
Journal of Computer Science 5 (5): 380-387, 2009
ISSN 1549-3636
© 2009 Science Publications

380

System Evolving using Ant Colony Optimization Algorithm

Nada M.A. AL-Salami

Department of Management Information Systems, Faculty of Economic and Business,
Al Zaytoonah University of Jordan, Jordan, Amman

Abstract: Problem statement: The goal of automatic programming system is to create, in an
automated way, a computer program that enables a computer to solve a problem. It is difficult to build
an automatic programming system: They require carefully designed specification languages and an
intimate knowledge base. Determine the relevance of mathematical system theory to the problems of
automatic programming and find automatic programming methodology, where a computer program
evolved to solve problem by using problem’s input output specifications only. Approach: Problem
behavior was described as a finite state automata based on its meaning, also problem’s input-output
specifications were described in theoretical manner, based on its input and output trajectories
information, then a program was evolved to solve the problem. Different implementation languages
can be used without significantly affecting existing problem specification. Evolutionary process adapts
ant colony optimization algorithm to find good finite state automata that efficiently satisfies input-
output specifications. Results: By moving from state to states, each ant incrementally constructs sub-
solution in an iterative process. The algorithm converged to the optimal final solution, by accumulating
most effective sub-solutions; main problem will appeared in solving problem with little input-output
specifications. Fixed and dynamic input-output specifications were used to mimic chaotic behavior of
real world. Conclusion: These results indicated that theoretical bases can enhance efficiency and
performance of automatic programming system, leading to an increase in the system productivity and
letting the concentrate to be done on problem specification only. Also, the collective behavior
emerging from the interaction of the different ants had proved effective in solving problem; finally, in
dynamic input-output specification chaos theory, especially “butterfly effect”, can be used to control
the sensitivity to initial configuration of trajectory information.

Key words: Automatic programming, ACO, multi-agent

INTRODUCTION

 Ant Colony Optimization (ACO) is a population-
based approach for solving combinatorial optimization
problems that is inspired by the foraging behavior of
ants and their inherent ability to find the shortest path
from a food source to their nest. ACO is the result of
research on computational intelligence approaches to
combinatorial optimization originally conducted by Dr.
Marco Dorigo, in collaboration with Alberto Colorni
and Vittorio Maniezzo. The fundamental approach
underlying ACO is an iterative process in which a
population of simple agents repeatedly construct
candidate solutions; this construction process is
probabilistically guided by heuristic information on the
given problem instance as well as by a shared memory
containing experience gathered by the ants in previous
iteration. ACO has been applied to a broad range of
hard combinatorial problems. Problems are defined in
terms of components and states, which are sequences of

components. Ant Colony Optimization incrementally
generates solutions paths in the space of such
components, adding new components to a state.
Memory is kept of all the observed transitions between
pairs of solution components and a degree of
desirability is associated to each transition depending
on the quality of the solutions in which it occurred so
far. While a new solution is generated, a component y is
included in a state, with a probability that is
proportional to the desirability of the transition between
the last component included in the state and y itself [1].
The main idea is to use the self-organizing principles to
coordinate populations of artificial agents that
collaborate to solve computational problems. Self-
organization is a set of dynamical mechanisms whereby
structures appear at the global level of a system from
interactions among its lower-level components. The
rules specifying the interactions among the system’s
constituent units are executed on the basis of purely
local information, without reference to the global

J. Computer Sci., 5 (5): 380-387, 2009

381

pattern, which is an emergent property of the system
rather than a property imposed upon the system by an
external ordering influence. For example, the emerging
structures in the case of foraging in ants include
spatiotemporally organized networks of pheromone
trails[2-4]. Self-organization relies on four basic
ingredients:

• Positive feedback (amplification) is constituted by

simple behavioral rules that promote the creation of
structures

• Negative feedback counterbalances positive
feedback and helps to stabilize the collective
pattern: It may take the form of saturation,
exhaustion, or competition

• Self-organization relies on the amplification of
fluctuations (random walks, errors, random task-
switching)

• All cases of self-organization rely on multiple
interactions. They should be able to make use of
the results of their own activities as well as others’
activities

 When a given phenomenon is self-organized, it can
usually be characterized by a few key properties[5-7]:

• The creation of spatiotemporal structures in an

initially homogeneous medium. Such structures
include nest architectures, foraging trails, or social
organization

