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Abstract: In this research, a Parallel Two-Dimensional Sorting Algorithm (PTSA) is presented that 
has better performance than the classical Quicksort, to sort a data vector of size n = r (rows) × 
c(columns). PTSA algorithm divides the input vector into n/r sub-vectors, which represents tow-
dimensional vector of Slave Processor Elements (VPE ), the maximum number of  VPE  for parallel 
sorting is equal to r×c, VPE just the read,and write operations. The number of Master Processors (MP) 
which do the sort operation is equal to c, The time needed for PTSA algorithm is reduced by θ (n/r log 
n/r) with respect to the time needed by Quicksort θ (n log n) to sort the same vector. Simulation results 
show that the efficiency of sorting using PTSA algorithm is increased and the complexity is reduced 
significantly compared with classical Quicksort.  
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INTRODUCTION 

 
 Sorting is an integral component of most database 
management systems (DBMSs) and data stream 
management systems (DSMSs), its efficiency can 
influence drastically the overall system performance. 
 To speed up the performance of database system, 
parallelism is applied to the data administration 
operations.  
 We all know that Quicksort is one of the fastest 
algorithms for sorting, in spite of its slow running time 
in the worst case that is θ(n2) on an input array of n 
numbers. However, its running time in the average case 
is θ(n log(n)). Given the importance of parallelism in 
improving the running time of Quicksort many 
researches have been done in this area. Previous results 
show that the parallel Quicksort outperform the sample 
sort algorithm. In[11], the experiments show that the 
speed of the parallel Quicksort is more than six units 
higher than the speed of sample sort for three 
processors of the Enterprise 1000. While, for one 
processor, parallel Quicksort achieved 15% faster 
execution times than the traditional Quicksort. This is 
due to its low memory requirement and that parallel 
Quicksort could sort data sets twice the size that of 
traditional Quicksort could under the same system 
memory restrictions.  
 In this research, we present a parallel two 
dimensional sorting algorithm that outperform 
traditional Quicksort and many of the previous parallel 
Quicksort algorithms in running time and in the number 

of comparisons. The idea is dividing the vector data 
into number of processors to sort data in parallel. Due 
to that, the transactions of comparison and data transfer 
is reduced and the complexity time to sort an array of 
size n is reduced to O(n/r (logn/r)). In addition, the 
complexity time of this algorithm depends on the 
number of processors, where many of the previous 
work in parallel Quicksort have higher complexity time 
and generally the complexity time is dependent on the 
number of processors used in parallel and in some cases 
is dependent on the number of partitions. 
 Bitonicsort[3,4,9] has running time of O((n/p)log2 p) 
where p is the number of processors used and n is in the 
range of  Ω(p).  Mergesort[10], has running time of 
O(log 2p/log(p/n)) where n = O(p). ColumnSort[1], has 
running time of O((nlogn)/p) where n = Ω(p1+ε ) ε>0. 
Cubesort[6], its running time is O((n/p)log 2p/log(n/p)) 
essentially n = Ω (p). 
 In[8], the cost of parallel Quicksort algorithm is 
measured given the pair (t,p) where t is the time needed 
and p is the number of processors that are both 
dependent on the input size. However, to sort n words 
all of length l over an alphabet $\Sigma$ of size O(n) it 
requires only O(log(nl)/log(nl/p)×nl/p) times and using 
p<nl processors.  
 

