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Abstract: Problem statement: To calculate sensitivity functions for a large dimension control system 
using one processor, it takes huge time to find the unknowns vectors for a linear system, which 
represents the mathematical model of the physical control system. This study is an attempt to solve the 
same problem in parallel to reduce the time factor needed and increase the efficiency. Approach: 
Calculate in parallel sensitivity function using n-1 processors where n is a number of linear equations 
which can be represented as TX = W, where T is a matrix of size n1xn2, X = T−1 W, is a vector of 
unknowns and �X/�h = T−1 ((�T/�h)-( �W/�h)) is a sensitivity function with respect to variation of 
system components h. The parallel algorithm divided the mathematical input model into two partitions 
and uses only (n-1) processors to find the vector of unknowns for original system x = (x1,x2,…,xn)

T and 
in   parallel   using   (n-1)  processors   to   find   the  vector    of    unknowns    for  similar   system 
(x')t = dtT−1 = (x1',x2',…xn')

T by using Net-Processors, where d is a constant vector. Finally, sensitivity 
function (with respect to variation of component �X/�hi = (xi×xi') can be calculated in parallel by 
multiplication  unknowns  Xi×Xi',  where i = 0,1,…n-1. Results: The running time t was reduced to 
O(t/n-1) and, The Performance of parallel algorithm was increased by 40-55%. Conclusion: Used 
parallel algorithm reduced the time to calculate sensitivity function for a large dimension control 
system and the performance was increased. 
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INTRODUCTION 
 
 The ability to develop mathematical models in 
Biology, Physics, Geology and other applied areas has 
pull and has been pushed by, the advances in High 
Performance Computing. Moreover, the use of iterative 
methods has increased substantially in many application 
areas in the last years[9]. One reason for that is the 
advent of parallel Computing and its impact in the 
overall performance of various algorithms on numerical 
analysis[1].The use of clusters plays an important role in 
such scenario as one of the most effective manner to 
improve the computational power without increasing 
costs to prohibitive values. However, in some cases, the 
solution of numerical problems frequently presents 
accuracy issues increasing the need for computational 
power. Verified computing provides an interval result 
that surely contains the correct result. Numerical 
applications providing automatic result verification may 
be useful in many fields like simulation and modeling. 
Finding the verified result often increases dramatically 
the execution time[2]. However, in some numerical 
problems, the accuracy is mandatory. The requirements 
for achieving this goal are: interval arithmetic, high 
accuracy combined with well suitable algorithms. The 

interval arithmetic defines the operations for interval 
numbers, such that the result is a new interval that 
contains the set of all possible solutions. The high 
accuracy arithmetic ensures that the operation is 
performed without rounding errors and rounded only 
once in the end of the computation. The requirements 
for this arithmetic are: the four basic operations with 
high accuracy, optimal scalar product and direct 
rounding. This arithmetic's should be used in 
appropriate algorithms to ensure that those properties 
will be hold. There is a multitude of tools that provide 
verified computing; among them an attractive option is 
C-XSC (C for extended Scientific Computing)[3]. 
CXSC is a free and portable programming environment 
for C and C++ programming Languages, offering high 
accuracy and automatic verified results. This 
programming Tool allows the solution of several 
standard problems, including many reliable numerical 
parallel algorithms. The need to solve systems of linear 
algebraic equations arises frequently in scientific and 
engineering applications, with the solution being useful 
either by itself or as an intermediate step in solving a 
larger problem. In practical problems, the order, n, may 
in many cases be large (100-1000) or very large (many 
tens or hundreds of thousands). The cost of a numerical 
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procedure is clearly an important consideration-so too 
is the accuracy of the method. Let us consider a system 
of linear algebraic equations: 
 
AX = B (1) 
 
Where: 
A = {aij} n i ,j = 1 is a given matrix 
B = (b1, ..., bn)t is a given vector 
 
 It is well known (for example[4,5]) that the solution, 
x, x � Rn, when it exists, can be found using-direct 
methods, such as Gaussian elimination and LU and 
Cholesky decomposition, taking O(n3) time; -stationary 
iterative methods, such as the Jacobi, Gauss- Seidel and 
various relaxation techniques, which reduce the system 
to the form: 
 
x Lx f= +  (2) 
 
and then apply iterations as follows: 
 

(0) (k ) (k 1)x f ,x Lx f ,k 1,2−= = + =  (3) 
 
until desired accuracy is achieved; this takes O(n2) time 
per iteration. -Monte Carlo methods (MC) use 
independent random walks to give an Approximation to 
the truncated sum (3): 
 

