
Journal of Computer Science 4 (6): 467-473, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: B. Parvathavarthini, Department of Computer Application, St. Joseph’s College of Engineering,
Chennai-119, TamilNadu, India

467

Development of Deduced Protein Database Using Variable Bit Binary Encoding

B. Parvathavarthini, B. Rajesh Kanna and L. Rajeswaridevi

Department of Computer Application, St. Joseph’s College of Engineering,
Chennai-119, TamilNadu, India

Abstract: A large amount of biological data is semi-structured and stored in any one the following file
formats such as flat, XML and relational files. These databases must be integrated with the structured
data available in relational or object-oriented databases. The sequence matching process is difficult in
such file format, because string comparison takes more computation cost and time. To reduce the
memory storage size of amino acid sequence in protein database, a novel probability-based variable bit
length encoding technique has been introduced. The number of mapping of triplet CODON for every
amino acid evaluates the probability value. Then, a binary tree has been constructed to assign unique
bits of binary codes to each amino acid. This derived unique bit pattern of amino acid replaces the
existing fixed byte representation. The proof of reduced protein database space has been discussed and
it is found to be reduced between 42.86 to 87.17%. To validate our method, we have collected few
amino acid sequences of major organisms like Sheep, Lambda phage and etc from NCBI and
represented them using proposed method. The comparison shows that of minimum and maximum
reduction in storage space are 43.30% and 72.86% respectively. In future the biological data can
further be reduced by applying lossless compression on this deduced data.

Key words: Binary tree, protein sequence, amino acid

INTRODUCTION

 RNA sequences are composed of four nucleotides:
adenine (A), uracil (U), guanine (G), and cytosine (C).
Any of the three combinations of the nucleotide bases is
called as triplets or CODONS. Hence there are 64
possible CODONs. The combination of these CODONs
forms different proteins. The sequence of amino acids
represents a particular gene or protein [7]. The protein
databases are generally represented in shorthand, using
single letter designations. In the existing Protein
database, the amino sequences are in a text format and
are stored in any one of the following file formats such
as flat, XML and relational files. This representation
requires more memory storage spaces[3] and
manipulation on these sequences can be dealt with high
level programming languages. Hence it requires a high
computation cost and high execution speed.

MATERIALS AND METHODS

 Some of the existing universal biological databases
details are listed below.

Universal protein sequence database: There are
different categories of biological databases such as
nucleic acid sequence, protein sequence and protein
structure. Swiss-Prot[2] provides a biological database
with a minimum level of redundancy and a high level of

integration with other databases. The Protein Research
Foundation Sequence Database[1] is the database of
protein primary structures. The AceDB is an integrative
database system that has been used for management of
genome-oriented biological data. The Protein Data
Bank (PDB) is the single world wide archieve of
structural data of biological macromolecules. The
generated sequence data are stored in large genomic
repositories, of which the most commonly used
databases are EMBL/European Bioinformatics Institute
(EBI) and (NCBI)[2]. The Basic Local Alignment
Search Tool (BLAST) is used to compare a novel
sequence with those contained in nucleotide and protein
databases[5.6]. ClustalW is a general purpose multiple
sequence alignment program for DNA or proteins. The
data storage formats used in different existing databases
is shown in Table 1.

Types of data model: The bio informatics databases
are maintained by different organizations using
different DBMS with different data models such as flat
files or XML or relational or object oriented[4]. Figure 1
shows the biological data storage in Flat, XML and
RDB file format.

Flat file: A flat file database is the simplest database
model in which the records are stored in one record per
line format. Flat-file libraries contain data structured in
an ASCII text is shown in Fig. 1a. The ASCII is the de

J. Computer Sci., 4 (6): 467-473, 2008

 468

facto standard for data exchange (e.g., BLAST,
CLUSTALW etc.)[4].

XML file: XML is a hierarchical and semi-structured
model that has text-based files. An XML databank that

Table 1: Various databases, their description, storage and data type
Database Description of Data storage
Name data type Data type
ACeDB Seequence and Object-oriented Text, Numeric
 variants
PDB Structure Oracle Blob, varchar2
BLAST Sequence, analysis FASTA Text, Numeric
ClustalW Sequence, analysis FASTA Text, Numeric

(a)

(b)

(c)

Fig. 1: Structure of a flat-file, XML and RDB entry

stores data as a structured text file using XML tags
(e.g., PIR-PSD) is shown in Fig. 1b.

Relational database file: A Relational database file is a
highly structured model. SQL statements are used to
retrieve information from the database (e.g., AceDB).
The results of the query are converted into standard text
format. Figure 1c shows the storage format of
relational database entry.

