
Journal of Computer Science 5 (1): 64-70, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Sirirat Muenvanichakul, Faculty of Engineering at Si Racha, Kasetsart University Si Racha Campus,
Chonburi 20230 Thailand

64

�

Benders’ Decomposition Based Heuristics for Large-Scale
Dynamic Quadratic Assignment Problems

1Sirirat Muenvanichakul and 2Peerayuth Charnsethikul

1Faculty of Engineering Si Racha, Kasetsart University Si Racha Campus,
 Chonburi 20230 Thailand

2Department of Industrial Engineering, Kasetsart University, Bangkok, 10903 Thailand

Abstract: Problem statement: Dynamic Quadratic Assignment Problem (DQAP) is NP hard
problem. Benders decomposition based heuristics method is applied to the equivalent mixed-integer
linear programming problem of the original DQAP. Approach: Approximate Benders Decomposition
(ABD) generates the ensemble of a subset of feasible layout for Approximate Dynamic Programming
(ADP) to determine the sub-optimal optimal solution. A Trust-Region Constraint (TRC) for the master
problem in ABD and a Successive Adaptation Procedure (SAP) were implemented to accelerate the
convergence rate of the method. Results: The sub-optimal solutions of large-scales DQAPs from the
method and its variants were compared well with other metaheuristic methods. Conclusion: Overall
performance of the method is comparable to other metaheuristic methods for large-scale DQAPs.

Key words: Dynamic quadratic assignment, benders decomposition, dynamic programming, trust

region method

INTRODUCTION

 A Dynamic Quadratic Assignment Problem
(DQAP) is a decision problem of finding the optimal
location assignments among a set of facilities over a set
of discrete periods. The objective is to minimize the
sum of flow costs and rearrangement cost over all
discrete time periods.
 DQAP can be mathematically formulated as the
following modified QAP:

Minimize:

n n n n T n n n T 1

ijklt ijt klt ijlt ijt il(t 1)
i 1 j 1 k 1 l 1 t 1 i 1 j 1 l 1 t 1

C X X R X X
−

+
= = = = = = = = =

+����� ���� (1)

Subject to:

n

ijt
i 1

X 1
=

=� ,∀j, t (2)

n

ijt
j 1

X 1
=

=� ,∀i, t (3)

{ }ijtX 0,1∈ ,∀i, j, t (4)

Where:
n = The number of facilities/locations in

each period t
T = The number of discrete time periods
Cijklt = fikt*djlt = The cost of assigning facility i to

location j and facility k to location l at
period t

fikt = The workflow cost from facility i to
facility k at period t

djlt = The distance from location j to
location l at period t

Rijlt = The rearranging cost when facility i
located on location j at period t is
moved to location l at period (t+1)

Xijt = 1, if facility i is assigned to location l
at period t. Otherwise, Xijt = 0

 This study presents an alternative approach to
large-scale DQAPs. To take a full advantage of
existing, well-developed exact algorithm, DQAP is
transformed into an equivalent linear problem. Our
approach is based on Benders Decomposition (BD) and
Dynamic Programming (DP). Relaxations are
introduced in order to make the methods competitive
for large-scale problems. Different accelerating
techniques including trust-region and a Successive
Adaptation Procedure (SAP) are examined.

J. Computer Sci., 5 (1): 64-70, 2009

 65

MATERIALS AND METHODS

An equivalent linear problem: The linearization of
QAP can be modified for the DQAP by introducing two
new variables. The variable Yijklt is equal to one if at
period t, the facility i is assigned to site j and facility k
is assigned to site l. Another variable is Vijl(t+1)
representing the facility i located to site j at period t and
relocated to site l at period t+1. Therefore, the linear
transformed problem of (1-4) becomes:

Minimize:

n n n n T n n n T 1

ijklt ijklt ijlt ijl(t 1)
i 1 j 1 k 1 l 1 t 1 i 1 j 1 l 1 t 1

C Y R V
−

+
= = = = = = = = =

+����� ���� (5)

Subject to:

Yijklt ≥Xijt + Xklt -1, i = 1,..,n, j = 1,…,n, t = 1,…T (6)

ijl(t 1) ijt il(t 1)V X X 1,i 1,..,n, j = 1, ,n, t = 1, T+ +≥ + − = … … (7)

n

ijt
i 1

X 1
=

=� , j = 1,…, n, t = 1,…T (8)

n

ijt
j 1

X 1
=

=� , i = 1,…, n, t = 1,…T (9)

ijklt ijl(t 1)Y , V 0+ ≥ ,∀ i, j, t (10)

{ }ijtX 0,1∈ ,∀ i, j, t (11)

 Let the DQAP defined in (1-4) be designated
problem Q and the Mixed-Integer Linear Programming
(MILP) defined in (5-11) be designated problem L. By
extending the theorem and proof in Lawler[1], the
equivalence of Q and L for any given set of cost
coefficients can be assured.