RELATED WORKS 
 
 An early advancement in parallel sorting comes in 
1968 when Batcher discovered the elegant θ(log 2n) 
depth bitoni sorting networks[3].  
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 Sorting is the most studied problem in computer 
science for two reasons: First, it is used as a substep in 
many applications. Second, it is a simple combinatorial 
problem with many interesting and diverse solutions. 
Parallel algorithms for sorting have been studied since 
at least the 1960's. Batcher bitonic sorting technique 
provides a parallel algorithm for sorting n numbers in 
θ(log2n) time with n processers. Bitonic sort used 
parallelism to increase the chip speed by treating 
several bits in parallel at each step. 
 The idea on which bitonic sort depends is the 
sorting and merging operations; given two inputs A and 
B, the algorithm must define the two correspondent 
output in a manner that if  (A<B) so, A = L that 
represents the smallest element and B = H that 
represents the highest element. If (B<A ) then  B = L 
and  A = H. 
 This procedure can be applied to two input lists to 
obtain only one-sorted lists. The merging operation 
between the two lists is done in two stages: the first is 
the odd stage in which all the elements in both lists are 
compared with the odd index and arranged given H, L 
as described above. In the same manner, in the second 
stage (the even stage) all the elements in both lists are 
compared with even index. This means, given two lists 
a1, a2,.........as, b1,b2,.....bt the algorithm must produce a 
sorted list C1, C2,... C t+s. Figure.1 represent a simple 
description of how bitonic sort work.  
 The main advantage of bitonic sort is that it can be 
extended to compare 4 by 4 elements in each step. 
Using bitonic sort, 2p words can be sorted in only 1/2 p 
(p+1)  steps.   In   the   literature, many  parallel  sorting 

 

 
 
                Fig. 1: Bitonic sort 

algorithms have been proposed like radixsort and 
Quicksort[5] and a variant of Quicksort is called 
columnsort[1]. In[11], a parallel Quicksort algorithm is 
presented and implemented that works in stages. In the 
first stage, a parallel partition of data is done in which 
the array is divided in k blocks of fixed dimension B. A 
number of processors p is assigned to sort these blocks. 
 The algorithm works as follow: each processor 
sorts in parallel two blocks one from the head and the 
other from the tail of the array. This procedure is 
repeated until most of the blocks are sorted. In the 
second stage, it assigns one processor to sort the 
remaining unsorted blocks. The third stage is the 
process partition in which the array is divided into two 
partitions and the processors are divided into two 
groups, each group is assigned to a partition. In the 
Final stage, it uses Quicksort in each group of 
processors to sort its partition. If one processor finishes 
sorting its blocks it helps the other processors in the 
same group by a consecutive operation of push and pop.  
 The time complexity of the algorithm depends on 
the size of block B and on the number of processors P 
and does not depend on the distribution of keys. In[10], 
comparisons of three parallel sorting algorithms are: 
odd-even transition Sort[2], Parallel Rank Sort, Parallel 
Merge Sort is presented. The odd-even transposition 
algorithm[2], works as follow: first of all the data is 
divided into (n*p) partitions, where p is the number of 
processors. These partitions are distributed to all the 
processors. Each processor sorts sequentially its part. 
Then, the merging stage consists of two substages: odd 
stage and even stage. In the even stage, the even 
processors (i) communicate with the odd processors 
(i+1) to merge their data in a manner that higher data 
values are kept in the higher number of processors. The 
lower values are kept in the lower number of 
processors. The same procedure is done in the odd stage 
where the odd processors (i) communicate with the 
even processors (i-1) to merge their data in the same 
previous manner. The whole data will be sorted in at 
most p stages and the time complexity is O(bn2) where 
b = 1/2p2. That means the time will be reduced to 1/p2. 
The second algorithm compared was Parallel Merge 
Sort, this algorithm is based on the Divide and Conquer 
Algorithm, but here we have the concept of slaves and 
master processors. The initial array is divided into (n/p) 
elements. Each processor denoted as slave sorts its part 
in parallel and then these sorted subarrays will be 
returned to the master processor that sorts the entire 
final array. The time complexity of this algorithm is 
O(n/p log(n/p)). The third algorithm compared and 
implemented in[10], is Parallel Rank Sort Algorithm that 
works as follow: the basic idea is to determine the rank 
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of the elements. The data is divided in different 
partitions, each slave processor is assigned a data of 
size (n/p) elements where n is the size of the input data 
and p is the number of processors. Each slave processor 
is responsible to rank its elements and return the ranks 
to the master processor, which in turn is responsible of 
constructing the whole sorted list. The time complexity 
is O(n2 ) = 1/p. 
 
