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Abstract: Problem statement: An accurate knowledge of geographic positions of sonobuoys is 
critical for the conduct of antisubmarine warfare operations and detected target localization. Deployed 
from an airborne platform or a surface vessel, arrays of sonobuoys could be used to efficiently track 
and localize submarines. Lastly, some sonobuoys were being equipped with GPS for improving system 
accuracy and potentially allowing networked Sonobuoy positioning. However, the computation of the 
range using the propagation loss profile and the data of one sonobuoy usually leads to inaccurate target 
localization due to several effects and uncertainties. It was, alternatively, reported that if the target is 
within the detection rage of two or more sonobuoys, greatly improved target localization can be 
achieved. Approach: Aim of this research was to investigate the feasibility of fusing data from a 
distributed field of GPS sonobuoys to create an Artificial Intelligence (AI) based model for the error of 
the range computation in case of the target being detected by only one sonobuoy. Proposed module was 
designed utilizing Adaptive Neuron-Fuzzy Inference Systems (ANFIS) to estimate the range error 
associated with the computation using the propagation loss profile when the target is within the 
detection range of only one sonobuoy. The architecture of the proposed ANFIS system had two unique 
features. First was the real-time cross-validation applied during the update (training) procedure of the 
ANFIS-based module while the target was detected by two sonobuoys and the range was computed. 
Second feature was the use of non-overlapping and moving window for the real-time implementation of 
the ANFIS-based data fusion module. Results: Performance of the proposed system was examined 
with simulation data considering different scenarios for both the array of GPS sonobuoys and the 
target. Results showed that the corrected positioning by one sonobuoy is completely following the 
positioning by two sonobuoys over the entire experiment with the error in between evaluated to have 
RMSE value of 0.004 Nm and 0.008 for both scenarios. Conclusion: These results revealed that with 
aided from the proposed ANFIS model; significant enhancements to the underwater target tracking 
accuracy in cases of single sonobuoy detection could be achieved and thus maintaining consistent 
levels of accuracy over the whole tracking mission. 
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INTRODUCTION 

 
 The problem of target detection and tracking in the 
ocean environment has attracted considerable attention 
in the past two decades due to its importance in 
military, oceanographic and fisheries applications[1]. 
Underwater target localization is mainly based on the 
fact that ships and submarines, like any other vehicles, 
require a large amount of energy for propulsion and 
for powering mechanical and electronic equipment. 
Some of the energy radiates outwards as acoustic 

energy in the form of both broadband and narrowband 
signal[2]. 
 
Sonobuoys: A sonobuoy is a free floating and 
disposable sensor system. The sonobuoy uses acoustic 
sensors in the water column connected by wire to a 
floating part on the surface of the ocean to listen to 
submarine radiated noise or sonar echoes. An 
electromagnetic transmitter in the floating part relays 
the acoustic signals back to an airplane or other 
receiving platform for further processing. If the 
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Sonobuoy contains a magnetic compass and a 
beamformer to localize the acoustic signal in azimuth, 
then the submarine’s bearing can be determined relative 
to the sonobuoy’s location. 
 A sonobuoy can be deployed from an airborne 
platform, a rotary-wing aircraft, or a surface vessel. 
Two general types of sonobuoys are used for target 
tracking; passive and active sonobuoys. Passive 
sonobuoys quietly listen to the acoustic signal from a 
target. Active sonobuoys, on the other hand, emit a 
sound pulse (ping) to generate an echo that bounces 
back from the target. In this study we offer a data fusion 
module for an array of passive sonobuoys. 
 
GPS sonobuoys: An accurate knowledge of geographic 
positions of deployed sonobuoys is critical for the 
conduct of coordinated antisubmarine warfare (ASW) 
operations, high-altitude ASW and detected target 
localization. This leads to introduction of Global 
Positioning Systems (GPS) to the sonobuoys. 
Previously, the operation depended on a monitoring 
aircraft to perform a Mark On Top (MOT), which is 
time consuming, provides insufficient accuracy, 
increases the vulnerability of the aircraft and generally 
provides a tactical rather than a geographic position for 
the target. Sonobuoys equipped with GPS for 
positioning are known as GPS sonobuoys[3]. 
 
