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Abstract: Problem statement: The goal of automatic programming system is to create, in an 
automated way, a computer program that enables a computer to solve a problem. It is difficult to build 
an automatic programming system: They require carefully designed specification languages and an 
intimate knowledge base. Determine the relevance of mathematical system theory to the problems of 
automatic programming and find automatic programming methodology, where a computer program 
evolved to solve problem by using problem’s input output specifications only. Approach: Problem 
behavior was described as a finite state automata based on its meaning, also problem’s input-output 
specifications were described in theoretical manner, based on its input and output trajectories 
information, then a program was evolved to solve the problem. Different implementation languages 
can be used without significantly affecting existing problem specification. Evolutionary process adapts 
ant colony optimization algorithm to find good finite state automata that efficiently satisfies input-
output specifications. Results: By moving from state to states, each ant incrementally constructs sub- 
solution in an iterative process. The algorithm converged to the optimal final solution, by accumulating 
most effective sub-solutions; main problem will appeared in solving problem with little input-output 
specifications. Fixed and dynamic input-output specifications were used to mimic chaotic behavior of 
real world. Conclusion: These results indicated that theoretical bases can enhance efficiency and 
performance of automatic programming system, leading to an increase in the system productivity and 
letting the concentrate to be done on problem specification only. Also, the collective behavior 
emerging from the interaction of the different ants had proved effective in solving problem; finally, in 
dynamic input-output specification chaos theory, especially “butterfly effect”, can be used to control 
the sensitivity to initial configuration of trajectory information.  
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INTRODUCTION 

 
 Ant Colony Optimization (ACO) is a population-
based approach for solving combinatorial optimization 
problems that is inspired by the foraging behavior of 
ants and their inherent ability to find the shortest path 
from a food source to their nest. ACO is the result of 
research on computational intelligence approaches to 
combinatorial optimization originally conducted by Dr. 
Marco Dorigo, in collaboration with Alberto Colorni 
and Vittorio Maniezzo. The fundamental approach 
underlying ACO is an iterative process in which a 
population of simple agents repeatedly construct 
candidate solutions; this construction process is 
probabilistically guided by heuristic information on the 
given problem instance as well as by a shared memory 
containing experience gathered by the ants in previous 
iteration. ACO has been applied to a broad range of 
hard combinatorial problems. Problems are defined in 
terms of components and states, which are sequences of 

components. Ant Colony Optimization incrementally 
generates solutions paths in the space of such 
components, adding new components to a state. 
Memory is kept of all the observed transitions between 
pairs of solution components and a degree of 
desirability is associated to each transition depending 
on the quality of the solutions in which it occurred so 
far. While a new solution is generated, a component y is 
included in a state, with a probability that is 
proportional to the desirability of the transition between 
the last component included in the state and y itself [1]. 
The main idea is to use the self-organizing principles to 
coordinate populations of artificial agents that 
collaborate to solve computational problems. Self-
organization is a set of dynamical mechanisms whereby 
structures appear at the global level of a system from 
interactions among its lower-level components. The 
rules specifying the interactions among the system’s 
constituent units are executed on the basis of purely 
local information, without reference to the global 
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pattern, which is an emergent property of the system 
rather than a property imposed upon the system by an 
external ordering influence. For example, the emerging 
structures in the case of foraging in ants include 
spatiotemporally organized networks of pheromone 
trails[2-4]. Self-organization relies on four basic 
ingredients: 
 
• Positive feedback (amplification) is constituted by 

simple behavioral rules that promote the creation of 
structures 

• Negative feedback counterbalances positive 
feedback and helps to stabilize the collective 
pattern: It may take the form of saturation, 
exhaustion, or competition 

• Self-organization relies on the amplification of 
fluctuations (random walks, errors, random task-
switching) 

• All cases of self-organization rely on multiple 
interactions. They should be able to make use of 
the results of their own activities as well as others’ 
activities 

 
 When a given phenomenon is self-organized, it can 
usually be characterized by a few key properties[5-7]: 
 
• The creation of spatiotemporal structures in an 

initially homogeneous medium. Such structures 
include nest architectures, foraging trails, or social 
organization 