• The possible coexistence of several stable states
(multi stability). Because structures emerge by
amplification of random deviations, any such
deviation can be amplified and the system
converges to one among several possible stable
states, depending on the initial conditions

• The existence of bifurcations when some parameters
are varied. The behavior of a self-organized system
changes dramatically at bifurcations

Automatic Programming is the area in which

Artificial Intelligent and programming come the most
closely together: it refers both to the fully computerized
generation of programs from initial problem
specifications and to automated improvement of
program efficiency. In particular, it is desirable that the
user not be required to pre specify the architecture of
the ultimate solution of his problem. Problem
specification might take the form of an interactive
dialogue, or they might appear in graphical form, or it
may be written in a specific language. Although
automatic programming holds much promise for

problem-solving strategies, the technology has met with
less success in systems and real time programming.
This research is an attempt to find general and standard
Automatic Programming methodology, where a
computer program is evolved to solve problem by using
it’s input output specifications. Problems are defined in
terms of states and transition between them, which are
sequences of transformation. Ant Colony Optimization
incrementally generates solutions paths in the space of
such transformation, adding new components to a state.
Convergence to the optimal final solution is occurred
by accumulating most effective sub-solutions. Fixed
and dynamic input-output specifications are used to
mimic chaotic behavior of real world.

MATERIALS AND METHODS

 Theoretical model is proposed to describe the
behavior of a program in terms of input (s), states and
output (s). It equates what a program means with what
it does. The word “System” in our presentation mean
“Program”. The meaning of system P can be specified
by set of functions from states to states; hence P effects
a transformation:

(P) Xinitial → Xfinal

on a state vector X, which consists of an association of
the variable manipulated by the system and their values.
A system P can be defined as 9- tuples, called Semantic
Finite State Automata (SFSA):

P = (x, X, T, F, Z, I, O, γ, Xinitial)

Where:
x = The set of system variables
X = The set of system states X = {Xinitial,...,Xfinal}
T = The time scale, T = [0, ∞)
F = The set of primitive functions
Z = The state transition function, Z = {(f, X, t): (f,

X, t) Є F×X×T, z (f, X, t) = (•X, •t)}
I = The set of inputs
O = The set of outputs
γ = The readout function
X initial = The initial state of the system, Xinitial Є X

 The sets involved in the definition of P are
arbitrary, except T and F. Time scale T must be some
subset of the set [0, ∞) of nonnegative integer numbers,
while the set of primitive function F must be a subset of
the set CL (FL) of all computable functions in the
language L and sufficient to generate the remainder
functions. To execute system P, transition functions are

J. Computer Sci., 5 (5): 380-387, 2009

382

firing starting from, t = 0. Execution terminate when
t>T. Two features characterize state transition function:

• z (-, -, t) = (Xinitial, 1), if t = 0
• z (f, X, t) = z (f, z (f(t-1), X, t-1)) if t ≠ 0

 The concepts of reusable parameterized subsystems
can be implemented by restricting the transition
functions of the main system, so that it has the ability to
call and pass parameters to one or more such sub-
systems. Suppose we have sub-system •P and main-
system P, then they can be defined by the following 9-
tuples:

P (x, X, T, F, Z, 1, 0, Xinitial, γ)

•P (•x, •X, •T, •F, •Z, •I, •O, •X initial,
•γ)

where, •x⊆x, •X

initial Є X, then there exit *f Є F, z Є Z,
•f, Є F and •z Є •Z and h is a function defined over •Z
with value in •X is defined as follows:

h = •z (•f, •X initial, 1) = Xh, ti

z(*f, X, t) = z(h, X, t) = Xh, t

*f is a special function we call it sub-SFSA function to
distinguish it from other primitive functions in the set F.
Also, we call the sub-system •S, sub-SFSA, to
distinguish it from the main SFSA. Formally, a system
•S is a sub-system of a system S, iff: •x⊆x, •T⊆T, •I⊆I,
•O⊆O, •γ must be the restriction of γ to •O and •F⊆N,
where N is the set of restrictions of F to •T. If (•f, •X, •t) is
an element of •F×•X×•T, then there exists f Є F, such that
the restriction of f to •T is •f and •z (•f, •X, •t) is z (f, X, t).
 The idea of recursive function could be simply
applied with the proposed method using mathematical
induction. The principle of mathematical induction can
be used to construct system as well as proofs. Consider
the following definition of the recursion function fr,
which is highly reminiscent of proofs by mathematical
induction:

fr (X) = X, t = tmax+1 if X = 0 (base of induction)

fr (X) = X initial = X, t = 0 otherwise (induction step)

where, T = [0, tmax].