Iskandar et al.[9] stated software based approaches like
navigational, mediator and data warehousing to
integrate the different databases. All the file types
discussed above have been used fixed byte
representation to store amino acid sequences. But, our
method uses variable bit to encode the data which
reduces the storage space and it leads to explore the
hardware for searching.

Proposed work: All existing protein databases use the
ASCII code to encode each character. To encode a
single amino acid, it requires 7 bits. Let n be the
number of amino acids present in the protein. Then the
actual memory needed to store the protein is 7n. To
reduce the size of this protein database, a new approach
is proposed here. This approach replaces the existing
protein databases from the ASCII to a machine readable
binary format using a probability-based variable bit
length encoding technique. The proposed method
reduces the storage space ranges from 43.85 to 87.17%.
The detailed description about this reduction factor is
described in result and discussion. Here, unique bits of
binary codes are assigned to each amino acid sequence.
This unique bit of binary codes is generated using a
binary tree. The construction of this binary tree is
discussed in section 3.2.2. For every amino acid, a
probability value is calculated based on the occurrence
of CODONs mapping a single amino acid. In this
method, a lesser number of bits are assigned to amino
acids which appear frequently and more number of bits
to those which appear less frequently. The binary code
representation of amino acids can be obtained using
three techniques, namely, fixed length encoding, unique
bit pattern-variable length encoding and probability
based variable bit length encoding.

Fixed length encoding: By using fixed length
encoding, each of 21 amino acids is represented as a bit
pattern of fixed size 5 (25 = 32). Some amino acids
occur more frequently than others. But all are assigned
with the same number of bits. This results in a lengthy
encoded sequence. Hence a variable length encoding
scheme is proposed below to overcome this issue.

J. Computer Sci., 4 (6): 467-473, 2008

 469

Variable bit length encoding: Variable bit length
encoding is done, either by assigning a unique bit
pattern to an amino acid or assigning the bit pattern
based on the probability of occurrence of CODONs
mapping a single amino acid.

Unique bit pattern variable BIT length encoding: If
each amino acid is represented by a unique bit
pattern(R = 0 L = 1 S = 00 P = 01 V = 10 A = 11 G =
000 T = 001 I = 010 O = 011 H = 100 K = 101 F = 110
Y = 111 N = 0000 D = 0001 C = 0010 Q = 0011 E =
0100 M = 0101 W = 0110), it is distinguishable only
when presented separately. The difficulty arises, when
these amino acids are formed into a data stream
(00101010011110). Without a predictable bit-length,
there is a chance of misinterpreting the code. This
proposed algorithm, known as probability based
variable bit length encoding, solves this issue.

Probability based variable length encoding: In this
method, a probability value is calculated based on the
frequency of the occurrence of the amino acid. The
probability value is calculated using Eq. 1. These
estimated probability values are assigned to the leaf
nodes of a binary tree to be constructed. After the
binary tree construction, a value zero is assigned to the
right edges, and one, to the left edges of the tree. Then
the binary code representation of an amino acid is
identified by traversing the tree from the root followed
by the branches that lead to that amino acid. Figure 2
shows the overview of the probability based variable
length encoding process.

Calculation of probability value: Among the 64
possible CODONs, the number (N) of triplet CODONs
needed to map a single amino acid is identified. Amino
acids which have the same number of triplet CODONs
are grouped. The Probability (P) of occurrence of each
amino acid group appearing in the total combinations is
identified using the Eq. 1.

 N CP =
64
∗ (1)

where ‘N’ is the number of triplet CODONs needed to
map a single amino acid and ‘C’ is the count of amino
acid that has the same number of triplet CODONs. The
probability value thus calculated for each amino acid
group is shown in Table 2. The relative probability
values assigned to each amino acid are given in Table 3.

Process for building the binary three based on the
probability value: The process for building the binary
tree is explained in the following steps.

Fig. 2: Overview of probability based variable length

encoding

Table 2: Probability value calculation
Amino No. of Count Probability
acids (A) CODONs (N) of A (C) value (P)
W,M 1 2 0.03125
E,Q,C,D,N,Y,F,K,H 2 9 0.28125
O,I 3 2 0.09375
T,G,A,V,P 4 5 0.3125
S.L.R 6 3 0.28125

Step 1: Organize the entire amino acid character set
into a row, ordered according to its probability value
from highest to lowest (or vice versa). Each amino acid
character is now a node at the leaf level of a tree.