• The possible coexistence of several stable states 
(multi stability). Because structures emerge by 
amplification of random deviations, any such 
deviation can be amplified and the system 
converges to one among several possible stable 
states, depending on the initial conditions 

• The existence of bifurcations when some parameters 
are varied. The behavior of a self-organized system 
changes dramatically at bifurcations 

 
Automatic Programming is the area in which 

Artificial Intelligent and programming come the most 
closely together: it refers both to the fully computerized 
generation of programs from initial problem 
specifications and to automated improvement of 
program efficiency. In particular, it is desirable that the 
user not be required to pre specify the architecture of 
the ultimate solution of his problem. Problem 
specification might take the form of an interactive 
dialogue, or they might appear in graphical form, or it 
may be written in a specific language. Although 
automatic programming holds much promise for 

problem-solving strategies, the technology has met with 
less success in systems and real time programming. 
This research is an attempt to find general and standard 
Automatic Programming methodology, where a 
computer program is evolved to solve problem by using 
it’s input output specifications. Problems are defined in 
terms of states and transition between them, which are 
sequences of transformation. Ant Colony Optimization 
incrementally generates solutions paths in the space of 
such transformation, adding new components to a state. 
Convergence to the optimal final solution is occurred 
by accumulating most effective sub-solutions. Fixed 
and dynamic input-output specifications are used to 
mimic chaotic behavior of real world. 
 

MATERIALS AND METHODS  
 
 Theoretical model is proposed to describe the 
behavior of a program in terms of input (s), states and 
output (s). It equates what a program means with what 
it does. The word “System” in our presentation mean 
“Program”. The meaning of system P can be specified 
by set of functions from states to states; hence P effects 
a transformation: 
 

(P) Xinitial → Xfinal 
 
on a state vector X, which consists of an association of 
the variable manipulated by the system and their values. 
A system P can be defined as 9- tuples, called Semantic 
Finite State Automata (SFSA): 
 

P = (x, X, T, F, Z, I, O, γ, Xinitial) 
 
Where: 
x = The set of system variables 
X = The set of system states X = {Xinitial,...,Xfinal} 
T  = The time scale, T = [0, ∞) 
F = The set of primitive functions 
Z = The state transition function, Z = {(f, X, t): (f, 

X, t) Є F×X×T, z (f, X, t) = (•X, •t)} 
I = The set of inputs 
O = The set of outputs 
γ = The readout function 
X initial = The initial state of the system, Xinitial Є X 
 
 The sets involved in the definition of P are 
arbitrary, except T and F. Time scale T must be some 
subset of the set [0, ∞ ) of nonnegative integer numbers, 
while the set of primitive function F must be a subset of 
the set CL (FL) of all computable functions in the 
language L and sufficient to generate the remainder 
functions. To execute system P, transition functions are 



J. Computer Sci., 5 (5): 380-387, 2009 
 

382 

firing starting from, t = 0. Execution terminate when 
t>T. Two features characterize state transition function: 
 
• z (-, -, t) = (Xinitial, 1), if t = 0 
• z (f, X, t) = z (f, z (f(t-1), X, t-1)) if t ≠ 0 
 
 The concepts of reusable parameterized subsystems 
can be implemented by restricting the transition 
functions of the main system, so that it has the ability to 
call and pass parameters to one or more such sub-
systems. Suppose we have sub-system •P and main-
system P, then they can be defined by the following 9-
tuples: 
 
P (x, X, T, F, Z, 1, 0, Xinitial, γ)  

