
Journal of Computer Science 5 (11): 811-816, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Eyo O. Ukem, Department of Physics, Electronics and Computer Technology Unit,
 University of Calabar, PMB 1115, Calabar, Nigeria Tel: +2348063382514

811

Application of a Database in the Monitoring of Workstations

 in a Local Area Network

1Eyo O. Ukem and 2Buba G. Bajoga
1Department of Physics, Electronics and Computer Technology Unit,

University of Calabar, Calabar, Nigeria
2Department of Electrical Engineering, Ahmadu Bello University, Zaria, Nigeria

Abstract: Problem statement: Computer hardware fault management and repairs can be a big
challenge, especially if the number of staff available for the job is small. The task becomes more
complicated if remote sites are managed and an engineer or technician has to be dispatched.
Approach: Availability of relevant information when needed could ease the burden of maintenance by
removing uncertainties. Such required information could be accumulated in a database and accessed as
needed. Results: This study considered such a database, to assist a third party hardware maintenance
firm keep track of its operations, including the machines that it services, together with their owners. A
software application was developed in Java programming language, in the form of a database, using
Microsoft Access as the database management system. It was designed to run on a local area network
and to allow remote workstations to log on to a central computer in a client/server configuration. With
this application it was possible to enter fault reports into the database residing on the central computer
from any workstation on the network. Conclusion/Recommendations: The information generated
from this data can be used by the third party hardware maintenance firm to speed up its service
delivery, thus putting the firm in a position to render more responsive and efficient service to the
customers.

Key words: Software application, database, fault logging, fault management, client/server

INTRODUCTION

 Since the advent of computers, virtually every facet
of human endeavour has been greatly influenced.
Computers have made inroads into virtually every area
of human activities, and their use has become so
widespread that it is rather difficult to identify an area
where computers have not yet been used to improve
processing. The easy availability of computers for
application in almost all areas of human endeavour has
resulted in computers being found in most
establishments. The use of the machine has developed
so much that users do not now require deep knowledge
of the inner workings of the systems to be able to use
them for their daily and routine businesses. As a
consequence, there is now a proliferation of computer
systems, even in developing countries such as Nigeria.
However, even though the operations of the systems
have been made as simple as possible, systems still do
break down. Unfortunately, the process of repairs has
not seen a corresponding simplification. This is due to
the very complex nature of the hardware. Apparently, in

a bid to simplify the operations of the machines for the
benefit of users, the machines have invariably become a
lot more complex. This complexity is transparent to the
user, but when faults occur, only the most basic of such
faults can be cleared by the regular user. The
rectification of other faults requires personnel with
some reasonable measure of expertise.
 Since it is not practicable, for various reasons, for
all establishments that use computers to have on their
payroll personnel with the required level of expertise to
handle all of their computer system problems, the
practice is for a specialist firm to be established
specifically to render these services to computer user-
organizations. Ideally, such a third-party service firm
would need to keep track of its operations.
 The objective of this study is to describe a software
application package, developed in the form of a
database that can be employed by the third-party
service firm to improve its services to the customers.
With the data held in the database, and the information
generated from it, the firm should be in a position to
render more efficient service to the customers.

J. Computer Sci., 5 (11): 811-816, 2009

812

MATERIALS AND METHODS

All software applications can be collectively called
data processing. Data Processing refers to the process
of producing meaningful information by collecting all
items of data together and performing required
operations on them to extract the required information.
The data items are the raw material while information is
the end product. The methods of data processing
generally range from those that are almost entirely
manual to those that rely heavily on the use of
computers, but, as in virtually all other areas of human
endeavour, the use of computers has become prevalent.
Software is built to process data, that is, to transform
data from one form to another. This implies to accept
input, manipulate it, and produce output. This
fundamental statement of objective is true whether the
software being built is a batch software or a real-time
embedded software[1]. Whatever methods of data
processing are employed, the process goes through the
same basic stages, which can be identified as
origination of data, preparation of data, input of data,
processing of data, and output of information. The data
(both the maintained data and input data) are mostly
held in files of various structures. Files are thus the
framework around which data processing revolves.
Depending on the data processing strategy employed,
the files may be held separately for different systems or
grouped into an integrated file system, or the data may
be held in a database (a single organized collection of
structured data). The database approach has tended to
overshadow the flat file approach, due to the
advantages that the database system has, which include
data consistency, data integration, data sharing, data
independence, and data control. Of the four basic types
of database systems, namely Hierarchical, Network,
Relational, and Object-Oriented Database Systems, the
Relational system is the most widely used, although the
Object-Oriented system is showing signs of superiority
and great potential, as it can store more types of data
than all others[2]. The Relational Database Management
System was selected for this research.