Input-Output Specification (IOS): An IOS
establishing input-output boundaries of the system. It
describes inputs those the system is designed to handle
and outputs those the system is designed to produce. An
IOS is not a system, but it determines the set of all
systems that satisfy the IOS. It is a 6-tuples:

IOS = (T, I, O, Ti, To, η)

Where:
T = The time scale of IOS, I is the set of inputs
O = A set of outputs
Ti = A set of input trajectories defined over T,

with values in
I, To = A set of output trajectories defined over T,

with values in
O and η = A function defined over Ti whose values are

subset of To

 That is, η matches with each given input trajectories
the set of all output trajectories that might, or could be, or
eligible to be produced by some systems as output,
experiencing the given input trajectory. A system P
satisfies IOS if there is a state X of P and some subset U
not empty of the time scale T of P, such that for every
input trajectory g in Ti, there is an output trajectory h in
To matched with g by η such that the output trajectory
generated by P, started in the state X is:

γ(Z (f(g), X, t) = η(h(t)) For every TєU

Ant colony algorithm for system induction: A
combinatorial optimization problem is a problem
defined over a set C = c1,, cn of basic components. A
subset S of components represents a solution of the
problem; F ⊆ 2C is the subset of feasible solutions, thus
a solution S is feasible if and only if S ∈ F. A cost
function z is defined over the solution domain, z:
2C
→R, the objective being to find a minimum cost

feasible solution S*, i.e., to find S*: S*∈F and
z(S*)≤z(S), ∀S∈F[8]. They move by applying a
stochastic local decision policy based on two
parameters, called trails and attractiveness. By moving,
each ant incrementally constructs a solution to the
problem. The ACO system contains two rules:

• Local pheromone update rule, which applied whilst

constructing solutions
• Global pheromone updating rule, which applied

after all ants construct a solution

 Furthermore, an ACO algorithm includes two more
mechanisms: Trail evaporation and, optionally, daemon
actions. Trail evaporation decreases all trail values over
time, in order to avoid unlimited accumulation of trails
over some component. Daemon actions can be used to
implement centralized actions which cannot be
performed by single ants, such as the invocation of a
local optimization procedure, or the update of global
information to be used to decide whether to bias the
search process from a non-local perspective[1,10]

J. Computer Sci., 5 (5): 380-387, 2009

383

 At each step, each ant computes a set of feasible
expansions to its current state and moves to one of these
in probability. The probability distribution is specified
as follows. For ant k, the probability of moving from
state t to state n depends on the combination of two
values[9,11,12]:

• The attractiveness of the move, as computed by

some heuristic indicating the priori desirability of
that move

• The trail level of the move, indicating how
proficient it has been in the past to make that
particular move: It represents therefore an a
posteriori indication of the desirability of that move

 In the proposed algorithm a colony of ants moves
through system states X = {Xinitial,...,Xfinal}. They move
by applying the transition function Z, which is based on
two parameters: d trails values and input-output
specifications of the problem. By moving from state to
state, each ant incrementally constructs a solution to the
problem, in other words construct the transformation:

(S) Xinitial →X final

 In the initial iteration of ACO algorithm, all ant
begin from X initial and use input-output specification
only to move to each possible system states, as shown
in Fig. 1. The number of system states in ACO depends
on the number of system variables: 2x. In the rest
iterations, each ant use, it’s memory as well as input-
output specifications to move to next state(may be any
of 2x states including itself, i.e., loop state, as shown in
Fig. 2 and 3). System states change by applying z ЄZ,
where: z (f, X, t) = (•X, •t). These mean when ant
move, system’s state and time are changed and outputs
are produced (as the type of readout function), if any.
During ants’ movements, trails are always modified
toward satisfying input-output specifications. When an
ant complete a solution, or during the construction
phase, it evaluate the solution and modify the trail value
on the components used in its solution. This pheromone
information will direct the search of the future ants.