Step 2: Find the two nodes with the smallest combined
probability value. Join them to form a single node that
results in a two-level tree so that the combined two
original nodes are the children of the new node. This
node, one level up from the leaves, is eligible to be
combined with other nodes. The sum of the weights of
the other two nodes chosen must be smaller than the
combination of any other choices.

Step 3: Step 2 is repeated until all the nodes, on every
level, are combined into a single binary tree.

 The Fig. 3 shows the leaf-level nodes representing
the original probability values of amino acids arranged
in the ascending order of value. The two nodes with the

J. Computer Sci., 4 (6): 467-473, 2008

 470

Table 3: Symbol table to map amino acids in binary code
 Bit position Binary code
Amino Acid CODON Probability value Binary code has value 1 length
Tryptophan/W UGG 0.015625 000000 - 6
Methionine /M AUG 0.015625 000001 6 6
Glutamine/E CAA,CAG 0.03125 00001 5 5
Glutamic acid/Q GAA, GAG 003225 00100 3 5
Cysteine/C UGC, UGU 0.03225 00101 3,5 5
Aspartic acid/D GAC, GAU 0.03250 00110 3,4 5
Asparagine/N AAC, AAU 0.03250 00111 3,4,5 5
Tyrosine/Y UAC, UAU 0.03 10000 1 5
Phenylalanine/F UUC, UUU 0.03 10001 1,5 5
Lycine/K AAA, AAG 0.03025 10010 1,4 5
Histidine/H CAC, CAU 0.03025 10011 1,4,5 5
Stop/O UAA,UAG UGA 0.046875 1100 1,2 4
Isoleucine/I AUA,AUC,AUU 0.046875 1101 1,2,4 4
Threonine/T ACA,ACC,ACG,ACU 0.0625 0001 4 4
Glycine/G GGA,GGC,GGG,GGU 0.0630 0100 2 4
Alanine/A GCC,GCA,GCG,GCU 0.0635 0101 2,4 4
Valine/V GUA,GUC,GUG,GUU 0.0615 1010 1,3 4
Proline/P CCA, CCC, CCG, CCU 0.0620 1011 1,3,4 4
Serine/S UCA,UCC,UCG,UCU,AGC,AGU 0.09365 0110 2,3 4
Leucine/L UUA,UUG,CUA,CUC,CUG,CUU 0.09370 0111 2.3.4 4
Arginine/R AGA,AGG,CGU,CGA,CGC,CGG 0.09390 111 1,2,3 3

Fig. 3: Probability value arrangement

least probability values are identified and combined,
which results in the creation of a new node.
 The second row shows the next level of combined
nodes. The probability value of the new node is found
to be the sum of the two least values among the list of
values. This decision keeps the branch lines crossing
the tree. Hence the nodes are rearranged for clarity.

Assigning the code: The bit values are assigned to
each branch of the constructed binary tree in such a way
that the left of each node is assigned with 0 bit and the
right of each node is assigned with 1 bit. The bit code
assignment for the whole tree is shown in Fig. 4. The
bit representation of any amino acid is found by the bits
of the root followed by the branches leading to the leaf
of that amino acid. The binary code for each amino acid
is shown in Table 3. Using this probability-based
variable length encoding technique, the binary code for
each amino acid along with code length and the
position containing bit value 1 is chosen in such a way
that no code is the prefix of another code. Hence, there
is no chance of misinterpreting the code.

Implementation of variable bit length encoding: This
variable length encoding method maps an amino acid to
a binary code and vice versa without any ambiguity.

Fig. 4: Code assignment of amino acids

Now, this binary code representation of an amino acid
is to be stored in memory, so that the resultant protein
database is a deduced one. The technique used to store
this binary code representation of an amino acid
sequence is explained below.

Encoding algorithm: This encoding algorithm stores
the binary code of an amino acid in byte form. Initially
the bytes required to store an amino acid sequence are
calculated from the code length stored in the symbol
table, Table 3 and the memory space is allocated. From
the symbol table, Table 3, the length of the binary code
and the position containing the bit value 1 can be found.
The pseudo code of the encoding algorithm is given
below. The function and input variables in this encoding
algorithm are also given below.