 
1

(1) k

k 0

x L f
=

=�  (4) 

 
 Taking time O(n) (to find n components of the 
solution) per random step. Keeping in mind that the 
convergence rate of MC is 1/ 2O(N )− , where N is the 
number of random walks, millions of random steps are 
typically needed to achieve acceptable accuracy. The 
description of the MC method used for linear systems 
can be found in[6-8]. Different improvements have been 
proposed, for example, including sequential MC 
techniques[5], resolve-based MC methods[1] and have 
been successfully implemented to reduce the number of 
random steps. In this study we study the Quasi-Monte 
Carlo (QMC) approach to solve linear systems with an 
emphasis on the parallel implementation of the 
corresponding algorithm. The use of quasirandom 
sequences improves the accuracy of the method and 
preserves its traditionally good parallel efficiency. 
 

MATERIALS AND METHODS 
 
 Solution of large (dense or sparse) linear systems is 
considered an important Part of numerical analysis and 

often requires a large amount of scientific 
computations[9,10]. More specifically, the most time 
consuming operations in iterative methods for solving 
linear equations are inner products, vector successively 
updates, matrix-vector products and also iterative 
refinements[11,7]. Tests pointed out that the Newton-like 
iterative method presents a iterative refinement step and 
uses a inverse matrix obtained through the 
backward/forward substitution (after LU 
decomposition), which are the most time consuming 
operations. The parallel solutions for linear solvers 
found in the literature explore many aspects and 
constraints related to the adaptation of the numerical 
methods to high performance environments[3]. 
However, the proposed solutions are not often realistic 
and mostly deal with unsuitable models for high 
performance environments of distributed memory as 
clusters of workstations. In many theoretical models 
(such as the PRAM family) the transmission cost to 
data exchange is not considered[2], but in distributed 
memory architectures this issue is crucial to gain 
performance. Nevertheless, the difficulty in 
parallelizing some numerical methods, mainly iterative 
schemes, in an environment of distributed memory, is 
the interdependency among data (e.g., the LU 
decomposition) and the consequent overhead needed to 
perform Inter Process Communication (IPC)[3]. Due to 
this, in a first approach some modifications were done 
in the backward/ forward substitution procedure[5] to 
allow less Communications and independent 
computations over the matrix. Another possible 
optimization when implementing for such parallel 
environments is to reduce communication cost through 
the use of load balance techniques, as we can see in 
some recent parallel solutions for linear systems 
solvers[10]. Anyway, their focus was toward the issues 
related to MPI implementation through a theoretical 
performance analysis. Few works were found related to 
numerical analysis of parallel implementations of 
iterative solvers, mainly using MPI. Moreover, some 
interesting papers found present algorithm, which allow 
the use of different parallel environments[7]. However, 
those papers (like others) do not deal with verified 
computation. We also found some works which focus 
on verified computing[5] and both verified computing 
and parallel implementations[11], but these thesis 
implement other numerical problems or use a different 
Parallel approach. Another concern is the 
implementation of self-verified numerical solvers, 
which allow high accuracy operations. The researches 
already made, show that the execution time of the 
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algorithms using this kind of routines is much larger 
than the execution time of the algorithms, which do not 
use it[11,10]. The C-XSC library was developed to 
provide functionality and portability, but early 
researches indicate that more optimizations may be 
done to provide more efficiency, due to additional 
computational cost in sequential and consequently for 
other environments as Itanium clusters. Some 
experiments were conducted over Intel clusters to 
parallelize self-verified numerical solvers that use 
Newton-based techniques but there are more tests that 
may be done.  
 Sensitivity analysis defines the relative sensitivity 
function for time independent parameters as: 
 

i, j i iS x / h=∂ ∂   (5)  

 
Where: 
Xi = The i-th state variable 
hj = The element of the parameter vector  
 
 Hence the sensitivity is given by the so-called 
sensitivity matrix S, containing the sensitivity 
coefficient Si,j, Eq. 5 The direct approach of 
numerically differentiating by means of numerical field 
calculation software will lead to diverse difficulties[1,3]. 
Therefore, some ideas to overcome those problems aim 
at performing differentiations necessary for sensitivity 
analysis prior to any numerical treatment. Further 
calculations are then carried out with a commercially 
available field calculation program. Such approach has 
already been practical successfully[7]. 
 We consider the linear system (1) where A is a 
tridiagonal matrix of order n of the form shown in (6), 