Target localization: At the receiver unit of the 
Sonobuoy, an omnidirectional element measures 
incident acoustic energy from any direction, which can 
be used according to the chart in Fig. 1 to determine the 
approximate  range  of  the target. The graph in Fig. 1 
shows the propagation loss (in dB) as a function of 
range from the source for specific frequency and water 
environment such as temperature and salinity. The 
Figure Of Merit (FOM) is obtained by subtracting 
ambient noise from the signal level (received by the 
omnidirectional sensor of the sonobuoy). When the 
value of the FOM is projected to the propagation loss 
profile of Fig. 1, the corresponding range of the target 
can be computed.  
 The bearing of the target (measured from the 
North) is determined using a cruciform shaped assembly 
that is composed of four ceramic discs, the orientation 
of which results in a beam pattern for each pair of discs 
similar to a dipole. These beam patterns are referred to 
as the sine and cosine lobes and are referenced to 
Magnetic North[1,2]. 
 The computation of the range using the propagation 
loss profile and the data of one sonobuoy usually leads 
to inaccurate target localization due to several effects 
and uncertainties. It was, alternatively, reported that if 

the target is within the detection rage of two or more 
sonobuoys, greatly improved target localization can be 
achieved. Figure 2 and Eq. 1 demonstrates how the 
target can be accurately localized using the bearing 
information (which can be accurately determined using 
some signal processing and spectral analysis 
techniques[1,2]) and the known distance between two 
sonobuoys, which can be accurately determined given 
the sonobuoys are equipped with GPS[4]: 
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Where: 
d1 and d2 = The range of the target with respect to 

sonobuoy SB1 and sonobuoy SB2, 
respectively 

1θ  and 2θ  = The bearing of the target with respect to 

SB1 and SB2, respectively 
α = The angle from the true north to the line 

between the two sonobuoys 
 

 
 
Fig. 1: The propagation loss profile 
 

 
 
Fig. 2: Target localization using two sonobuoys  
 
Problem statement: In real underwater target tracking 
procedures, it is not common for a target to be located 



J. Computer Sci., 5 (3): 199-206, 2009 
 

201 

within the detection rage of two or more sonobuoys. 
Thus the localization accuracy continues to be relatively 
poor when the target is within the detection range of a 
single sonobuoy. This research is investigating a model 
for the range error associated with the computation 
when using a single sonobuoy and with tuning the 
model when the target comes into the detection range of 
two or more sonobuoys.  
 
Objectives: The main aim of this research is to create 
an Artificial Intelligence (AI) based model for the error 
of the range computation in case of the target being 
detected by only one sonobuoy. The neuro-fuzzy 
models will be employed in this study combining the 
capabilities of fuzzy systems in dealing with high levels 
of uncertainty in the input domain and the advantages of 
neural computation.  
 
Neuro-fuzzy systems: Fuzzy systems have been 
widely accepted as general approximators and were 
successfully implemented to learn relationships[5]. 
They will be adopted in this study to determine the 
error in the computation of target range when it is 
detected by only one GPS Sonobuoy. While there are 
various techniques to implement approximate fuzzy 
reasoning, most of these techniques are based upon 
inductive learning from examples by building fuzzy 
rules derived from input/output data tuples. Adaptive 
Neuro-Fuzzy Inference System (ANFIS) was proposed 
as the tool for real time implementation. While ANFIS 
has capabilities similar to other fuzzy systems in 
considering uncertainties in the input domains, it has 
the advantage over other models for being based on 
neural computation (combines backpropagation and 
least mean square optimization algorithms). ANFIS 
architecture is based on the original Tagaki-Sugeno-
Kang (TSK) fuzzy inference system[6]. When an 
adequate number of data tuples exist, learning can be 
achieved by tuning the membership functions using 
gradient descent method to determine the premise 
parameters, along with applying the least mean square 
method to modify the consequent parameters so that 
the model output matches the system output with a 
minimum root mean square error. 
 The R-δR ANFIS-based module was designed to 
work in real-time to fuse the range computation made 
using one sonobuoy (R1S) with that of two sonobuoys 
(R2S), estimates the range error δR1s and enhances the 
target tracking operations. Two inputs (R1S and time) 
and one output (δR1s) were used in the R-δR module. 