•P (•x, •X, •T, •F, •Z, •I, •O, •X initial, 
•γ) 

 
where, •x⊆x, •X  

initial Є X, then there exit *f Є F, z Є Z, 
•f, Є F and •z Є •Z and h is a function defined over •Z 
with value in •X is defined as follows: 
 
h = •z (•f, •X initial, 1) = Xh, ti 
 
z(*f, X, t) = z(h, X, t) = Xh, t 
 
*f is a special function we call it sub-SFSA function to 
distinguish it from other primitive functions in the set F. 
Also, we call the sub-system •S, sub-SFSA, to 
distinguish it from the main SFSA. Formally, a system 
•S is a sub-system of a system S, iff: •x⊆x, •T⊆T, •I⊆I, 
•O⊆O, •γ must be the restriction of γ to •O and •F⊆N, 
where N is the set of restrictions of F to •T. If (•f, •X, •t) is 
an element of •F×•X×•T, then there exists f Є F, such that 
the restriction of f to •T is •f and •z (•f, •X, •t) is z (f, X, t). 
 The idea of recursive function could be simply 
applied with the proposed method using mathematical 
induction. The principle of mathematical induction can 
be used to construct system as well as proofs. Consider 
the following definition of the recursion function fr, 
which is highly reminiscent of proofs by mathematical 
induction: 
 
fr (X) = X, t = tmax+1 if X = 0 (base of induction) 
 
fr (X) = X initial = X, t = 0 otherwise (induction step)  
 
where, T = [0, tmax].  
 
Input-Output Specification (IOS): An IOS 
establishing input-output boundaries of the system. It 
describes inputs those the system is designed to handle 
and outputs those the system is designed to produce. An 
IOS is not a system, but it determines the set of all 
systems that satisfy the IOS. It is a 6-tuples: 

IOS = (T, I, O, Ti, To, η) 
 
Where: 
T = The time scale of IOS, I is the set of inputs 
O = A set of outputs 
Ti = A set of input trajectories defined over T, 

with values in 
I, To = A set of output trajectories defined over T, 

with values in 
O and η = A function defined over Ti whose values are 

subset of To 
 
 That is, η matches with each given input trajectories 
the set of all output trajectories that might, or could be, or 
eligible to be produced by some systems as output, 
experiencing the given input trajectory. A system P 
satisfies IOS if there is a state X of P and some subset U 
not empty of the time scale T of P, such that for every 
input trajectory g in Ti, there is an output trajectory h in 
To matched with g by η such that the output trajectory 
generated by P, started in the state X is:  
 

γ(Z (f(g), X, t) = η(h(t))   For every TєU 
 
Ant colony algorithm for system induction: A 
combinatorial optimization problem is a problem 
defined over a set C = c1, ...., cn of basic components. A 
subset S of components represents a solution of the 
problem; F ⊆ 2C is the subset of feasible solutions, thus 
a solution S is feasible if and only if S ∈ F. A cost 
function z is defined over the solution domain, z: 
2C
→R, the objective being to find a minimum cost 

feasible solution S*, i.e., to find S*: S*∈F and 
z(S*)≤z(S), ∀S∈F[8]. They move by applying a 
stochastic local decision policy based on two 
parameters, called trails and attractiveness. By moving, 
each ant incrementally constructs a solution to the 
problem. The ACO system contains two rules: 
 
• Local pheromone update rule, which applied whilst 

constructing solutions 
• Global pheromone updating rule, which applied 

after all ants construct a solution 
 
 Furthermore, an ACO algorithm includes two more 
mechanisms: Trail evaporation and, optionally, daemon 
actions. Trail evaporation decreases all trail values over 
time, in order to avoid unlimited accumulation of trails 
over some component. Daemon actions can be used to 
implement centralized actions which cannot be 
performed by single ants, such as the invocation of a 
local optimization procedure, or the update of global 
information to be used to decide whether to bias the 
search process from a non-local perspective[1,10]  
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 At each step, each ant computes a set of feasible 
expansions to its current state and moves to one of these 
in probability. The probability distribution is specified 
as follows. For ant k, the probability of moving from 
state t to state n depends on the combination of two 
values[9,11,12]:  
 
• The attractiveness of the move, as computed by 

some heuristic indicating the priori desirability of 
that move 

• The trail level of the move, indicating how 
proficient it has been in the past to make that 
particular move: It represents therefore an a 
posteriori indication  of the desirability of that move 

 
 In the proposed algorithm a colony of ants moves 
through system states X = {Xinitial,...,Xfinal}. They move 
by applying the transition function Z, which is based on 
two parameters: d trails values and input-output 
specifications of the problem. By moving from state to 
state, each ant incrementally constructs a solution to the 
problem, in other words construct the transformation: 
 