Benders Decomposition (BD): Using the BD
algorithm, presented in Benders[2], the linearized DQAP
(5-11) can be decomposed into:

A linear programming sub-problem (dual problem):
Maximize:

n n n n T
* *
ijt klt ijklt

i 1 j 1 k 1 l 1 t 1

n n n T 1
* *

ijt il(t 1) ijl(t 1)
i 1 j 1 l 1 t 1

(X X 1)U

(X X 1)V

= = = = =

−

+ +
= = = =

+ −

+ + −

�����

����
 (12)

Subject to:

ijklt ijklt0 U C≤ ≤ , i = 1,..,n, j = 1,…,n, t = 1,…T (13)

ijl(t 1) ijlt0 V R+≤ ≤ , i =1,..,n, j = 1,…,n, t = 1,…T (14)

for a given layout { }*

ijtX 0,1∈ ,∀ i, j, t, and:

A mixed-integer-linear-programming master-problem:
Minimize:

Z (15)

Subject to:

n n n n T
*

ijt klt ijklt
i 1 j 1 k 1 l 1 t 1

n n n T 1
*

ijt il(t 1) ijl(t 1)
i 1 j 1 l 1 t 1

Z (X X 1)U

(X X 1)V

= = = = =

−

+ +
= = = =

≥ + −

+ + −

�����

����
 (16)

n

ijt
i 1

X 1
=

=� , j = 1,…, n , t = 1,…T (17)

n

ijt
j 1

X 1
=

=� , i = 1,…, n , t = 1,…T (18)

{ }ijtX 0,1∈ ,∀ i, j, t, (19)

for given all possible values of *

ijkltU and ()
*

ijl t 1V + .

 The upper bound and the lower bound of the
problem are defined respectively as:

currentUB min(UB ,Objective value of the sub-problem)=

and

currentLB max(LB ,Objective value of the master-problem)=

 In exact algorithm, BD solves the sub-problem and
master problem iteratively until:

BDUB LB− ≤ δ (20)

where, BDδ is a given tolerance.
 At the end of each iteration, a new cut is added to
constraint (16) in the master problem.
 Since constraints (13 and 14) are always feasible,
there is no feasibility cut in BD of the linearized DQAP

J. Computer Sci., 5 (1): 64-70, 2009

 66

(5-11). Furthermore, this implies that the solution of the
sub-problem can be determined directly from:

()ijt kltijklt*
ijklt

if X X 1 1C
U

0 otherwise

� + − =�= �
��

 (21)

And

 ()
()()ijtijlt* il t 1

ijl t 1

if X X 1 1R
V

0 otherwise

+
+

� + − =�= �
��

 (22)

Approximate Benders Decomposition (ABD): An
aggressive relaxation to the exact BD algorithm is
taken. The solution of master problem is approximated
by a linear programming whose solution is a real
number from 0-1. Hungarian algorithm is utilized to
round the solution to 0 or 1. The cost function in
Hungarian algorithm is defined as the difference
between the solution from the linear programming and
1. Note that this ABD does no longer guarantee the
optimal solution after adding all the cuts as the exact
BD does.
 Furthermore the maximum number of allowable
cuts Ncut_max is added as the other stopping criterion
for large-scale problems. ABD is likely to stop because
the number of iterations has reached the maximum
number of allowable cuts.

Trust-Region Constraint (TRC): An additional
constraint for trust-region to regulate the change of the
solutions in the two consecutive iterations in the master
problem is introduced into the master problem of the
ABD. As proposed by Santoso[3], the additional
constraint imposed at p+1th iteration bounds the
Hamming distance of the master problem solution from
the solution at pth iteration:

()
p p

p 1 p 1 p 1
q q

q X q X

1 x x+ + +

∈ ∉

− + ≤ ∆� � (23)

Where:
 �p+1 = The trust-region size at p+1th iteration

pX = The master problem solution obtained at pth

iteration and let p p p
q ijtX {q : x X 1}= = =

 The trust-region size is kept constant through out
each solution procedure in this study.