Schematic representation of the proposed ANFIS 
module for data fusion is shown in Fig. 3.  
 The number and shape of membership function are 
predefined. However, the original spread and overlap of 
the membership functions is defined by using fuzzy 
clustering algorithm. The membership function 
parameters are then tuned during the learning process. 
The fuzzy Norm operator (Π) (minimum or product) is 
operated at the second layer of ANFIS and a normalized 
firing strength iW  is computed in the third layer for 

each (i) consequent[5,6]. The system output (i.e., (δR1s) is 
computed on the basis of TSK fuzzy system as follows: 
 
if x is A1 and y is B1, then f1 = p1 x + q1 y + r1   (3)  
 
if x is A2 and y is B2, then f2 = p2 x + q2 y + r2  (4) 
 

i iR w fδ =∑  

 (5) 
 
where, the linear parameter pi, qi and ri are the 
consequent parameters determined by the fuzzy 
system to relate the input fuzzy sets to the output 
fuzzy sets. The output (δR1s) in the fifth layer is the 
sum of the weighted outputs of all the fuzzy rules as in 
Eq. 2. While training ANFIS, the consequent 
parameters {pi, qi, ri}, are determined using means of 
least squares. If the predicted mean square error does 
not meet the required error, ANFIS module tunes the 
parameters describing the membership functions for 
each input parameter until the training target is 
achieved.  
 

 
 
Fig. 3: ANFIS architecture for Sonobuoys range error 

modeling  
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MATERIALS AND METHODS 
 
Model structure: Our method is based on the fact that 
target localization using two or more sonobuoys can 
provide much better accuracy than the conventional 
method relying on only one sonobuoy. The ANFIS 
module will be tuned (updated or trained) if the target is 
within the detection range of at least 2 sonobuoys as 
shown on Fig. 4a. The ANFIS module will be switched 
into prediction mode (Fig. 4b) when the target is within 
the detection range of only one sonobuoy. As shown in 
Fig. 4a, the range (R1S) and time (t) are the inputs to the 
ANFIS module while the range error (δR1s) is the 
module output. The error estimated by the ANFIS 
module (δR1s) is then compared to the error between 
R1S and R2S (δR1s|2s). The difference between δR1s and 
δR1s|2s is the estimation error (∆(δR)) of the ANFIS 
module. In order to minimize this error, the ANFIS 
module is trained to update the rule-base parameters 
that describe the fuzzy system premises and 
consequences, such that the Root Mean Square 
Estimation Error (RMSE) is minimized.  
 On the other hand, when the target becomes in the 
detection range of only one sonobuoy, the system is 
switched to the prediction mode where the ANFIS 
module is used to predict the error δR1s using the latest 
ANFIS parameters obtained while the target is detected 
by two sonobuoys as shown in Fig. 4b. The error is then 
removed from the corresponding range computation R1S 
to get the corrected range error. 
 The system architecture of the proposed module is 
designed to estimate the range error associated with the 
computation using the propagation loss profile when the 
target is within the detection range of only one 
sonobuoy. The proposed system has two unique 
features. The first is the real-time cross-validation 
applied during the update (training) procedure of the 
ANFIS-based module while the target is detected by 
two sonobuoys and the range is computed as per Eq. 1. 
The second feature is the use of non-overlapping and 
moving window for the real-time implementation of the 
ANFIS-based data fusion module. The non-overlapping 
moving window does not consider any redundancy in 
the information acquired from the sonobuoys. In other 
words, the data window moves in real-time with steps 
equal to the window size. 
 
Cross validation: Several methods for implementing 
the cross-validation theory were proposed in the 
literature[7], however, the essence of all these methods is 
similar. We start by dividing the whole data into g 
equal-sized groups and conduct g separate operations. 
 