(S) Xinitial →X final 
 
 In the initial iteration of ACO algorithm, all ant 
begin from X initial and use input-output specification 
only to move to each possible system states, as shown 
in Fig. 1. The number of system states in ACO depends 
on the number of system variables: 2x. In the rest 
iterations, each ant use, it’s memory as well as input-
output specifications to move to next state( may be any 
of 2x states including itself, i.e., loop state, as shown in 
Fig. 2 and 3). System states change by applying z ЄZ, 
where: z (f, X, t) = (•X, •t). These mean when ant 
move, system’s state and time are changed and outputs 
are produced (as the type of readout function), if any. 
During ants’ movements, trails are always modified 
toward satisfying input-output specifications. When an 
ant complete a solution, or during the construction 
phase, it evaluate the solution and modify the trail value 
on the components used in its solution. This pheromone 
information  will  direct  the  search  of  the  future ants. 
 

 
 
Fig. 1: Initial iteration ACO algorithm 

In Fig. 2 and 3, red line denote the currently selected 
transition, blue lines denote the most efficient path 
previously stored in the memory of system, while black 
lines denote unselected poor transitions. Thus, at each 
iteration, an ant select only one transition (red) and try 
to append it with previously constructed path. The 
algorithm is defined as follow: 
 
ACO algorithm: An ACO algorithm consists of two 
main parts: initialization and a main loop. 
  
Initialize: 
 
• Set initial parameters of the system: Variable, 

states, function, input, output, input trajectory, 
output trajectory 

• Set initial pheromone trails value 
• The current state of each ant is: X initial, with empty 

memory 
 

 
 
Fig. 2: After n iterations of ACO algorithm 
 

 
 
Fig. 3: Final solution of ACO algorithm 
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While termination conditions not meet do: 
 
• Construct ant solution: Each ant constructs a path 

by successively applying the transition function 
zЄZ. The probability of moving from state to state 
depend on: Data trajectory sets (as the 
attractiveness of the move) and the trail level of the 
move. 

• Apply local search. 
• Best tour check: For each ant, construct data 

trajectory sets tour and compare to the best 
trajectory sets, by using the function: 

 
 γ (Z (f (g), X, t) = η(h(t))    
 
 If there is an improvement, update it. 
• Update trails: 

• Evaporate a fixed proportion of the pheromone 
on each road 

• For each ant perform the “ant-cycle” 
pheromone update 

• Reinforce the best tour with a set number of 
“elitist ants” performing the “ant-cycle 

 
End while: 
 
 The ACO meta-heuristic can be applied to discrete 
optimization problems characterized as follows: 
 
• C = {c1; c2; : : : ; cNC} is a finite set of components 

• L = {l cicj│(ci; cj) Є ~ C}; |L|≤N2
C is a finite set 

of possible connections/transitions among the 
elements of ~ C, where ~ C is a subset of the 
Cartesian product C×C 

• Jcicj ≡ J(lcicj; t) is a connection cost function 
associated to each lcicj Є L, possibly parameterized 
by some time measure t 

• Ω ≡ Ω(C; L; t) is a finite set of constraints assigned 
over the elements of C and L 

• s = <ci, cj,….., ck,……> is a sequence over the 
elements of C (or, equivalently, of L). A sequence 
s is also called a state of the problem. If S is the set 
of all possible sequences, the set ~ S of all the 
(sub) sequences that are feasible with respect to the 
constraints Ω(C; L; t), is a subset of S. The 
elements in ~ S define the problem’s feasible 
states. The length of a sequence s, that is, the 
number of components in the sequence, is 
expressed by |s| 

• Given two states s1 and s2 a neighborhood structure 
is defined as follows: the state s2 is said to be a 
neighbor of s1 if both s1 and s2 are in S and the state 

s2 can be reached from s1 in one logical step (that 
is, if c1 is the last component in the sequence 
determining the state s1, it must exists c2 2 C such 
that lc1c2 Є L and s2 ≡ <s1, c2>). The neighborhood 
of a state s is denoted by Ns 