Every software project is prompted by some
business need, such as the need to correct a defect in an
existing application, the need to adapt a legacy system
to a changing business environment, the need to extend
the functions of an existing application, or the need to
create a new product, service, or system[3]. For this
work, the prompting was the need to provide a new
service and thus remedy a situation (according to Eyo
Ukem in an unpublished work: “On-Line Capture and
Monitoring of the Profile and Maintenance Status of
Computer Workstations in a Local Area Network”).

The problem to be solved was expressed in the
following problem statement:

“The third-party hardware maintenance firm
desires to implement a fault logging system
that will maintain a database of all the
computers (workstations) that the firm
maintains (or services), together with their
respective owners. The database is to contain
such information about the machines as serial
number, manufacturer, make, model, date of
manufacture, date of purchase, owner, and
location. Information held about machine
owners should include name, address,
telephone number, and type of client. The
system is to maintain a record of the
occurrences of faults to enable the firm track
the trend of events and react speedily and on a
timely basis to situations. The system should
be capable of transmitting faults information
across the network from client to server. When
a fault report is received, either on-line or in
batch, the system accepts the report and logs it.
The system should record all the faults and the
action taken in each case, including the cost of
the remedial action, the personnel carrying out
the action, and spare parts used, if any. The
system should generate periodic reports on the
faults and the affected machines”

 The requirements identified for this software are
summarized below.
 The third-party hardware maintenance firm
requires to:

• Keep track of the customers it serves
• Maintain a detailed record of every machine on its

contract
• Keep and track record of all spare parts in stock
• Identify parts with their machines
• Monitor the status of client machines
• Maintain fault history of each machine, including

repair costs and fault types
• Maintain vital information on each machine -such

as date of purchase, make of machine, model, serial
number

• Maintain service record, including service
personnel, fault rate or frequency

• Highlight customer credit rating and payment fault
rate

• Obtain on-line, as much as possible, information on
the operational status of the workstations, so as to
be able to improve response time

• Generate periodic reports

J. Computer Sci., 5 (11): 811-816, 2009

813

Fig. 1: Use case diagram for the fault logger application

Fig. 2: Some of the design classes with their attributes

and methods

 Based on the product description the candidate
classes were extracted, from which use cases were
modeled. Each use case describes a typical scenario for
which the user uses the system[4]. Some of the use cases
are identified as:

• Add workstation to the database
• Remove workstation from the database
• View client’s credit status
• View status of workstation
• Log fault report

 The use cases are shown in Fig. 1 using Universal
Modeling Language (UML) representation. The design
classes that were identified, together with their attributes
and methods, are shown in Fig. 2, also in UML notation.

Implementation: The application is implemented in
Java, in a client/server configuration, with Microsoft
Access as the database management system. On
execution, the server section of the application presents
an opening screen which includes a menu that permits
the selection of options to execute. Each option has its
own screen accordingly. The Java code for the first
screen of the application is shown below:

import java.net.*;
public class FRMainClass{
 static FRServer MyServer;
 static FRMainScr MyMainScr;
 static ServerAlertMsgReciever smr;

 public static void main(String s[]){
 MyMainScr = new FRMainScr();
 smr = new

ServerAlertMsgReciever();
 smr.start();
 MyServer = new FRServer();
 MyServer.start();
 }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class FRMainScr extends JFrame implements

ActionListener{
 JButton ClientInfoButton;
 JButton MachineInfoButton;
 JButton FaultsButton;
 JButton ConnectionsButton;
 JButton RefreshButton;
 JButton HelpButton;
 JButton ExitButton;
 // The Buttons on the left hand side of the

screen
 JSplitPane MySplitPane;
 // Seperates the left pane from the right pane
 JPanel LeftPanel;
 JPanel RightPanel;
 public static FRDatabase FRD;// create the

database class object
 public static ClientInfoPanel cip;
 public static ConnectionsPanel cp;
 public static FaultsPanel fp;
 public static MachineInfoPanel mip;
 public static HelpPanel hp;

 public FRMainScr(){
 LeftPanel = new JPanel(new

GridLayout(15,1));