 
(a) 

 

 
(b) 

 
Fig. 4: Update and prediction mode of operations for 

range fusion of array of GPS sonobuoys (a): 
Update mode (b): Prediction mode 

 
Each group is omitted in turn from the data, the model 
is fitted to the remaining (g-1) groups and the 
predictions are estimated for the omitted group.  
 It is worth noting that the efficiency of any cross-
validation method is classified into two categories: 
accuracy and stability. While accuracy of the method is 
usually represented by the error of the algorithm on the 
training set, instability of the method represents its 
sensitivity to noise in the input data. Due to its 
simplicity and suitability for real time implementation, 
the hold out cross validation method is adopted in this 
study. The data set is partitioned into two sets, called 
the training set and the testing set without any particular 
choice of the partition. The function approximator is 
trained to fit a function using the training set only. Then 
the function approximate is used to predict the output 
values for the data in the testing set. While this method 
has the advantage of not being computationally 
expensive, it might yield relatively high variance[7]. 
 During the update procedure, we may experience 
two cases. When maximizing the accuracy (minimizing 
RMSE on the training set) was tried, it was found that 
the system’s stability tends to decrease (relatively 
higher RMSE value during cross validation). On the 
other hand, when trying to maximize the system’s 
stability, the accuracy tends to decrease (relatively 
higher RMSE value during training). If the goal is to 
minimize the cross-validation error, then a balance 
between the conflicting demands of accuracy and 
stability must be reached. In this study, for a given set 
of ANFIS parameters, this balance was obtained by 
minimizing the RMSE on the training set to 10-4m and 
achieving the best possible stability, which was 
obtained by making the length of the cross-validation 
part  of  the  data  equal  to  1/5  of  the  window  size. 
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Fig. 5: Time line index for the model update and 

prediction sequences 
 
It should be noted that the updating stage is divided into 
two consequent parts namely, training and cross-
validation sessions. Figure 5 shows the time line index 
for the sequences of the two stages. 
 As shown in Fig. 5 that during the update stage 
(training), a hold-out cross-validation algorithm is used 
to ensure that the ANFIS-based module has 
appropriately captured the system dynamics. The choice 
of the hold-out method is attributed to its relative 
stability and low computational time requirements 
which is a major challenge in real-time applications. 
The system automation based on training and cross-
validation during the updating stage. A major challenge 
in applying the cross-validation approach is the need to 
select the length of the testing data set (N) utilized. It is 
important for this selection to be representative for 
features of the error signal.  
 Different lengths of the cross-validation data set 
ranging from one tenth to one third of the window size 
were examined. We determined that choosing one third 
of the window size lead to short data set for the training 
process that may cause difficulty to reach the error goal. 
While choosing one tenth of window size lead to 
weakness in detecting the features of the expected data 
set in prediction stage since it leads to relatively short 
data set for the cross validation procedure. Therefore, it 
was decided to select the length of data set for cross-
validation utilized in our study to be one-fifth of the 
window size Fig. 5. 
 

RESULTS 
 
 In order to examine the performance of the 
proposed method and the ANFIS module, we simulated 
two target tracking scenarios assuming a submarine 
moving at a speed of 5 m sec−1. The first scenario 
assumed the sonobuoys were deployed as 4×4 array 
(Fig. 6) while the second assumes that the sonobuoys 
were deployed as 4×2 array (Fig. 7). For each scenario 
we considered two cases. The first case assumed the 
distance between any two sonobuoys to be equal to the 
sonobuoy detection range while the second case 
considered   a  distance    of   1.2   the  detection  range. 

 

 
 
Fig. 6: Deployment scenario 1-4×4 array of sonobuoys 
 
   

 
 