Parallel Two-Dimensional Sorting Algorithm PTSA: 
Quicksort[7] is a sequential sorting algorithm that is 
widely believed to be the fastest comparison-based 
sequential sorting algorithm. It is a recursive algorithm 
that uses the Divide and Conquer method to sort all 
keys. The standard Quicksort first picks a key from the 
list, the pivot and finds its position in the list where the 
key should be placed. This is done by walking through 
the array of keys from one side to the other. When 
doing this, all other keys are swapped into two parts in 
the memory: first the keys less than or equal to the 
pivot are placed in one part of the pivot and the keys 
larger than the pivot are placed in the other part of the 
pivot. 
 
PTSA Algorithm Description: The main idea of 
PTSA algorithm is to divide the input into number of 
rows and then to use Quicksort in parallel manner to 
sort theses rows and obtain the following: 
 
• Sorted rows in parallel, where each row has its own 

processors 
• Sorted columns in parallel, where each column has 

its own processors 
 
 PTSA passes through three stages: distribution data 
is the first stage, parallel sorting rows is the second 
stage and parallel sorting columns is the third stage. 
 
Distribution data stage: In this stage, given an input 
array A to a matrix of processor Elements of size n, 
where, n = rows (r)×columns (c), A will be divided into 
a r×c, where r is an odd number greater than or equal to 
3 and c is greater than or equal to r, where c = n/r. The 
first row is assigned to the first processor (Mp0), the 
second row to the second processor (Mp1) and so on to 
till the last row (Mpr-1). Next, the first column is 
assigned to the first processor (Mp0), second column 
(Mp1) to the second processor and so on to till the last 
column (Mpc-1). 
Parallel sorting rows stage: In this stage, the 
processors MP0, MP1, MPr-1, are assigned to the data 
rows respectively to sort them in parallel fashion.  
 

 
 
Fig. 2: Parallel two-dimensional sorting algorithm 

structure 
 
Parallel sorting columns stage: In this stage, the 
processors MP0,MP1,..., MPc-1, are assigned respectively 
to the data columns to sort them in parallel fashion 
using quicksort algorithm.  
 At the end of stage1 and stage2 minimum and 
maximum values are obtained, where the minimum 
value is located at O0 and the maximum value is located 
at On-1. The values are shifted in Mp0 one step to the left 
and the values in Mpr-1 are shifted one step to the right. 
The above steps are repeated until it ends-up with one 
middle row. Finally, the middle row is sorted using 
quicksort algorithm. Figure. 2, illustrates the three 
stages mentioned above. 
 
PTSA algorithm analysis: PTSA as a two dimensional 
sorting algorithms is based on Quicksort algorithm 
which is used to sort rows and columns in parallel. 
 However, it is known that Quicksort performs 
better when the input data is increased, but here in 
PTSA algorithm the additional time required by 
Quicksort to sort a number of data inputs (which is 
equal to n) is reduced to n/r. In each iteration tow 
values (maximum, minimum) are transferred at the 
same time, while in the Divide and Conquer the transfer 
is made once only either the min or the max. The 
algorithm analyses steps are as follows: 
 
Step 0: It assumed that:  
 
 i.  Data Vector (A) of size n  
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 ii. Cl is a number of clock cycles required to send 
one data item from one master processor to 
another 

 
Step 1: The required clock cycle (Sr1) to divide the data 

vector (DV) into rows and columns is 
computed and each row is sent to one of the 
row processor elements: 

 
( )r1S 2n / r * cl= , 

 
 where, cl is a number of clock cycle   required to 
send one data item from one processor to another. 
 
Step 2: The required clock cycles (Sr2) to sort all rows 

in parallel is computed using quick sort 
algorithm: 

 
( )r2S n / r log(n / r) * j= , 

 
 where, j is the number of clock cycles needed to 
process one iteration of traditional quicksort algorithm. 
Throughout this work, j is assumed to be equal to 10* 
cl, where cl = 1. 
 