J. Computer Sci., 5 (11): 811-816, 2009

814

 //GridLayout, a method for laying out GUI
components on screen

 RightPanel = new JPanel(new
BorderLayout());

 RightPanel.setBackground(Color.WHITE);
 Icon pix = new ImageIcon("FCpic.jpg");
 RightPanel.add(new JLabel("", pix,

SwingConstants.CENTER),
BorderLayout.CENTER);

 ClientInfoButton = new JButton("Client
Info"); // Create Client Info button

 ClientInfoButton.addActionListener(this);//
make button to recieve click events

 MachineInfoButton = new JButton("Machine
Info");

 MachineInfoButton.addActionListener(this);
 FaultsButton = new JButton("Faults");
 FaultsButton.addActionListener(this);
 ConnectionsButton = new

JButton("Connections");
 ConnectionsButton.addActionListener(this);
 RefreshButton = new JButton("Refresh");
 RefreshButton.addActionListener(this);
 HelpButton = new JButton("Help");
 HelpButton.addActionListener(this);
 ExitButton = new JButton("Exit");
 ExitButton.addActionListener(this);
 LeftPanel.add(new JPanel());
 LeftPanel.add(ClientInfoButton);
 LeftPanel.add(new JPanel());
 LeftPanel.add(MachineInfoButton);
 LeftPanel.add(new JPanel());
 LeftPanel.add(FaultsButton);
 LeftPanel.add(new JPanel());
 LeftPanel.add(ConnectionsButton);
 LeftPanel.add(new JPanel());
 LeftPanel.add(RefreshButton);
 LeftPanel.add(new JPanel());
 LeftPanel.add(HelpButton);
 LeftPanel.add(new JPanel());
 LeftPanel.add(ExitButton);
 LeftPanel.add(new JPanel());
 MySplitPane = new

JSplitPane(JSplitPane.HORIZONTAL_SPLI
T, LeftPanel, RightPanel);

 MySplitPane.setDividerSize(2);
 getContentPane().setLayout(new

BorderLayout());
 //BorderLayout, a method of laying out GUI

components on screen
 getContentPane().add(MySplitPane,

BorderLayout.CENTER);
 setSize(600,600);

 setResizable(false);
 setVisible(true);
 setDefaultCloseOperation(JFrame.DO_NOT

HING_ON_CLOSE);
 setDefaultLookAndFeelDecorated(true);
 FRD = new FRDatabase();
 cip = new ClientInfoPanel();
 cp = new ConnectionsPanel();
 fp = new FaultsPanel();
 hp = new HelpPanel();
 mip = new MachineInfoPanel();
 }

 public void actionPerformed(ActionEvent e){
 //Find out what button was clicked
 if (e.getSource() == ClientInfoButton){
 MySplitPane.setRightComponent(cip);
 }
 if (e.getSource() == FaultsButton){
 MySplitPane.setRightComponent(fp);
 }

 if (e.getSource() == MachineInfoButton){
 MySplitPane.setRightComponent(mip);
 }
 if (e.getSource() == ConnectionsButton){
 MySplitPane.setRightComponent(cp);
 }
 if (e.getSource() == RefreshButton){

 //FRMainClass.MyServer.checkForDisco
nnection();

 MySplitPane.setRightComponent(RightPanel);
 }
 if (e.getSource() == ExitButton){
 FRMainClass.MyServer.closeConnections();
 System.exit(0);
 }
 if (e.getSource() == HelpButton){
 MySplitPane.setRightComponent(hp);
 }
 }
}

 The Java code for the various options and other
parts of the software application (going up to over one
thousand lines of code) are left out of this write-up for
want of space.

RESULTS

 On completion, the database application was
operated across a local area network put together
specifically for the purpose of testing it. The network is
comprised of three computers (an IBM ThinkPad laptop,

J. Computer Sci., 5 (11): 811-816, 2009

815

Fig. 3: Opening screen of the fault logging software

Fig. 4: Server screen with “connections” option

selected, showing one client connected

a Brian Pentium 4 desktop, and a Gateway Pentium 4
desktop) in a star topology and client/server
configuration. Once the network was properly set up, it
was possible to log simulated faults manually from any
client workstation unto the database on the server.
Some of the screens presented by the application are
shown in Fig. 3-6. The opening screen of the
application (fault logging software) is shown in Fig. 3.
Figure 4 shows the server screen when the
“Connections” option is selected, and there is a client
connected (logged on) to the server. The screen of the
client when connected to the server is shown in Fig. 5.
 In Fig. 6 is shown the server screen with the
“Clients Info” option selected. Every option that is
selected has its own screen, with provision for
entering data or for querying the system. Some
options are provided with sub-menus which allow for
deeper and more detailed interaction with the system.