Fig. 1: Initial iteration ACO algorithm

In Fig. 2 and 3, red line denote the currently selected
transition, blue lines denote the most efficient path
previously stored in the memory of system, while black
lines denote unselected poor transitions. Thus, at each
iteration, an ant select only one transition (red) and try
to append it with previously constructed path. The
algorithm is defined as follow:

ACO algorithm: An ACO algorithm consists of two
main parts: initialization and a main loop.

Initialize:

• Set initial parameters of the system: Variable,

states, function, input, output, input trajectory,
output trajectory

• Set initial pheromone trails value
• The current state of each ant is: X initial, with empty

memory

Fig. 2: After n iterations of ACO algorithm

Fig. 3: Final solution of ACO algorithm

J. Computer Sci., 5 (5): 380-387, 2009

384

While termination conditions not meet do:

• Construct ant solution: Each ant constructs a path

by successively applying the transition function
zЄZ. The probability of moving from state to state
depend on: Data trajectory sets (as the
attractiveness of the move) and the trail level of the
move.

• Apply local search.
• Best tour check: For each ant, construct data

trajectory sets tour and compare to the best
trajectory sets, by using the function:

 γ (Z (f (g), X, t) = η(h(t))

 If there is an improvement, update it.
• Update trails:

• Evaporate a fixed proportion of the pheromone
on each road

• For each ant perform the “ant-cycle”
pheromone update

• Reinforce the best tour with a set number of
“elitist ants” performing the “ant-cycle

End while:

 The ACO meta-heuristic can be applied to discrete
optimization problems characterized as follows:

• C = {c1; c2; : : : ; cNC} is a finite set of components

• L = {l cicj│(ci; cj) Є ~ C}; |L|≤N2
C is a finite set

of possible connections/transitions among the
elements of ~ C, where ~ C is a subset of the
Cartesian product C×C

• Jcicj ≡ J(lcicj; t) is a connection cost function
associated to each lcicj Є L, possibly parameterized
by some time measure t

• Ω ≡ Ω(C; L; t) is a finite set of constraints assigned
over the elements of C and L

• s = <ci, cj,….., ck,……> is a sequence over the
elements of C (or, equivalently, of L). A sequence
s is also called a state of the problem. If S is the set
of all possible sequences, the set ~ S of all the
(sub) sequences that are feasible with respect to the
constraints Ω(C; L; t), is a subset of S. The
elements in ~ S define the problem’s feasible
states. The length of a sequence s, that is, the
number of components in the sequence, is
expressed by |s|

• Given two states s1 and s2 a neighborhood structure
is defined as follows: the state s2 is said to be a
neighbor of s1 if both s1 and s2 are in S and the state

s2 can be reached from s1 in one logical step (that
is, if c1 is the last component in the sequence
determining the state s1, it must exists c2 2 C such
that lc1c2 Є L and s2 ≡ <s1, c2>). The neighborhood
of a state s is denoted by Ns

• Ψ is a solution if it is an element of ~S and satisfies
all the problem’s requirements. A multi-dimensional
solution is a solution defined in terms of multiple
distinct sequences over the elements of C

• JΨ (L, t) is a cost associated to each solution Ψ.
JΨ(L, t) is a function of all the costs Jcicj of all the
connections belonging to the solution Ψ

Ants of the colony have the following properties:

• An ant searches for minimum cost feasible

solutions^J Ψ = minΨ^J Ψ (L, t)
• An ant k has a memory Mk that it can use to store

information on the path it followed so far. Memory
can be used to build feasible solutions, to evaluate
the solution found and to retrace the path backward

• An ant k in state sr = <sr-1, i> can move to any node
j in its feasible neighborhood Nk

i, defined as
Nk

i = {j| (j Є Ni)^(<sr, j> Є ~S)}
• An ant k can be assigned a start state sk

s and one or
more termination conditions ek. Usually, the start
state is expressed as a unit length sequence, that is,
a single component

• Ants start from the start state and move to feasible
neighbor states, building the solution in an
incremental way. The construction procedure stops
when for at least one of the termination conditions
ek is satisfied

• An ant k located on node i can move to a node j
chosen in Nki. The move is selected applying a
probabilistic decision rule

The ants’ probabilistic decision rule is a function of:

• The values stored in a node local data structure

A i = [aij] called ant-routing table, obtained by a
functional composition of node locally available
pheromone trails and heuristic values

• The ant’s private memory storing its past history
• The problem constraints
• When moving from node i to neighbor node j the

ant can update the pheromone trail זij on the arc (i,
j). This is called online step-by-step pheromone
update

 Once built a solution, the ant can retrace the same
path backward and update the pheromone trails on the

J. Computer Sci., 5 (5): 380-387, 2009

385

traverse arcs. This is called online delayed pheromone
update.