Fig. 7: Deployment scenario 2-4×2 array of sonobuoys 
 
 In order to examine the effectiveness of the ANFIS 
module in providing reliable prediction of the target 
range, we added uncertainties to the simulated data.The 
range determined when the target was detected with one 
Sonobuoy was simulated with relatively high level of 
uncertainty (0.8 Nm) while the range determined when 
the target was detected with two sonobuoys was 
simulated with lower level of uncertainty equivalent to 
0.1 Nm. The unit Nm corresponds to Nautical Mile, 
which is equivalent to 1852 m. 
 For each of the above cases, we first studied the 
performance for the whole trajectory considering: (1) 
Only one sonobuoy detecting the target; (2) Two 
sonobuoys detecting the target. We compare the result 
of each of these two situations with respect to the true 
trajectory. This is followed by introducing several 
periods along the same trajectory during which the 
target was only detected by one sonobuoy and we 
examine the performance of the ANFIS module in 
providing reliable prediction of the target position. The 
assumption of having the position obtained from 2 
sonobuoys available for the whole trajectory is just to 
be used for examining the accuracy of the ANFIS 
prediction. In general, once the ANFIS module was first 
generated and updated within one scenario, it can be 
further utilized in different scenarios involving different 
array of GPS sonobuoys even if there is only one 
sonobuoy detecting the target.   
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(a) 

 

 
(b) 

 
Fig. 8: Target trajectory-scenario 1. (a): Case 1 (b): 

Case 2 
 
 Figure 8 shows the trajectory of the target for each 
cases of scenario 1 of sonobuoy deployment (shown 
earlier in Fig. 6). In Fig. 8a, we were assuming that the 
target was moving within the detection range of at least 
two sonobuoys in order to examine its benefits over the 
case of single sonobuoy detection, while in Fig. 8b the 
target was moving within 1.2 the detection range of the 
sonobuoy. It can be shown from Fig. 8a and b that the 
corrected positioning by one sonobuoy is completely 
following the positioning by two sonobuoys over the 
entire experiment with the error in between evaluated to 
have RMSE value of 0.004 Nm for case 1 and 0.008 for 
case 2. This is due to the fact that once the target is 
moving within a range higher than the detection range 
for sonobuoy several disturbances and different trends 
during motion could be occurred and experienced. In 
fact, the proposed ANFIS module was able to prevent 
the error growth of positioning the range based on 
single sonobuoy that reached 200 Nm errors while 
operating without update in case single sonobuoy was 
detecting the target.  

 
(a) 

 

 
(b) 

 
Fig. 9: Target trajectory-scenario 2. (a): Case 1 (b): 

Case 2 
 
 Moreover, the proposed ANFIS module was 
examined over the scenario 2 for both cases of target 
moving. Figure 9a and b shows the model performance 
during the update mode. It can be observed that 
although the target detection by single sonobuoy was 
more erroneous than the first scenario, the model was 
capable of providing the same performance for both 
cases of detection ranges.   
 In general, as long as the target is within the 
detection range of two or more sonobuoys, the ANFIS 
update procedure tunes the parameters of the ANFIS 
module in order to mimic the latest dynamics of the 
target. Once the target falls within the detection range of 
only one sonobuoy, the ANFIS module uses the latest 
updated parameters and operates in the prediction 
mode. For each of the scenarios and the cases simulated 
in this study, we intentionally introduced several 
regions within each trajectory during which only one 
sonobuoy is detecting the target. This way we were able 
to examine the ANFIS prediction capabilities. Figure 
10-13 shows the performance of the proposed system  
during  periods  of  single  sonobuoy  detection. 
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Fig. 10: ANFIS prediction capability during periods of 

single sonobuoy detection-scenario 1-case 1 
 

 
 
Fig. 11: ANFIS prediction capability during periods of 

single sonobuoy detection-scenario 1-case 2 
 
It can be depicted that, in general, the ANFIS module 
was able to maintain the target tracking accuracy during 
periods of single sonobuoy detection to that when the 
target falling in the detection age of two sonobuoys. In 
other words, the proposed method provides consistent 
underwater target tracking accuracy regardless of the 
number of sonobuoys detecting the target. 
 In fact, for scenario 1 (Fig. 10), we have determined 
that the ANFIS-based data fusion module was able to 
predict the target position with errors ranging between 
0.004 Nm0 and 0.02 Nm while the distance between the 
sonobuoys equivalent to the detection range. This 
accuracy level was reduced when the distance between 
the sonobuoys became 20% larger (1.2 the detection 
range) where the ANFIS-based module gave errors of 
0.01-0.1 Nm as can be shown in Fig. 11.  