Fig. 5: Client screen, showing connection to server

Fig. 6: Server screen with “Machine Info” option

selected

This multi-layered arrangement makes it easier to
navigate and use the system, and makes the system
generally more user-friendly.

DISCUSSION

 With this facility, a user at a remote location can
send in a fault report, so long as the remote workstation
is not totally down and can still communicate. The
accumulated information can be used by the engineer at
the maintenance company’s office to predict the health
of the remote workstation and plan in advance for its
maintenance. However, the main purpose of the
database is not to receive faults on-line, although that
facility is useful for speeding up proceedings. Fault
reports and remedial actions taken are entered into the
database. The information forms a data bank to be used

J. Computer Sci., 5 (11): 811-816, 2009

816

to track the well-being of the dispersed workstations.
The fault history of each machine would help engineers
arrive at decisions rapidly concerning the current
reported problem. The spare parts information held in
the database would help speed up the process of
securing any needed spare parts for the current job. The
information on the track record of the machine owners,
regarding their failure rate in the payment of legitimate
charges, would be readily available to assist
management decide the priority level to assign to such a
machine owner. The information available about the
physical locations of the machines would help
engineers plan more effectively the logistics of getting
to the machine as might be necessary. The accounting
information held in the database would be very valuable
in determining if the maintenance firm is gaining or
losing in the entire endeavour, which is a core concern
for any business venture. From the database it would be
possible to identify profitable customers and the not so
profitable ones, in order to direct the efforts of the
organization appropriately. The database also gives an
overall picture of the types and numbers of machines
maintained by the organization, thus providing a good
guide for decision on stock holding of spare parts. All
these contribute to the efficient operations of the third
party firm, to render quality service to the customers,
and advance the cause of engineering practice.

CONCLUSION

 This study has presented the Java developed
application that is capable of assisting third party
hardware maintenance firms keep track of their
operations, including machines serviced, locations, and
owners. The application, which makes use of Microsoft
Access database and facilitates the logging of fault
reports from clients unto the server, was operated
successfully on a local area network. The application
thus effectively enabled the transmission of faults
information from remote workstations to the central
computer. With proper Web enablement and adequate
Internet availability the third party firm would be able
to handle widely dispersed systems, and with the data
held in the database, decisions on faults would be
attended to more speedily. The firm would then be in a
position to render more efficient service to its
customers.

ACKNOWLEDGEMENT

 The researchers wish to acknowledge Dr. M.B.
Mu’azu and Dr. D.D. Dajab, both of the Department of
Electrical Engineering, Ahmadu Bello University,
Zaria, Nigeria, for their valuable assistance, and the
Department itself for facilitating the study. Special
thanks are extended to Prof. M.U. Onuu and Dr. S.O.
Udoh, both of the Department of Physics, University of
Calabar, Calabar, Nigeria, for their interest and
encouragement, and to Mr. Cyril N. Mkpang for his
interest in the Java adventure.

REFERENCES

1. Roger S. Pressman, 2001. Software Engineering: A

Practitioner’s Approach. 5th Edn., McGraw-Hill,
Singapore, ISBN: 0073655783, pp: 860.

2. Williams, B.K. and S.C. Sawyer, 2004. Using
Information Technology: A Practical Introduction
to Computers and Communications. McGraw-Hill
Irwin, Montreal, ISBN: 0071113789, pp: 512.

3. Roger S. Pressman, 2005. Software Engineering: A
Practitioner’s Approach. 6th Edn., McGraw-Hill,
Boston, ISBN: 0072853182, pp: 912.

4. Deitel, H.M. and P.J. Deitel, 2007. Java How to
Program. 7th Edn., Pearson Education Inc.,
Prentice-Hall, Upper Saddle River, New Jersey,
ISBN: 0132222205, pp: 1596.