J. Computer Sci., 4 (6): 467-473, 2008

 471

function Encoding (proteinDB, symbolTable
[aminoAcid, size, position])
returns deduced proteinDB
Inputs: proteinDB, Protein database that contains
amino acid sequence symbolTable, Contains amino acid
character, size of the binary code, position containing 1
in the binary code
Local variables: Ptr = 0, sizeinbit = 0, sizeinbyte = 0,
binaryByte [], c = 0
foreach aminoAcid in proteinDB do
sizeinbit = sizeinbit + aminoAcid.symbolTable.size
endfor
 c = sizeinbit modulo 8
 sizeinbyte = (sizeinbit + c)/8
The memory space of size sizeinbyte is allocated. i.e,
binaryByte[sizeinbyte]
foreach aminoAcid in proteinDB do
 foreach position of aminoAcid in symbolTable
 do
 binaryByte[aminoAcid.position + ptr] = 1
 endfor
 ptr = ptr + aminoAcid.size
 endfor
 return binaryByte
endfunction

RESULT AND DISCUSSION

 The space needed to store an amino acid sequence
using the proposed variable length encoding is
compared here with the existing databases that are in
the ASCII format. The space occupied by the existing
protein database is equal to the product of the number
of amino acids (n) in that sequence and seven. This
comparison is carried out in three cases, namely, the
worst case, the best case and the rest.
 In the best case, the selected amino acid sequence
contains R (Arginine) alone. Then, the size of the
deduced protein database file created by the proposed
method is 3(n-1)+6 including the start CODON. Hence
the reducing factor is 87.17%. In the worst case, the
selected amino acid sequence contains only W
(Tryptophan) and M (Methionine). Then, the size of the
deduced protein database file created by the proposed
method is 6n [6(n-1)+6]. Hence the reducing factor is
42.86%.

8

i=1
9 2

j=1 k =1

count(R) count(i)size = + 4 +
n n

count(j) count(k)5 + 6
n n

∑

∑ ∑
 (2)

Fig. 5: Storage representation of text format and

proposed format

 In other cases, the selected protein database
contains the combination of all amino acids of 3/4/5/6
bit representation. Here, the size of the deduced protein
sequence database file is given in Eq. 2. In the above
cases, the size of the deduced protein database file is
less than 7n which is required for any existing protein
database. To evaluate our method we have collected
few amino acid sequences of major organisms like
Sheep, Lambda phage, E.coli, Chlamydomonas,
Tetrahymena, Budding yeast, Fission yeast,
Neurospora, Maize, Arabidopsis, Medicago truncatula,
C.elegans, Drosophila, Xenopus, Zebrafish, Rat and
Mouse from NCBI and reduced using proposed method.
The result of this reduced space is shown in Table 4 and
it found that the average reduced storage space is
43.77%, the minimum and maximum are 43.30%,
72.86%.

J. Computer Sci., 4 (6): 467-473, 2008

 472

Table 4: Reduced storage space analysis on amino acid sequences
Name of Accession No. Actual Final Reduced
organisms of Protein size (byte) size (byte) space (%)
Sheep ABS70710.1 157 86 45.22
 CAF18242.1 172 96 44.19
 AAP86607.1 402 219 45.52
 AAP86606 402 219 45.52
 BAC10992 108 60 44.44
 BAC10991 315 168 46.67
 BAC10990 89 50 43.82
Lambda phage CAA47810 554 304 45.13
 CAA70589 614 337 45.11
 CAA57857 1544 851 44.88
 CAA39202 562 308 45.20
 CAA58041 2104 1193 43.30
E-Coli AAA23097 936 517 44.76
Chlamydo- 1Q90_A 292 162 44.52
monas XP_001016824 2104 1004 52.28
Tetrahyme-na XP_001008697.1 1429 796 44.30
 EAR88452.1 1429 796 44.30
 XP_001010932.1 1094 607 44.52
Budding yeast Q23405.2 842 463 45.01
 O74653.1 840 454 45.95
 P18296.3 1828 1009 44.80
 Q9URV2.1 1458 799 45.20
 Q12381.1 906 500 44.81
Fission yeast BAA21405.1 1241 685 44.80
 BAA21390.1 517 284 45.07
 BAA21388.1 2233 1235 44.69
 CAG99842.1 2233 606 72.86
Maize 1JQO 970 529 45.46
 AAN41252.1 1055 583 44.74
Neurospora T51069 929 513 44.78
 AAK31733.1 1638 894 45.42
 XP_960681.1 1401 743 46.97
 XP_960662.1 1117 607 45.66
 ABZ49521.1 772 423 45.21
Maize AAN41252.1 1055 583 44.74
 ABE98698.1 488 265 45.70
 AAN06977.1 351 195 44.44
 AAG41777.1 496 275 44.56
Arabidopsis EAS41518.1 908 403 55.62
 EAZ09680.1 667 368 44.83
 EAZ09666.1 1058 584 44.80
Medicago AAW78863.1 932 517 44.53
truncatula NP_849731.1 975 533 45.33
 NP_174333.2 975 533 45.33
 NP_849727.1 800 441 44.88
 NP_850386.1 895 490 45.25
C.Elegans CAM84804.1 3095 1672 45.98
 CAM84692.1 3095 1672 45.98
 CAM84693.1 2892 1559 46.09
 CAO82020.1 2371 1278 46.10
Drosophila 3BVX 1045 579 44.59
 3BVT 1045 579 44.59
 EAL30261.2 1448 796 45.03
 EAL30259.2 2171 1178 45.74
 EAL30255.2 1204 625 48.09
 EAL30252.2 1232 673 45.37
Xenopus NP_989134.1 458 252 44.98
 NP_001085199.1 806 444 44.91
 NP_001085699.1 1022 562 45.01
 NP_001084574.1 1001 559 44.16
 CAJ82090.1 571 309 45.88
 CAJ82079.1 468 259 44.66
Zebrafish 2Z6G 780 428 45.13
 3B98 475 262 44.84
 BAF44666.1 2515 1387 44.85
 AAH91786.1 784 428 45.41
 AAH93193.1 422 234 44.55
Rat 1MAB 510 275 46.08
 XP_578142.2 519 288 44.51
 XP_215763.4 1705 916 46.28
 XP_575155.2 7613 4147 45.53
 XP_221512.4 535 285 46.73
 EDL81283.1 773 407 47.35
Mouse AAI67479.1 517 278 46.23
 AAI36285.1 2137 1188 44.41
 AAI36286.1 2137 1188 44.41
 AAI56438.1 1500 820 45.33
Average 45.77

