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Abstract: Data Mining (DM) represents the process of extracting interesting and previously unknown 
knowledge from data. This study proposes a new algorithm called FD_Discover for discovering 
Functional Dependencies (FDs) from databases. This algorithm employs some concepts from relational 
databases design theory specifically the concepts of equivalences and the minimal cover. It has 
resulted in large improvement in performance in comparison with a recent and similar algorithm called 
FD_MINE. 
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INRODUCTION 

 
 FDs are relationships (constraints) between the 
attributes of a database relation; a FD states that the 
value of some attributes are uniquely determined by the 
values of some other attributes. Discovering FDs from 
databases is useful for reverse engineering of legacy 
systems for which the design information has been lost. 
Furthermore, discovering FDs can also help a database 
designer to decompose a relational schema into several 
relations through the normalization process to get rid or 
eliminate some of the problems of unsatisfactory 
database design. The identification of these 
dependencies that are satisfied by a database instance is 
an important topic in data mining literature[5]. The 
problem of generating or discovering FDs from 
relational databases had been studied in[3,4,7,8,11,12]. A 
straight forward solution algorithm is shown to require 
exponential time of all inputs (number of attributes and 
number of tuples in a relation).  
 In this study, we are proposing a new algorithm for 
discovering FDs from static databases. This algorithm 
will use and employ some concepts from relational 
database theory, such as the theory of equivalencies and 
minimal cover of FDs. The proposed algorithm aims at 
minimizing the time requirements of algorithms that 
discover FDs from databases. We will compare the 
result of our proposed algorithm with a previous well 
known algorithm called FD_MINE[12]. 
 Some of the previous studies in discovering FDs 
from databases presented in[2,4,8] have focused on 
discovering embedded parallel query execution, 

optimizing queries, providing some kind of summaries 
over large data sets or discovering association rules in 
stream data. 
 Other studies presented in[3,7,9,11,12] have presented 
various methods for discovering FDs from large 
databases, these studies have focused on discovering 
FDs from very large databases and had faced a general 
problem which is represented by the exponential time 
requirements that depend on database size (the 
dimensionality problem in number of tuples and 
attributes).  
 
Functional dependencies: An FD, denoted by X→Y, 
is constraint between two sets of attributes X and Y that 
are subsets of some relation schema R. It specifies a 
constraint on all possible tuples t1 and t2 in R such that 
if t1[X] = t2[X], then they must also have t1[Y] = t2[Y]. 
This means that the value of the Y component in any 
tuple in R depend on or are determined by the value of 
the X component or alternatively the value of the X 
component of any tuple uniquely (or functionally) 
determines the value of the Y component.  
 
Definition 1: If A is an attribute or set of attributes in 
relation R, all the attributes in R that are functionally 
dependent on A in relation R with respect to F (where F 
is a set of FDs that holds on R), form the closure of A 
and it is denoted by A+ or Closure(A). 
 
Definition 2: The nontrivial closure of attribute A with 
respect to F that is denoted by Closure→(A), is defined 
as Closure→(A) = Closure (A)-A. 
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Definition 3: The closure of a set F of FDs is the set of 
all FDs that are logically implied by F and it is denoted 
by F+. 
 
Minimal cover: Minimal FDs or minimal cover is a 
useful concept in which all unnecessary FDs are 
eliminated from F. The concept of minimal cover of F 
is sometimes called Irreducible Set of FDs. The 
minimal cover of FDs of F is denoted by Fc.  
 To find the minimal cover of a set of FDs of F, we 
transform F such that for each one of its FDs that has 
more than one attribute in the right hand side is reduced 
to a set of FDs that have only one attribute on the right 
hand side. The minimal cover Fc is then a set of FDs 
such that:  
 
• Every right hand side of each dependency is a 

single attribute 
• For X→A in F then the set F-{X→A} equivalent to 

F 
• For X→A in F and a proper subset Z of X is F-

{X→A} U {Z→A} equivalent to F 
 
 Example 3.1, Consider the following set of FDs on 
schema R (A, B, C): 
 

F = {A→BC, B→C, A→B, AB→C} 
 

Then the Minimal Cover of F is Fc = {A→B, B→C}. 
 