T
0 1 n 1x (x ,x ,..., x )−=  is the vector of unknowns  and 

T
0 1 n 1d (d ,d ,...,d )−=  is a vector of dimension n: 
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 (6) 

 
 In the LU factorization A , is decomposed into a 
product of two bidiagonal matrices L and U as A = LU, 
where: 
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 The LU algorithm to solve the linear system (1) 
then proceeds to solve for y from Ly=d and then finds 
vector X in parallel:  
 
Step 1: Compute the decomposition of A given by: 
 

0 0

i i i

i i i i 1

u b

h a / u 1,1 i n 1,

u b h *c 1 i n 1−

=

= − <= <= −

= − <= <= −

 

Step 2: Solve for y from Ly = d using: 
 

0 0

i i i i 1

y d

y d h *y ,1 i n 1−

=

= − <= <= −
 

 
Step 3: Compute X by solving ux = y using: 
 

n 1 n 1 n 1

i i i i 1 i

X Y / U ,

X (Y C *X ) / U ,0 i n 2
− − −

+

=

= − <= <= −
 

 
 First we consider the parallelization of the LU 
decomposition part of the LU algorithm to solve (1), 
i.e., Step 1 above. Once the diagonal entries u0,u1,…,un 
of U have been calculated, h1,h2,…,hn-1can 
subsequently be computed in a single parallel step with 
n-1 processors. Thus we concentrate on the 
computation of the ui's.  
 

RESULTS 
 
 To calculate the accurate time and performance we 
repeat the process m times then we divide the measured  
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time on m for both single and multi thread versions, for 
single thread we start basic multiplication division and 
subtraction inside the Matrix until we get the upper of 
that matrix, for multi threading we use R-1 threads 
where R is the count of desired Matrix rows, we 
measured the longest thread which is the last one in our 
case, then every thread takes a part of the Matrix basic 
operations and we do that in parallel for origin and 
similar systems. 
 Table 1 shows the time results done on Pentium 
Due 1.8 GHZ processor with 1 GB Ram and shows the 
time when we use one processor (single thread) and the 
time when we use a multi processors in parallel (multi 
thread) to calculate the unknowns vector. From the 
Table 1, Fig. 1 and 2, we can see that performance 
increase with respect to the size of matrix, which 
represents the linear system. 
 
Table 1: Comparison between single and multithread 
Matrix Single thread, Multi thread, 
dimension time/MS time/MS Performance 
1 X 2 0.000005 0.000004 1.250 
2 X 3 0.000119 0.000015 7.933 
3 X 4 0.000425 0.000027 15.741 
4 X 5 0.001073 0.000047 22.830 
5 X 6 0.001718 0.000030 57.267 
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Fig. 2: System performance chart 

DISCUSSION 
 
 The time to find in parallel unknown vector was 
decreased with respect to the increased size of the 
matrix, which represent the mathematical model of 
physical system (Table 1),and with respect to the single 
thread , the performance was increased (Fig. 1 and 2). 
The main goal of Parallel algorithm is resolving in 
parallel linear equations which represents as AX = W 
and calculate sensitivity function of electric power 
systems to obtain the result with respect to variation 
any component of output function F with respect to any 
component of electric power systems h( f / h)∂ ∂ . 
Parallel algorithm contains the next stages: distribution 
data (rows matrix T and components vector W) to the p 
processors where p= n-1 (n is the number of equations) 
which represents the mathematical model of electric 
system and calculate in parallel unknown vector for 
origin system T

1 2 nX (x ,x ,..., x )= . Distribution data (at 
the same time) to p processors and calculate unknown 
vector for similar system I t t 1 I I T

1 2 n(x ) d T (x ,x ,...,x )− Ι=− = . 
Multiplication operation for unknown's xi × x|

i 
respectively using p processors to find in parallel 
sensitivity function for a large dimension system. 
 
Distribution data stage: In this stage, given first row 
matrix T and the first component of right side linear 
equation TX = W (w1)to the first processor p1 ,and first 
row with component w1 to second processor p2 and first 
row with component w1 to third processor ,and first row 
with component w1 to the pn-1 processor. Figure 3 
shows this stage. 
 Given p1 second row matrix T with component w2, 
p2 third row matrix T with component w3 and pn-1 last 
row matrix T with component wn (Fig. 4). 
 