Step 3: The required clock cycles (Sr3) to distribute all 

sorted rows item to the processors in VPE is 
computed as: 

 
r3S r * (c 1) *cl.= −  

 
Step 4: The required clock cycles (Sr4) to sort in 

parallel r items using quicksort algorithm is 
compute an shifted as: 

 
r4S (r log r) * j.=  

 
Step 5: Compute the required clock cycles (Sr5) to take 

maximum and minimum items then shift: 
 

r5S cl.=  
 
Step 6: Steps 4, 5 are repeated c/2 times. 
 
Step 7: Steps 4, 5 and 6 are repeated r/2 times. 
 
Step 8: The required clock cycles (Sr8) to sort the 

middle row processors using Quicksort 
algorithm is computed as: 

r8S (n / r log(n / r)) * j.=  

Step 9: The required lock cycles (Sr9) to send in 
parallel middle row processors values to the 
suitable location is computed as:  

 
r9S cl.=  

 
Step 10: The mathematical model to   calculate the total 

number of clock cycles to sort input data using 

PTSA is:- 
9

tot ri
i 1

S S
=

=� . 

 
Complexity Analysis: The time complexity of PTSA 
algorithm is calculated for the three stages together. 
The time needed by PTSA algorithm to sort an array of 
n elements denoted as Ttot. TSor refers to the time needed 
by the Quicksort to sort one subarray. Tmer is the time 
needed to put maximum and minimum items in their 
locations in the output vector. Tpar is the time needed to 
distribute data to VPE of size r × c. 
 
Ttot = TSor + Tmer + Tpar. 

Ttot = (r*T(n/r)+c*T(r))+θ((n-c)/2)+ θ(1). 
T(n/r), T(r)  is the time needed by Quicksort to sort an 
input data of size n/r rows, r columns, respectively  
Ttot = r*O(n/rlogn/r)+c*O(rlogr)+(n-c)/2. 
Ttot ≤C(n/rlogn/r)+C(rlogr)+(n-c)/2 
≤Cn/r[logn-logr] + Crlogr+(n-c)/2   
� C[n/r(logn-logr) + rlogr]+(n-c)/2.            
 Ttot �O(n/rlogn/r + rlogr ). 
 

RESULTS 
 
Simulation results: The idea behind the work in this 
simulation is to compare the time needed for Quicksort 
(to sort an array of n items) with the time needed by 
PTSA (to sort the same array) by dividing it into r×c 
VPE.In the case of sorting an array of size n, f(n) 
becomes the count function. That is; f(n) gives the 
number of basic operation (clock cycles) done by the 
PTSA. Suppose that the time spent in each clock cycle 
is t, then the total time it would take to execute f(n) is 
tf(n). Clearly, the constant time t depends on the speed 
of the computer and therefore varies from computer to 
computer. However, f(n), the number of clock cycles, is 
the same for each computer. If we know how the 
function f(n)  grows as the size of the problem 
grows,we can determine the efficiency of the PTSA 
with respect to Quicksort algorithm. We compare its 
results of the traditional Quicksort on the same stand-
alone PC with Pentium III processor running at 800Mhz 
under windows XP platform using Microsoft Excel. 
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Table 1: The running time of Quicksort and PTSA algorithm for 
different input data size and r = 99 

Size(n) Running Time Quick sort(µs) Running Time PTSA(µs) 
1000000 199315.686 70116.104 
2000000 418631.371 140642.209 
3000000 645495.932 211319.291 
4000000 877262.743 282094.417 
5000000 1112674.833 352942.450 
6000000 1350991.864 423848.581 
7000000 1591724.644 494803.028 
8000000 1834525.486 565798.835 
9000000 2079134.421 636830.804 
10000000 2325349.666 707894.900 
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Fig. 3: The variation in running time in Quicksort and 

PTSA, for different input data size and r = 99 
 
The dynamic data size and fixed number of rows: 
For different data size and fixed number of rows = 99, 
suppose that a computer can executes 1 billion 
operations per second, Table. 1 and Figure. 3 shows the 
time required to execute PTSA and the time required to 
execute traditional Quicksort. 
 