Approximate Dynamic Programming (ADP): With
Rosenblatt’s dynamic programming model[4], each

period corresponds to a stage and each layout
arrangement corresponds to a state. Therefore, there are
n! states in each of the T stages. The total number of
possible solutions is (n!)T. The bounding procedure
reduces the number of candidate static layouts to be
examined by including only best static layouts for each
period defined by any layout arrangement (for a given
period) that has the difference between the total cost of
the arrangement and the cost of optimal static solution
for that period lower than the difference between the
values of the upper bound and the lower bond of the
model.
 In large-scale problems, it is impossible to include
all (n!)T possible layouts in the bounding procedure.
ADP relies on the ensemble of sample static layouts
given to the bounding procedure. There is no guarantee
that the solution from ADP is the optimal solution. The
quality of the sub-optimal solution from ADP depends
strongly on the quality of the ensemble of sample static
layouts.

Combinatorial Method and Successive Adaptation
Procedure (SAP): The combinatorial method makes
use of ABD to generate the ensemble of sample static
layouts given to ADP. ADP performs the bounding
procedure and searches for the sub-optimal solution.
Iterations over ABD and ADP loop are introduced to
further improve the quality of the sub-optimal solution.
The iterations continue until:

 current previous
opt

previous

Total Cost Total Cost
100

Total Cost

−
× ≤ δ (24)

where, optδ is a given tolerance. From our unpublished
study, the final sub-optimal solution is not sensitive to
the exact value of optδ in (24); optδ is set to be to
0.001% though out our study.
 Another way to improve the quality of the solution
is to include as many static layouts in the ensemble as
possible. In this study, the ensemble is expanded by
including unique static layouts from different time
periods obtained from ABD layouts and appending the
new set of unique static layouts to the ensemble in the
previous iteration.
 The combinatorial method is further enhanced by a
SAP. In SAP, ABD and ADP loops are implemented
successively with different trust-region-sizes and the
numbers of maximum allowable cuts in ABD. For a
given initial layout, the procedure starts with a small
number of maximum allowable cuts and large trust-
region size. The sub-optimal solution from the previous
iteration is used as an initial layout for the method with

J. Computer Sci., 5 (1): 64-70, 2009

 67

a smaller trust-region size to regulate the sampling
process in ABD to be in the neighbor of a good initial
layout from the previous step. The procedure continues
successively until no further improvement is achievable
or termination by the user. The procedure may continue
successively with a larger number of maximum
allowable cuts with a successive trust-region size
reduction procedure.

Implementation: All algorithms are implemented in
MATLAB version R2007b and all the experiments are
done on a notebook with 1.66 GHz. Intel®Core 2 CPU,
1 GB RAM with Window XP 64 bits. All test data are
available upon request.

RESULTS

Combinatorial Method (ABD+ADP): The total cost
of the DQAP of the size n = 20, T = 5 from the
combinatorial method without the trust-region
constraint or the adaptive procedure (ABD+ADP) with
the number of maximum allowable cuts Ncut_max of
500 is shown in Table 1 against the total costs from
other metaheuristic methods including Simulated
Annealing (SA)[5], Genetic Algorithm (GA) and Tabu
Search (TS)[6]. The initial layout for ABD+ADP is
arbitrary and set to be iitX 1, i, t= ∀ . The possibility of
improving the quality of the sub-optimal solution from
ABD+ADP by using a better initial layout from SA is
investigated. The total cost is also shown in Table 1.
 Figure 1 shows the best total cost from ABD (the
upper bound of ABD) and the total costs from ADP
from all iterations before the solution from ABD+ADP
converges to its sub-optimal value. The initial layout in
this case is set to be iitX 1, i, t= ∀ as well.