RESULT

 System behavior can be represented as transition
graphs because it is easier to understand graphical
notations; also ant colony algorithm is clearly
understood. Such graph is a collection of four things:

• A finite set of states X, to represent the graph nods
• The sets of inputs I and outputs O
• The set N = ((f, t): (f, t) Є F×T)
• A transition table that shows for each state X and

each pair (f, t) Є N. what output (if any) are
produced and what states are reached next

 Every state must have exactly one outgoing edge
for each possible pair. Edge traveling is determined by
the transition table: While traveling on edges; system
outputs (if any) must be produced by applying the read
out function γ. To produce efficient systems the number
of it’s states can be reduced and thus reduces it’s time T.
To perform state minimization, assigns the same time t,
to all consecutive transitions iff they all have same effect
on the state vector X. Only consecutive transitions are
taken into consideration, so as to keep system behaviors
unchanged. Figure 5 shows the minimized State
Transition Graph of that showed in Fig. 4.

Fig. 4: State Transition Graph of the example system,

where T = [1,7] and No. of states = 5

Fig. 5: Minimized STG of graph in Fig. 2, where

T = [1,6] and No. of states = 4

The State Minimization Algorithm:

• Construct a subset Π of the state vector Xj> = 0

(for j = 0, Xj = Xinitial). Π Consist of all entries in
the state vector Xj, which occurs as arguments in
the current executed function fi, i> = 1, thus Π⊆X j.

• Construct a new subset Π new, it will consists of all
entries in the state vector Xj+1 which occurs as
arguments in the next executed function fi+1,
Πnew⊆X j+1. Note that each subset is either an empty
set or consists only of program variable

• If Π∩Πnew, = empty set, then delete Xj from the set
X. All edges which have Xj as an end node are now
redirected to Xj+1, to reflect the change in states

• If Xj +1 = X final, go to final step
• Π = Π new, go to second step
• Repeat above steps until non-empty set are

produced from the intersection of step 3 for a
complete iteration.

Example: Assume we our system is defined as
following:

X = {X initial, x1, x2, x3, x4},
T = [0, 7], F = {f1, f2, f3, f4}
I = {i}, O = {O1, O2, O3, O4}
Y = Mealy readout function
Z = {z0(-, -, 0) = Xinitial, 1
z1

 (f1, Xinitial, 1) = X1, 2
z2(f2, X1, 2) = X1, n
z3 (f3, X1, 3) = X1, 4/O1

z4 (f4, X1, 4) = X2, 5
z5 (f5, X2, 5) = X3, 6
z6 (f6, X3, 6) = X4, 7
z7 (f7, X4, 7) = X4, 8/O2, O3, O4}

DISSCUSION

 It clear that the evolutionary process of our system
is highly depends on input-output specifications, more
precisely input and output trajectory sets and η
function. Figure 6, specify clearly that system with high
trajectory information converge to the solution in less
time than these populations with little trajectory
information. From the Fig. 6, little data trajectory
information always may lead to un convergence state,
(maximum iteration number allowed her is 10000). Two
types of trajectory sets are used: Fixed and dynamic sets.
Work with fixed system specification is usually easy
since ACO algorithm is only focus on selecting
transitions which highly satisfy these specification.

J. Computer Sci., 5 (5): 380-387, 2009

386

Fig. 6: Converge time versus trajectory .information of

the problem

Fig. 7: Variant converge for the same problem, but

different initial trajectory sets

Unfortunately, when we deal with complex systems and
real live problem, strong feedback (positive as well as
negative) and many interactions exist: i.e., chaotic
behavior. Thus, we need to find a way to control chaos,
to understand and predict what may happen long term.
In these cases input and output specifications are self
organized, which mean that trajectory data are collected
and enhanced over time, when evolutionary process
runs again and again. The algorithm begins with initial
version of input and output trajectory sets and η
function. Then change them over time to reflect input-
output characteristic of the required system. Therefore,
main problem will appear if the system has little fixed
trajectory information, from experienced work we note
that problems with self-modified trajectory information
are difficult and take more time to converge, so the
maximum iteration number was scaled up. Although
trajectory data are changed over time, but by
experiment, it still sensitive to initial set. This is one of
the most important characteristic of a chaotic system
(sensitivity to the initial conditions: “butterfly effect”).
As shown in Fig. 7, for the same problem, when initial
configurations of data trajectory sets are changed, there
are big changes in the behaviors of ACO algorithm,
even that they are small variations.

