata the powetesy Simulations were performed in the Sirnulink
model in consideration is simulated and theg, ionment of Matlab using a fixed step-size of Sec

input/output data table is generated for differentand ode 45 solvers. The results are separatel e
operating conditions. During this phase, the inpuod i P ¥

. . . for the two test that 11 b tem 4Bd 1
desired output of the neuro-identifier are [y(t-${t-2) t?urs ssst\évr?]ses cases that are us system
y(t-3),u(t-1) u(t-21),u(t-32)] andy(t1) respectively, '

where () is the most current system state. DISCUSSION
Where: Two area four machines with TCSC device: The
u(t) = Input reference vector of the TCSC as(R) First test system used for applying TCSC Neuro-
y(t) = Output vector for the system like speed loé t controller is 11 bus systems, shpwn in Fig. 4. To
generator and line active power evaluate the performance of designed TCSC Neuro-

controller controller, the simulations are carriedt
Training of the neural network controller: The under the following two conditions:
training of the neural network controller takes gala ) .
with the training of the neural network -identifier ~ Case 1. For this case study, a three phase faults is
cascade. During this period, the input to the Neuro@pplied at bus 8 for a 1 sec and cleared after 4e@5
controller is [y(t), y(t-1), y(t-2), u(t-1), u(t-2(t+1)] with a h_eayy Iogd demanq from area 2 of 650 MW with
and the output is u, which is then fed to the Neuro all the tie-lines in place. Figure 5 presents titeriarea
identifier and evaluated against the desired oufppe ~ @nd local modes of oscillations for the treated TCS
desired control signal is calculated through therae devices. Figure 5 shows the superiority of TCSC
network -identifier by comparing the output of the Neuro-controller over its conventional counterpart.
Neuro-identifier with the desired system resporide . s 6 4 o 10 1 3
error signal in equation,és used to update the weights == . ‘

of the Neuro-controller and the objective functissed h 2 i
to train the optimal neural Network controller iwen Seod B
in Eq. 23: 2 7 T ¢
G2 G4
J @)= (r()- y(®F o u®)y, pz C (23)
! Fig. 4: Two area test system with TCSC neuro-
) controller
The weights are updated as:
10—3 11 bus with TCSC for case 1
~ ~ 4 pad
B(t) =B(t -1+ P(tw, (1) & (t-p u(t- 1) (24) [ [ [ ]
—— N controller
3 P I I (R— No. controller
Where: Ik e Conventional
du(t-1) ) controller
W, (t) = pm = Gradient of the one step ahead input it
]
with respect to network parameters g
P(t) = Covariance matrix determine from §
Eq. 19 T LA NAA A~
= (O e(t) = Output error back propagated to the g
ou(t-1)
controller model 1
p = Finality factor to penalize the
squared controls %0 2z 4 s s 10 1z 14 16
Time (gec)

The training algorithm implemented is a modified
recursive Gauss-Newton algorithm based on RecursivEig. 5: Speed deviation of (G1-G3) for case 1
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Case 2: For this case study, a three phase faults is Figure 8 and 9 shows the responses of power flow
applied at bus 8 for a 1 sec and cleared after 4e@5 in controlled line were TCSC is connected and speed
with a normal load demand from area 2 of 400 MW butdeviation of G128 with respect to G120 for case 1
with the tie-lines 7-8 outage. The interarea anchllo respectively. From Fig. 8 and 9 the superiority of
mode of oscillations for TCSC devices in the netnisr ~ Neuro-controller is clearly observed. Similar résure
shown in Fig. 6. In this case, the responses of 0 CS obtained in Fig. 10 and 11 for case 2.

under Conventional control and Neuro-controller are

presented. Figure 6 the superiority of Neuro-cdlgro ) %107 11 bus with TCSC for case 2

is clearly observed. |

L | No. controller I
EEE 50 machines, 145 bus system with TCSC: The . A — Conventional controller | |
test system used for applying TCSC Neuro-contradler P NI controller

IEEE 145 bus system, shown in Fig. 7 to evaluage th
performance of designed TCSC Neuro-controller
controller, the simulations are carried out undes t
following two conditions:

"

IRV ARS

Case 1: Three phase faults are applied at bus 6 on line

3peed deviation response of (G1-G3)

between bus 6 and 12, followed by outage of the éin 2
12. The fault is cleared 5.56 m sec after the fault -2
applied s
0 50 100 150 200
Case 2: Three phase fault is applied at bus 66 when one Time (sec)

of the possible tie line between bus 65 and 66 is o
switched off. The fault is cleared 0.05 m sec after Fig. 6: Speed deviation of (G1-G3) for case 2

T L

a7 -
4 =
144 14
116 QI 43 Qhaz | 14}
4 e
45 ot
37| 4 P

Fig. 7: IEEE 145 bus, 50 machine test systems
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. 9: Speed deviation of (G120-G128) for case 1
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25 —— NN controller
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10: Active powers for the TCSC placement in
line 6-7 for case 2
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Fig. 11: Speed deviation of (G120-G128) for case 2

CONCLUSION

In this study, optimal Neuro-controller is propdse
for damping oscillations and the effectiveness hd t
proposed control system is compared with
Conventional controller under some disturbance® Th
controller is tested on a well known bench mark @ow
system model proposed by Kundur called two area fou
machines system and a practical network of IEEE 145
bus system. From the results it can be concludat th
the optimal Neuro-controller produces no steadyesta
error and acceptable overshoot under some
disturbances.
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