The fixed data size and dynamic number of rows: 
For fixed data size = 107 and different number of rows, 
suppose that a computer can executes 1 billion 
operations per second, Table 2 and Figure 4 shows the 
time that the computer takes to execute PTSA  and 
Quicksort algorithm. 
  
The PTSA accelerate: Analyzing the results presented 
in Table. 3 it can be seen the accelerate (Ac = Quicksort 
time on one processor / PTSA time on c processors) is 
around (1.5-1.7). 
 
Example 1: Figure. 5, shows an example of an array of 
size 9, At the end we obtain a sorted array  S, The 
initial values for the counters are zero  ( i = 0,  j = 0 ) : 
 
Step 1: The vector is distributed into three rows and 

three columns (to the VPE ). 

Table 2: The running time of Quicksort and PTSA algorithm for fixed 
input data size = 107 and different number of vectors 

Vectors(r) Running Time Quick sort(µs) Running Time PTSA(µs) 
100 2325349.7 707894.9 
200 2325349.7 790105.3 
300 2325349.7 842908.3 
400 2325349.7 881605.4 
500 2325349.7 912103.5 
600 2325349.7 937246.8 
700 2325349.7 958617.5 
800 2325349.7 977185.5 
900 2325349.7 993588.1 
1000 2325349.7 1008266.0 

 
Table. 3: The Accelerate of parallelism for PTSA Algorithm 
 Running Time Running Time Accelerate  
Size (n) Quick sort (µs) PTSA (µs) PTSA (Sp) 
50 2.822 1.880 1.501 
100 6.644 4.186 1.587 
150 10.843 6.642 1.633 
200 15.288 9.196 1.662 
250 19.914 11.824 1.684 
300 24.686 14.509 1.701 
350 29.579 17.243 1.715 
400 34.575 20.018 1.727 
450 39.662 22.829 1.737 
500 44.829 25.672 1.746 
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Fig. 4: The variation in running time in Quicksort and 

PTSA algorithm, for fixed size of data = 107 
and different number of vectors 

 
Step 2: The first row is sent to the first MP (p0) and the 

second row is sent to the second MP (p1) and 
the third row is sent to the third MP (p2).  

 
Step 3: Sorting is carried out in parallel in the same 

order for all rows. 
 
Step 4: The first column is sent to the first MP column 

(p0) and the second column is sent to the 
second MP column (p1) and third column is 
sent to the third MP column (p2)  

 
Step 5: Sorting is carried out in parallel in the same 

order for all columns. 
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Fig. 5: Example 3×3 PTSA Algorithm 
 
Step 6: In the location VPE (p11) we get the   minimum 

element and in location VPE  (p33) we get the 
maximum element for giving vector. 

 
Step 7: In parallel put the value at VPE (p11) in the first 

location (minimum) and the value at VPE    
(p33)  (maximum) in last location for output 
vector. 

 
Step 8: The first row of processor elements is shifted 

one position to the left and third row of 
processor elements shifted one position to   the     
right. 

 
Step 9:  i = i+1,  j = j-1. 
 
Step 10: Repeat step5, step 6, step 7, step 8 and   step 9 

(c-1) iterations. 
 
Step 11: Sort the middle row and the result send it in 

parallel to the output vector (S) locations   
from si to sJ.  

 
CONCLUSION 

 
 In this research a new algorithm is proposed for 
sorting  an  array  of size n. The idea of this algorithm is  
 
 
 
 
 
 

to use parallelism to reduce the running time. We have 
obtained a scalable system, in which its performance is 
improved when the number of input data is increased. 
The reduction becomes significant and that is 
confirmed by our simulation results where the reduction 
in number of comparisons respectively to the traditional 
Quicksort is about 55-65%.  
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