CONCLUSION

• The collective behavior emerging from the

interaction of the different agents has proved

effective in solving combinational optimization
problems. System induction by using such
interaction is more effect than induction based on
formal specifications

• A colony of ants moves through system states X, by
applying the transition function Z. These movements
are based on two parameters: Trails and input-output
specifications of the problem, i.e., data trajectory
sets. By moving, each ant incrementally constructs a
solution to the problem. When an ant complete
solution, or during the construction phase, the ant
evaluates the solution and modifies the trail value on
the components used in its solution

• An artificial ant builds a solution for system
induction by traversing the fully connected
construction graph, represented as STG, G (C, L),
where C is a set of vertices and L is a set of edges.
Since Ant colony algorithm may produce
redundant states in the graph, its better to minimize
such graphs to enhance the behavior of the
inducted system

• The proposed algorithm works with fixed and
dynamic input-output specification. However, it
work better with fixed specification. Thus, main
problem will appeared in solving problem with little
input-output specifications. More efficient learning
algorithm, such as neural network, my be used to
enhance the work. Further more, chaos theory,
especially “butterfly effect”, can be used to control
the sensitivity to initial configuration of trajectory
information (in dynamic specification cases)

REFERENCES

1. Dorigo, M., M. Birattari and T. Stitzle, 2006. Ant

Colony optimization: Artificial ants as a
computational intelligence technique. IEEE.
Comput. Intell. Mag., 1: 28-39.
http://www.citeulike.org/user/rizzoli/article/1145653

2. Dorigo, M., G. Di Caro and L.M. Gambardella,
1999. Ant algorithm for discrete optimization.
Artifi. Life, 5: 137-172.
http://portal.acm.org/citation.cfm?id=338955

3. Holland, J.H., 1992. Adaptation in Natural and
Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial
Intelligence. 2nd Edn., The MIT Press, USA.,
ISBN: 10: 0262581116, pp: 228.

4. George Rzevski and Petr Skobelev, 2007.
Emergent intelligence in large scale multi- systems.
Int. J. Educ. Inform. Technol., 1: 64-64.
http://www.naun.org/journals/educationinformatio
n/eit-11.pdf

J. Computer Sci., 5 (5): 380-387, 2009

387

5. Wooldridge, M.J., 2002. Multi Agent Systems.
John Wiley Sons Ltd., USA., pp: 225-233.

6. Jennings, N.R. and Wooldeidge, M.J., 2002. Agent
Technology. UNICOM, pp: 139-203.

7. Odell, J., H.V.D. Parunak and B. Bauer, 2001.
Representing agent interaction protocols in ML.
Proceeding of the 1st International Workshop
Agent-Oriented Software Engineering, June 10-10,
Springer Berlin, Heidelberg, pp: 201-218.

8. Nada, AL-salami, M.A. and S.G. Yaseen, 2008.
Ant colony optimization. Int. J. Comput. Sci.
Network Secur., 8: 351-357.
http://search.ijcsns.org/02_search/02_search_03.ph
p?number=200806049

9. Dorigo, M. and G. Di Caro, 1999. The Ant Colony
Optimization Meta-Heuristic. In: New Ideas in
Optimization, D. Corne et al. (Eds.). McGraw Hill,
London, UK., pp: 11-32.

10. Dorigo, M., V. Maniezzo and A. Colorni, 1996.
The ant system: Optimization by a colony of
cooperating agents. IEEE. Trans. Syst. Man
Cybernet., 26: 29-41. DOI: 10.1109/3477.484436

11. Stephen, G. and M. Dras, 2005. Understanding the
pheromone system within ant colony optimization.
Lecture Notes Comput. Sci., 3809: 786-789. DOI:
10.1007/11589990_81

12. Dorigo, M. and T. Stützle, 2002. The Ant Colony
Optimization Metaheuristic: Algorithms,
Applications and Advances. In: Handbook of
Metaheuristics, Glover, F. and G. Kochenberger
(Eds.). Kluwer Academic Publishers, ISBN: 978-0-
306-48056-0, pp: 250-285.