Table 1: Cost (units) and CPU time (seconds) for DQAP by

ABD+ADP
 Problem size

Algorithms n = 20, T = 5 n = 40, T = 3
ABD+ADP (initial layout 4,416,613 11,203,203
-arbitrary; ncutmax = 500) (366,872 sec) (not converged)
ABD+ADP (initial layout-SA; 4,383,877 10,872,483
ncutmax = 500) (39,845 sec) (6,773 sec)
TRC (initial layout – SA; 4,360,788 10,834,881
Ncutmax = 20; TR = 0.5) (712 sec) (892 sec)
SAP (initial layout-arbitrary) 4,370,302 11,015,498
 (18,239 sec) (43,910 sec)
SAP (initial layout-SA) 4,316,387 10,817,002
 (11,459 sec) (16,359 sec)
SA 4,383,877 10,872,483
TS (Initial Layout-Random) 4,399,513 11,245,315
TS (Initial Layout-SA) 4,256,480 10,761,358
GA (Initial Layout-Random) 4,605,719 11,358,612
GA (Initial Layout-SA) 4,361,559 10,854,512

 The effect of the number of maximum allowable
cuts Ncut_max on the performance of ABD+ADP is
shown in Table 2. The initial layout in this case is set to
be iitX 1, i, t= ∀ . It is clear from the Table that the
executable time for ABD+ADP with Ncut_max of 500
is unreasonably long (more than 4 days) making it is
impractical for large-scale problems. From this point of
view, ABD+ADP with Ncut_max of 20 is adopted for
further development.
 ABD+ADP is further tested with the DQAP of the
size n = 40, T = 3. The calculation has not fully
converged for an arbitrary layout iitX 1, i, t= ∀ . It
terminated due to memory overflowing. Nevertheless,
the unconverged result (Table 1) is comparable with
other metaheuristic methods and exhibit similar feature
as the problem of the size n = 20, T = 5. The total
executable time is not available for this set of
experiment.

Trust-Region Constraint (TRC): TRC is tested with
n = 20,T = 5. The maximum number of allowable cuts
is set to 20. The trust-region size, �p+1, is set to be 0.5
corresponding to allowing only 25% of the layout to be
changed. The sub-optimal layout from SA is used as an
initial layout. The result and the executable time are
also shown in Table 1.

Table 2: Cost (units), CPU time (seconds) and the number of sample

layouts in ADP for DQAP with different number of
maximum allowable cuts in ABD (DQAP: n = 20, T = 5;
initial layout: Arbitrary)

Algorithm Ncut_max Cost (units) CPU (sec.) #L/O
ABD+ADP 10 4,519,097 118.74 337
 20 4,485,903 171.02 463
 40 4,494,882 640.11 601
 500 4,416,613 366,872.16 14,954
 500(SA) 4,256,480 47,552.52 2,505

Fig. 1: ABD and ADP Costs (units) from ABD + ADP

and the number of sample layouts (#L/O) in
ADP. (DQAP: n = 20, T = 5; initial layout:
Arbitrary; Ncut_max = 500)

J. Computer Sci., 5 (1): 64-70, 2009

 68

Fig. 2: ABD and ADP costs (units) from TRC and the

number of sample layouts in ADP. (DQAP:
n = 20, T = 5; initial layout: SA; Ncut_max = 20,
TR_size_constant = 0.5)

Fig. 3: Cost (units) and cost reduction (%) over each

iteration of SAP. (DQAP: n = 20, T = 5; initial
layout: SA)

 The same test with the same parameters is carried
out with the problem of the size n = 40, T = 3. The
result is also shown in Table 1.

Successive Adaptation Procedure (SAP): TRC is
implemented successively by increasing the number of
maximum allowable cuts Ncut_max in the following
order: 10, 20, 40 and 80 and reducing the trust region
size �p+1 TR_size_constant in (24) in the following
order: 1, 0.5 and 0.25. The total cost of SAP starting
from the sub-optimal layout from SA with n = 20, T = 5
is shown in Table 1. The total cost and cost reduction
during SAP is shown in Fig. 3. SAP takes 11,459
seconds (over 3 h) to complete the procedure shown in
Table 1. Figure 4 shows the best total cost from ABD
(the upper bound of ABD) and the total costs from ADP
during SAP.
 The total cost and cost reduction during SAP for
arbitrary initial layout (iitX 1, i, t= ∀) is shown in
Table 1 and Fig. 5. The best total cost from ABD (the
upper bound of ABD) and the total costs from ADP
during SAP for this case shown in Fig. 6, quite similar
to other methods above. The executable time (Table 1)
for this case is 18,239 sec (more than 5 h).