 
 
Fig. 12: ANFIS prediction capability during periods of 

single sonobuoy detection -scenario 2-case 1 
 

 
 
Fig. 13: ANFIS prediction capability during periods of 

single sonobuoy detection -scenario 2-case 2 
 
 For scenario 2 (Fig. 12 and 13), the same accuracy 
level of approximately 0.02 Nm can be noticed in the two 
cases of different distances between the sonobuoys. The 
main reason of this is the complexity in tracking the target 
while the sonobuoys are deployed in 4×2 array. 
 

DISCUSSION 
 
 The ANFIS-based module suggested in this study 
solved a major problem in underwater target tracking 
where the target falls in the detection range of only one 
Sonobuoy. This results in large localization errors and 
jeopardizes the overall system accuracy especially in 
cases of maneuvering target and low SNR. The 
proposed module was able to benefit from the capability 
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of ANFIS in establishing an empirical model of the 
range errors in challenging underwater environments. 
Real time operation of the suggested module was also 
approached in this study by introducing windowing 
training approaches. As results indicated, the overall 
system performance can be greatly enhanced and the 
tracking accuracy can be improved.  
 

CONCLUSION 
 
 This study suggests the use of ANFIS based data 
fusion module for real-time integration of array of GPS 
sonobuoys encompassing two main features. The first is 
employing real-time cross-validation during the update 
stage, when the targets falls within the detection range 
of more than 2 GPS sonobuoys. The second feature is 
the utilization of non-overlapping moving window 
technique instead of sliding window technique. The 
proposed module was examined with realistic 
simulation data of two scenarios and with considering 
two cases of different distance between the sonobuoys. 
Results showed that the proposed ANFIS module could 
significantly improve target tracking accuracy in cases 
of single sonobuoy detection, thus maintaining 
consistent levels of accuracy over the whole tracking 
mission. 
 

ACKNOWLEDGMENT 
 
 This research is funded in part by (1): The 
Department of National Defense through the Aerospace 
Engineering Research Advisory Committee and by the 
Natural Science and Engineering Research Council-
NSERC for second and third researchers (2): The Smart 
Engineering System, University Kebangsaan Malaysia, 
Malaysia. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 
1. Burdic, W.S., 1984. Underwater Acoustic System 

Analysis. 2nd Edn., Prentice Hall, Englewood 
Cliffs, New Jersey, USA., ISBN: 0139367160, pp: 445.  

2.  Korenberg, M.J., 1989. A robust orthogonal 
algorithm for system identification and time-series 
analysis. Biol. Cybernet., 60: 267-276. DOI: 
10.1007/BF00204124 

3.  Whitehouse, H.J., J.M. Alsupa, A. Leese de Escobar 
and S.F. Sullivan, 2004. A GPS sonobuoy 
localization system. Proceeding of the IEEE 
Symposium on Position Location and Navigation, 
April 26-29, IEEE Xplore, USA., pp: 414-417.
 http://ieeexplore.ieee.org/ielx5/9147/29049/013090
24.pdf?tp=  

4.  Karim, S., M. Mohsen and B. Mohammadreza, 
2008. Centralized and decentralized process and 
sensor fault monitoring using data fusion based on 
adaptive extended Kalman filter algorithm. Measur. 
J. Int. Measure. Confederat., 41: 1059-1076. DOI: 
10.1016/J.MEASUREMENT.2008.02.009  

5.  Ross, T.J., 2004. Fuzzy Logic with Engineering 
Applications. 2nd Edn., John Wiley and Sons Ltd., 
West Sussex, England,  ISBN: 10: 0470860758, 
pp: 650. 

6.  Roger Jang, J.S., 1993. ANFIS: Adaptive-network-
based fuzzy inference system. IEEE Trans. Syst. 
Man Cybernet., 23: 665-685. 
http://ieeexplore.ieee.org/search/wrapper.jsp?arnu
mber=256541  

7.  Prabir, B., C. Edmond and N. Deborah, 1994. A 
cross-validatory method for dependent data. 
Biometrika, 81: 351-358. DOI: 
10.1093/biomet/81.2.351 