 
 
Fig. 3: Distribution first row matrix T and w1 
 

 
 
Fig. 4: Distribution rows stage matrix T, where p = n-1, 

(working in parallel) 
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Fig. 5: Multiply first rows (p1, p2, pn-1) by Constants 

c1,c2,cn-1 respectively  
 

 
 
Fig. 6: Distribution  rows  between  processors,  where 

p = n-2 (working in parallel) 
 

 
 
Fig. 7: Representation of the final step on processor p1 
 
Multiplication Stage: Multiply the first row processors 
p1, p2, pn-1 by constants c1,c2,cn-1 respectively and 
subtract second row components from the result to 
obtain zero in the first component of the second rows 
Fig. 5. 
 The second row processor p1 become the first row 
for all processors, where the number of processors is 
equal n-2 (Fig. 6). 
 After n-1 cycles of multiplication operation and 
distribution rows between processors, just on p1 we 
obtained a system, which contains tow rows. Figure 7 
shows the final step. 
 Finally we get the mathematical model for original 
system as triangular equations: 
 

11 12 1n 1 1

22 2n 2 2

3n 3

(n 1)n n n

t t ... t X W

0 t ... t X W

0 0 ... t ... W

0 0 0 tt X W−

′ ′ ′× =
′ ′′

′′′

 

 The above triangular equations are solved by back 
substitution. From the last equation, we immediately 
have n n (n 1)nx W / tt −′′′= . By substituting this value in the 

n-1 equation, we find xn-1 and so on we find unknown 
vector for original system T

1 2 nX (x ,x ,..., x )= . 
 
Distribution data for similar system: Distribute data 
to p = n-1 processors and calculate unknown vector for 
similar system I t t I I I I

1 2 n(x ) d T (x ,x ,...,x )= = , (we do that at 
the same time when we calculated unknown vector for 
original system T

1 2 nX (x ,x ,..., x )= as mentioned above ). 
 
Calculate in parallel sensitivity function algorithm:  
Step 1: Compute unknown vector for similar system 

| | | |
1 2X (x ,x ,...,x )=  using next equation: 

 
| 1(x )t dT−=−   (7) 

 
Step 2: Multiplicate Eq. (7) from the right side by 
matrix T and transpose left and right side to obtain a 
system with respect to |x : 
 

t |T X d=−  (8) 

 
Step 3: Calculate: 
 

X / h T 1( T / h)X ( W / h)∂ ∂ =− − ∂ ∂ − ∂ ∂  (9) 

 
Step 4: Find sensitivity Function f with respect to h: 
 

t 1j / h d T ( T / W / h)−∂ ∂ =− ∂ ∂ ∂  (10) 

 
Step 5: Put the expression (6) in (9) then: 
 

| t | tj / h (x ) T / hX (x ) W / h∂ ∂ = ∂ ∂ − ∂ ∂  (11) 
  
 To use the expression (11) we just need to resolve 
in parallel the tow linear systems (1) and (8) by using 
parallel algorithm. 
 
A numerical example: Figure 8 shows the electric 
circuit, in which we wont to calculate in parallel the 
sensitivity function of the output potential vout with 
respect to resistance g2, condensers c1 and c3, 

respectively, the mathematical model for this circuit is: 
 

1 2 S 1 S 2 2 S 2 1

2 S 2 2 3 S 2 S 3 2

1G G C C G C V
0G C G G C C V

+ + + −
× =

− + + +
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Fig. 8: Electric circuit to calculate sensitivity function 

for vout with respect to variation parameters (C1, 
G2, C3) 

 
 Using PNPA algorithm in parallel, we find 
unknowns vector X for original system: 
 

1

2

(3 j) / 5v
x

(2 j) / 5v

−
= =

+
 

 
 At the same time we find unknowns vector X| for 
similar system: 
 

|
| 1

|
2

(2 j) / 5v
x

( 3 j) / 5v

− +
= =

− +
 

 
 Finally we just do the multiplication operation to 
find the sensitivity function as follows: 
 

|
out 1 1 1

| |
out 2 1 2 1 2

|
out 3 2 2

V / C sV v 1 j7 / 25

V / G (V v )(V v ) 3 j4 / 25

V / C sV v 1 j7 / 25

∂ ∂ = = −

∂ ∂ = − − =− −

∂ ∂ = = −

 

 
CONCLUSION 

 
 The parallel algorithm to find the vector of 
unknowns for calculated in parallel sensitivity function 
and one thread was simulated and proved that parallel 
algorithm is more efficient. The running time was 
reduced to O(t/n-1) and the efficiency was increased by 
40-55%. 
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