Fig. 4: ABD and ADP Costs (units) and Cost

Reduction (%) over each iteration of SAP.
(DQAP: n = 20, T = 5; initial layout: SA)

Fig. 5: Cost (units) and cost reduction (%) over each

iteration of SAP. (DQAP: n = 20, T = 5; initial
layout: Arbitrary)

Table 3: The result summary provided by ABD+DAP with SAP
Problem Total cost
size Cost of --
----------- Int. L/O Best cost Reduction Exe time
n T (units) (units) (%) (sec)
20 3 2,904,999* 2,724,991 6.1965 8,335.3
20 5 4,694,840* 4,370,302 6.9127 18,238.8
20 8 7,491,424* 6,887,656 8.0595 122,621.4
40 3 11,601,354* 11,015,498 5.0499 43,910.1
40 5 19,247,187* 18,131,694 5.7956 103,756.6
20 5 4,383,729** 4,316,387 1.5362 11,459.1
40 3 10,862,694** 10,817,002 0.4206 16,359.3

 SAP has also applied to DQAP with different sizes.
Because there is no available sub-optimal solution from
other methods, SAP starts from an arbitrary initial
layout iitX 1, i, t= ∀ . The initial cost, sub-optimal total
cost, over cost reduction and executable time are shown
in Table 3 (SAP starting with a sub-optimal layout from
SA for n = 20, T = 5 and n = 40, T = 3 problems are
also included for the sake of reference). The total cost
reductions are in the neighbor of 5-8%. The executable
time varies from 8,335 sec (slightly more than 2 h) for
n = 20, T = 3 problem to 122,621 sec. (more than 34 h)
for n = 20, T = 8 problem.

J. Computer Sci., 5 (1): 64-70, 2009

 69

Fig. 6: ABD and ADP Costs (units) and Cost

Reduction (%) over each iteration of SAP.
(DQAP: n = 20, T = 5; initial layout: Arbitrary)

DISCUSSION

ABD+ADP: The total cost from ABD+ADP is
4,416,613 (Table 1) compared well to that from other
metaheuristic methods starting from random initial
layouts. In fact, ABD+ADP produces a lower total cost
than the total cost from GA with a random initial
layout. However, TS and GA slightly outperform
ABD+ADP, if the best layout from SA is supplied in as
initial layouts for the two methods. The result of
ABD+ADP starting from SA sub-optimal layout shown
in Table 1 suggesting that ABD+ADP fails to take
advantage of the better initial layout from SA. The total
cost remains unchanged from that of the initial layout
regardless of the number of maximum allowable cuts
Ncut_max. The root of the failure is tracked back to the
poor performance of BD that is solutions from initial
iterations oscillate widely from one region of the
feasible set to another; thereby slowing the convergence
rate of BD (Hiriart-Urruty and Lemaréchal[7]). In this
case, the number of maximum allowable cut is only 500
negligibly small compared to the total number of cuts
of the problem ((n!)T = (20!)5). Consequently, ABD
poorly samples layouts from the feasible space for
ADP. The TRC restricting the change of the solution
from one to the next iteration should improve the
sampling process of ABD and is investigated later.
 Figure 1 shows the dynamics of ABD+ADP. ADP
in every iterations except the last one significantly
reduces the total cost from ABD. On the contrary, ABD
in every iterations except the first one fails to reduce the
cost from ADP in the previous iteration. Evidently, the
performance of ABD+ADP is hinged on the solution
from ADP not that from ABD. Nevertheless, the quality
of ADP solution implicitly relies on sample layouts
generated from ABD.

 As Ncut_max increased, the total cost improves
and the executable time increases (Table 2). The
improvement of the total cost is most likely to be a
result of the increase in the number of sample layouts
for ADP from ABD.

TRC: TRC takes advantage of the sub-optimal layout
from SA and improves the sub-optimal solution (see
Table 1). The total cost reduces to 4,360,788. The TRC
restricts the change of solution during each cut in ABD
such that the new solution is in the neighbor of the
previous solution. In this way, the TRC allows
thoroughly search for the best solution in the neighbor
of the previous sub-optimal solution; thereby enhancing
the performance of TRC. Figure 2 reveals that the
dynamics of TRC is similar to that of ABD+ADP.
 Evidently from Table 1, TRC outperforms
ABD+ADP in all aspects-the quality of the total cost
and the executable time. In particular, the executable
time of TRC is almost three order of magnitudes lower
than ABD+ADP with Ncut_max = 500. TRC
outperforms ABD+ADP for n = 40, T = 3 problem as
shown in Table 1.