• Ψ is a solution if it is an element of ~S and satisfies 
all the problem’s requirements. A multi-dimensional 
solution is a solution defined in terms of multiple 
distinct sequences over the elements of C 

• JΨ (L, t) is a cost associated to each solution Ψ. 
JΨ(L, t) is a function of all the costs Jcicj of all the 
connections belonging to the solution Ψ 

 
Ants of the colony have the following properties: 
 
• An ant searches for minimum cost feasible 

solutions^J Ψ = minΨ^J Ψ (L, t) 
• An ant k has a memory Mk that it can use to store 

information on the path it followed so far. Memory 
can be used to build feasible solutions, to evaluate 
the solution found and to retrace the path backward 

• An ant k in state sr = <sr-1, i> can move to any node 
j  in   its  feasible  neighborhood Nk

i,  defined as 
Nk

i = {j| (j Є Ni)^(<sr, j> Є ~S)} 
• An ant k can be assigned a start state sk

s and one or 
more termination conditions ek. Usually, the start 
state is expressed as a unit length sequence, that is, 
a single component 

• Ants start from the start state and move to feasible 
neighbor states, building the solution in an 
incremental way. The construction procedure stops 
when for at least one of the termination conditions 
ek is satisfied 

• An ant k located on node i can move to a node j 
chosen in Nki. The move is selected applying a 
probabilistic decision rule 

 
The ants’ probabilistic decision rule is a function of: 
 
• The values  stored  in  a node local data structure 

A i = [aij] called ant-routing table, obtained by a 
functional composition of node locally available 
pheromone trails and heuristic values 

• The ant’s private memory storing its past history 
• The problem constraints 
• When moving from node i to neighbor node j the 

ant can update the pheromone trail זij on the arc (i, 
j). This is called online step-by-step pheromone 
update 

 
 Once built a solution, the ant can retrace the same 
path backward and update the pheromone trails on the 
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traverse arcs. This is called online delayed pheromone 
update. 
 

RESULT 
 
 System behavior can be represented as transition 
graphs because it is easier to understand graphical 
notations; also ant colony algorithm is clearly 
understood. Such graph is a collection of four things: 
 
• A finite set of states X, to represent the graph nods 
• The sets of inputs I and outputs O 
• The set N = ((f, t): (f, t) Є F×T) 
• A transition table that shows for each state X and 

each pair (f, t) Є N. what output (if any) are 
produced and what states are reached next 

 
 Every state must have exactly one outgoing edge 
for each possible pair. Edge traveling is determined by 
the transition table: While traveling on edges; system 
outputs (if any) must be produced by applying the read 
out function γ. To produce efficient systems the number 
of it’s states can be reduced and thus reduces it’s time T. 
To perform state minimization, assigns the same time t, 
to all consecutive transitions iff they all have same effect 
on the state vector X. Only consecutive transitions are 
taken into consideration, so as to keep system behaviors 
unchanged. Figure 5 shows the minimized State 
Transition Graph of that showed in Fig. 4. 
 

 
 
Fig. 4: State Transition Graph of the example system, 

where T = [1,7] and No. of states = 5 
 

 
 
Fig. 5: Minimized  STG  of  graph  in  Fig.   2,  where 

T = [1,6] and No. of states = 4 

The State Minimization Algorithm: 
 
• Construct a subset Π of the state vector Xj> = 0 

(for j = 0, Xj = Xinitial). Π Consist of all entries in 
the state vector Xj, which occurs as arguments in 
the current executed function fi, i> = 1, thus Π⊆X j. 

• Construct a new subset Π new, it will consists of all 
entries in the state vector Xj+1 which occurs as 
arguments in the next executed function fi+1, 
Πnew⊆X  j+1. Note that each subset is either an empty 
set or consists only of program variable 

• If Π∩Πnew, = empty set, then delete Xj from the set 
X. All edges which have Xj as an end node are now 
redirected to Xj+1, to reflect the change in states 

• If Xj +1 = X final, go to final step 
• Π = Π new, go to second step 
• Repeat above steps until non-empty set are 

produced from the intersection of step 3 for a 
complete iteration. 