 The first screen of Fig. 5 contains the
representation of Amylase in an ASCII format. When
this amino acid sequence is stored using the proposed
method, the storage has been nearly reduced to half and
that is shown in the second screen of Fig. 5.
 A large amount of biological data is semi-
structured and stored in flat-files. These databases must
be integrated with the structured data available in
relational or object-oriented databases. The sequence
matching process[8] is difficult, because string
comparison takes more time. This method, converting
the text to a binary format and then to bytes, reduces
storage space and processing time. The probability of
getting the deduced protein sequence lies between
42.86 and 87.17%. Further, this method provides a way
to represent the data in a signal form and compression
can be done using compression techniques.

REFERENCES

1. Michael Y. Galperin, 2007. The molecular biology

database collection. Nucleic Acids Res.,
35: 3-4. http://www.ncbi.nlm.nih.gov/pubmed/
17148484.

2. Bairoch, A. and R. Apweiler, 1999. The SWISS-
PROT protein sequence databank and its
supplement TrEMBL. Nucleic Acids Res.,
27:49-54. http://nar.oxfordjournals.org/cgi/content/
full/27/1/49

3. Zoé Lacroix, 2002. Biological data integration:
Wrapping data and tools. IEEE Trans. Inform.
Technol. Biomed., 6: 123-128. Doi:
10.1109/TITB.2002.1006299

4. Andreas Teufel, Markus Krupp, Arndt Weinmann
and Peter R. Galle, 2006. Current bioinformatics
tools in genomic biomedical research. Int. J.
Molecular Med., ISSN 1107-3756 17: 967-973
http://cat.inist.fr/?aModele=afficheN&cpsidt=1783
7351

5. Orpita Bosu and Simmender Kaur Thukral, 2007.
Bioinformatics Databases, Tools and Algorithms.
1st Edn., Oxford University Press, ISBN:
9780195676839.

6. Lesk, A.M., 2001. Introduction to protein
architecture: The structural biology of proteins. 1st
Edn., Oxford University Press, ISBN: 0198504748

7. Branden, C.I. and J. Tooze, 2001. Introduction to
Protein Structure., 2nd Edn., Garland Publishing,
New York. ISBN: 13:9780815323051 ISBN: 10
0815323050

J. Computer Sci., 4 (6): 467-473, 2008

 473

8. David R. Musser and Gor V. Nishanov, 2002. A
fast generic sequence matching algorithm,
dissertation submitted, Rensselaer Polytechnical
Institute, New York.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.15.2586
http://www.literateprogramming.com/gsearch.pdf

9 Iskandar Ishak, Naomie Salim, 2006. Database
Integration Approaches for Heterogeneous
Biological Data Sources: An overview,
Proceedings of the Postgraduate Annual Research
Seminar, 202-206 http://66.102.1.104/scholar?hl
=en&lr=&q=cache:LzN5nkpICEsJ:eprints.utm.my/
3342/+Iskandar+Ishak,+Naomie+Salim,+2006