Functional dependencies and equivalent classes: To 
discover a set of FDs that are satisfied by a relation 
instance, we use the partition method that divides the 
tuples of this instance into groups based on the different 
values of each column (attribute). For each attribute, the 
number of groups is equal to the number of different 
values for that attribute. Each group is called an 
equivalent class[10]. For instance, given the following 
relation instance as shown in Table 1 that has five 
attributes with binary values: 
 For attribute A, there are two different values (0 
and 1), then the tuples that have 0 are {1,2,5} and the 
tuples that have 1 are {3,4}. Hence, the equivalent 
classes for attribute A are {{1,2,5},{3,4}}. Similarly for 
the other attributes {B, C, D and E}, their equivalent 
classes are as follows respectively: {{1, 2, 3, 5}, {4}}, 
{{1, 2, 3, 5}, {4}}, {{1, 2, 5}, {3, 4}} and {{1, 2, 4}, 
{3, 5}}. 
 Next, we test each pair of equivalent classes of 
each pair of attributes if they are same or not. For each 
pair of equivalent classes that are the same, we 
conclude that their corresponding attributes are 
equivalent and each attribute is functionally determined 

Table1: Binary relation instance 
Tuple ID A B C D E 
t1 0 1 0 1 0 
t2 0 1 0 1 0 
t3 1 1 0 0 1 
t4 1 0 1 0 0 
t5 0 1 0 1 1 
 

 
 
Fig. 1: Lattice  for  the attributes of the relation in 

Table 1 
 
by the other. For instance, since the equivalent classes 
for attribute A = the equivalent classes for attribute D, 
we can conclude that attribute A is equivalent to 
attribute D and consequently: (A↔D, A→D, D→A). 
Furthermore, A can be added to the closure of D and D 
can be added to the closure of A. 
 This process is repeated for all attributes and for all 
of their combinations (candidate set). For instance, 
given a relation with five attributes (A, B, C, D, E) the 
candidate set is {φ, A, B, C, D, E, AB, AC, AD, AE, 
BC, BD, DE, CD, CE, DE, ABC, ABD, ABE, ACD, 
ACE, ADE, BCD, BCE, BDE, CDE, ABCD, ABCE, 
ABDE, ACDE, BCDE, ABCDE} for a total of 32 (i.e., 
25) combinations. These candidate attributes of this 
relation are represented as a lattice as shown in Fig. 1. 
 Each node in Fig. 1 represents a candidate 
attributes. An edge between any two nodes such as E 
and DE indicates that the FD: DE→D, needs to be 
checked. Hence, discovering FDs from very large 
databases with large number of attributes may require 
an exponential time[6, 8]. 
 
FD_MINE algorithm: FD-Mine algorithm uses the 
theory of FDs to reduce both the size of the dataset and 
the number of FDs to be checked through the 
discovered equivalences. Figure 2 shows the FD_MINE 
algorithm. For more detail of this algorithm refer to [12]. 
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   FD_MINE  algorithm   
To discover all functional dependencies in a dataset. 
Input: Dataset D and its attributes X 1 , X 2 ,  ... , X m 
Output: FD_SET, EQ_SET and KEY_SET  
{   
     1. Initialization  step  
     Set R = {X 1 , X 2 , ..., X m }, set FD_SET = ∅  ,  
     Set EQ_SET = ∅  , set KEY_SET =  ∅    
     Set CANDIDATE_SET = {X 1 , X 2 , ..., X m}  
         For all X i   ∈ CANDIDATE_SET do   

Set Closure'[X i ]  =  ∅    
      2. Iteration  step   
       While CANDIDATE_SET ?  ∅   do   
         {   
            For all X i   ∈   CANDIDATE_SET do  
              {   
                 ComputeNonTrivialClosure(X i) 
                  ObtaintFDandKey(X i )   
               }   
           ObtainEQSet(C ANDIDATE_SET)  
           PruneCandidates(CANDIDATE_SET)           
           GenerateCandidates(CANDIDATE_SET)  
              }   
3. Display (FD_SET, EQ_SET, KEY_SET)  
 }    

 
Fig. 2: The main procedure of FD_MINE algorithm 
 
Time complexity of FD-MINE algorithm: The main 
body of the FD_MINE algorithm has a loop that iterates 
n times, where n is the cardinality of the candidate set 
in the given database. Therefore, this main body has a 
time complexity of n. Within each iteration of the above 
loop, there is a call for each of the following: 
 
• A loop that iterates n times over all attributes in the 

Candidate_Set within each iteration of this loop 
there is call for each of the following procedures:  
• ComputeNonTrivialClosure(), this procedure 

iterates n times  
• ObtainFDandKey(), this procedure iterates n 

times. For a total time of n (n+n)= 2 n 2 
• ObtainEQSet(), this procedure performs two nested 

loops each with n iterations for a total time of n2. 
• PruneCandidates(CANDIDATE_SET. this 

procedure performs one loop with n iteration. 
• GenerateCandidates(CANDIDATE_SET) this 

procedure performs two nested loops each with n 
iterations for a total time of n2.  