 
Example: Assume we our system is defined as 
following: 
 
X = {X initial, x1, x2, x3, x4},  
T = [0, 7], F = {f1, f2, f3, f4}  
I = {i}, O = {O1, O2, O3, O4} 
Y = Mealy readout function 
Z = {z0(-, -, 0) = Xinitial, 1  
z1

 (f1, Xinitial, 1) = X1, 2 
z2(f2, X1, 2)  = X1, n  
z3 (f3, X1, 3) = X1, 4/O1  

z4 (f4, X1, 4) = X2, 5 
z5 (f5, X2, 5) = X3, 6 
z6 (f6, X3, 6) = X4, 7 
z7 (f7, X4, 7) = X4, 8/O2, O3, O4} 
 

DISSCUSION 
 
 It clear that the evolutionary process of our system 
is highly depends on input-output specifications, more 
precisely input and output trajectory sets and η 
function. Figure 6, specify clearly that system with high 
trajectory information converge to the solution in less 
time than these populations with little trajectory 
information. From the Fig. 6, little data trajectory 
information always may lead to un convergence state, 
(maximum iteration number allowed her is 10000). Two 
types of trajectory sets are used: Fixed and dynamic sets. 
Work with fixed system specification is usually easy 
since ACO algorithm is only focus on selecting 
transitions   which   highly   satisfy   these   specification. 
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Fig. 6: Converge time versus trajectory .information of 

the problem 
 

 
 
Fig. 7: Variant converge for the same problem, but 

different initial trajectory sets 
 
Unfortunately, when we deal with complex systems and 
real live problem, strong feedback (positive as well as 
negative) and many interactions exist: i.e., chaotic 
behavior. Thus, we need to find a way to control chaos, 
to understand and predict what may happen long term. 
In these cases input and output specifications are self 
organized, which mean that trajectory data are collected 
and enhanced over time, when evolutionary process 
runs again and again. The algorithm begins with initial 
version of input and output trajectory sets and η 
function. Then change them over time to reflect input-
output characteristic of the required system. Therefore, 
main problem will appear if the system has little fixed 
trajectory information, from experienced work we note 
that problems with self-modified trajectory information 
are difficult and take more time to converge, so the 
maximum iteration number was scaled up. Although 
trajectory data are changed over time, but by 
experiment, it still sensitive to initial set. This is one of 
the most important characteristic of a chaotic system 
(sensitivity to the initial conditions: “butterfly effect”). 
As shown in Fig. 7, for the same problem, when initial 
configurations of data trajectory sets are changed, there 
are big changes in the behaviors of ACO algorithm, 
even that they are small variations.   
 

CONCLUSION 
 
• The collective behavior emerging from the 

interaction of the different agents has proved 

effective in solving combinational optimization 
problems. System induction by using such 
interaction is more effect than induction based on 
formal specifications 

• A colony of ants moves through system states X, by 
applying the transition function Z. These movements 
are based on two parameters: Trails and input-output 
specifications of the problem, i.e., data trajectory 
sets. By moving, each ant incrementally constructs a 
solution to the problem. When an ant complete 
solution, or during the construction phase, the ant 
evaluates the solution and modifies the trail value on 
the components used in its solution 

• An artificial ant builds a solution for system 
induction by traversing the fully connected 
construction graph, represented as STG, G (C, L), 
where C is a set of vertices and L is a set of edges. 
Since Ant colony algorithm may produce 
redundant states in the graph, its better to minimize 
such graphs to enhance the behavior of the 
inducted system 

• The proposed algorithm works with fixed and 
dynamic input-output specification. However, it 
work better with fixed specification. Thus, main 
problem will appeared in solving problem with little 
input-output specifications. More efficient learning 
algorithm, such as neural network, my be used to 
enhance the work. Further more, chaos theory, 
especially “butterfly effect”, can be used to control 
the sensitivity to initial configuration of trajectory 
information (in dynamic specification cases)  
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