SAP: The total cost from the procedure starting from
SA sub-optimal initial layout shown in Table 1 is
4,316,387 and the grand total cost reduction over the
whole procedure is 1.5%. SAP produces a better sub-
optimal solution than TRC and a comparable sub-
optimal solution compared with other metaheuristic
methods. The most two effective steps produce the cost
reduction of 0.542 and 0.469% respectively as shown in
Fig. 3 occurring at Ncut_max of 40 and
TR_size_constant of 0.25 and 0.5 respectively. The
most two effect steps indeed account for about 2/3 of
the grand total cost reduction. Unlike the first few steps
running at Ncut_max of 10 and 20, they seem not to
improve the solution so much. With a good initial
layout, SAP requires sufficient Ncut_max before it can
produce significant improvement in the total cost when
the trust-region size is relatively restricted. Also, there
is not much improvement at Ncut_max of 80. It is
speculated that with this even better solution, the
procedure requires more Ncut_max than 80. The
dynamics of SAP over each TRC is similar to a single
TRC and ABD+ADP as shown in Fig. 4. SAP takes
less time than ABD+ADP but longer than TRC.
Nevertheless, its sub-optimal solution is better than
ABD+ADP’s and TRC’s (Table 1).
 With an arbitrary initial layout, the most cost
reduction accounting almost all of the total reduction
occurs during Ncut_max of 10 and TR_size_constant of
1 as shown in Fig. 5. The convergence behavior in this

J. Computer Sci., 5 (1): 64-70, 2009

 70

case is much more organized than SAP starting from a
sub-optimal initial layout. A total cost is significantly
reduced during low Ncut_max for a large
TR_size_constant and its reduction decrease as
TR_size_constant decreases. The total cost reduction
significantly reduces again when Ncut_max increases
even though the total cost reduction is not as large as
the previous steps. Evidently, SAP takes a great
advantage of ADP to single out the best sub-optimal
solution from random layouts generated by ABD with a
large TR_size_constant during initial steps. With the
reduction of TR_size_constant further, ABD tends to
sample layout only in the neighbor of a sub-optimal
layout from the previous step. As a result ADP slightly
improves the solution from the previous step. If the true
global minimum lays further way from this neighbor,
SAP may not be able to single out the true global
minimum.

CONCLUSION

 New combinatorial solution methods for large-
scale DQAPs are developed based on an equivalent
linear problem. The principle algorithms for the
proposed combinatorial method are based on BD
successfully applied to large-scale MILP problem and
ADP successfully applied to dynamic assignment
problem. Due to slow convergence of BD and limited
ability of a MILP algorithm, BD is relaxed by linear
programming and Hungarian algorithm. The methods
are further accelerated by the TRC and the SAP. In
summary, the overall performances of the proposed
methods are comparable with other metaheuristic
methods.

REFERENCES

1. Lawler, E.L., 1963. The quadratic assignment

problem. Manage. Sci., 9: 586-599. DOI:
10.1287/mnsc.9.4.586

2. Benders, J.F., 1962. Partitioning procedures for
solving mixed variables programming problems.
Num. Math., 4: 238-252. DOI:
10.1007/BF01386316

3. Santoso, T., S. Ahmed, M. Goetschalckx and A. Shapiro,
2005. A Stochastic programming approach to
supply chain network design under uncertainty.
Eur. J. Operat. Res., 167: 96-115.
http://cat.inist.fr/?aModele=afficheN&cpsidt=1687
6124

4. Rosenblatt, M.J., 1986. The dynamics of plant
layout. Manage. Sci., 32: 76-82. DOI:
10.1287/mnsc.32.1.76

5. Luangpaiboon, P., 1995. Dynamic process layout
planning. Master Thesis, Kasetsart University.
http://intanin.lib.ku.ac.th/search*thx/aPongchanun+Luan
gpaiboon/apongchanun+luangpaiboon/-3%2C-
1%2C0%2CB/frameset&FF=apongchanun+luangpaiboo
n&1%2C1%2C

6. Muenvanichakul, S., 1998. An hybrid approach of
genetic algorithm/ simulated annealing and tabu
search method for dynamic process layout
planning. Master Thesis, Kasetsart University.

 http://intanin.lib.ku.ac.th/search*thx/aSirirat+Muen
vanichakul/asirirat+muenvanichakul/-3%2C-
1%2C0%2CB/frameset&FF=asirirat+muenvanichakul&
1%2C1%2C

7. Hiriart-Urruty, J.B. and C. Lemaréchal, 1996.
Convex Analysis and Minimization Algorithms:
Part 2: Advanced Theory and Bundle Methods.
Corrected End., Springer, ISBN: 3540568506, pp: 347.