 
 Therefore, the total time required by the FD_MINE 
algorithm is:  
 

T (n) = n (2 n2+n2+n+n2) = 4n3+n2 
 
Suggested work: In this study, we suggest an 
algorithm  that  discovers  all  FDs  from  databases that 

  FD_Discover  algorithm:   
Input: dataset D and its attribute X 1 ,   X 2 ,….,Xn 
Output: Minim al FD_Set, Candidate Set for next 
level 
1. Initialization step  
     Set R= attribute (X1 , X 2 ,….., X n )   

       Set  FD_Set = φ 
       Set  EQ_Set = φ  
       Set  Candidate_Set= {X 1 , X 2 ,….., X n }  
      
  2. Iteration step  

      While Candidate_Set ?  φ  Do {   
          For all Xi ∈ Candidate_Set Do {   
             FD_Set =   
                   ComputeMinimalNontrivialFD(Xi) 
             } 
             GenerateNextL evelCandidates(Candidate 
                 _Set  
       } 

 
 3. Display FD_SET, EQ_Set    

 
Fig. 3: The main procedure of the FD_Discover 

algorithm 
 
reduces the number of attributes and FDs to be checked. 
The suggested algorithm called FD_Discover and it will 
incorporate the following concepts.  
 
• An incremental minimal (Canonical) cover 

computation during each phase of discovering FDs 
to minimize the number of FDs to be checked 

• During each phase of the algorithm and for each 
attribute, we compute its nontrivial closure 
attributes. For each equivalent pair of attribute 
closures, we remove one of them from the 
candidate set of attributes. Also, we add the fact 
that these two attributes are equivalent (↔). This 
will reduce the number of attributes to be checked 
during each phase of the algorithm 

 
FD_Discover algorithm: To introduce our 
FD_Discover algorithm the following terms should be 
defined: 
 EQ_Set = Set of discovered equivalent set in form: 
X ↔ Y. 
 Candidate_Se t= attributes over a dataset to be 
checked (Relation Attributes). 
 Xi: One of the attributes in candidate_set. Figure 3 
shwos the main procedure of the FD_Discover 
algorithm. 
 The main procedure of the FD_Discover algorithm 
calls the ComputeMinimalNontrivialFD(Xi) that is 
shown  in  Fig.  4.  This  procedure  computes  for  each 
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 Procedure ComputeMinimalNontrivialFD (Xi)
{   For each Y ⊂ R - Xi Do 
       If (|? Xi | = | ?  XiY | then  
     Add Y to closure’ [Xi]  

Add   Xi → Y to FD_Set 
Add XiY to T mpList  

 If (| ? Y | = | ?  YXi |) then  
    Add Xi to closure' [Y] 

             Add   Y →Xi to FD_Set 
               Add Xi ↔Y to EQ_Set     

    RemoveY from candidate_set
End If 

         End If 
      Next Attribute  
} 

 
 
Fig. 4: ComputeMinimalNontrivialFD 
 

 Procedure 
GenerateNextLevelCandidates(CANDIDATE_SET)
{ 
For each Xi ∈ CANDIDATE_SET do 
    For each Xj ∈ CANDIDATE_SET do 
        If (Xi[1]=Xj[1], …, Xi[k-2] = Xj[k-2] and   
                      Xi[k-1] < Xj[k-1]) then 
             {Set Xij = Xi join Xj 
              If ∃Xij∈ TmpList  then delete Xij  
              Else 
                  Compute the partition ПXij of Xij 
         endif 
} // end procedure 

 
 
Fig. 5: GenerateNextLevelCandidates (CANDIDATE_ 

SET) 
 
attribute its nontrivial closure set. For each attribute Xi 
if Y in its closure then add Xi→Y to the FD_Set and 
add XiY to TmpList.  
 Furthermore, this procedure checks each pair of 
attributes whether their closures are equivalent or not. 
For each equivalent pair remove one of the attributes 
from the candidate set of attributes. Figure 5 shows the 
GenerateNextLevelCandidates procedure. 
 
Example: Given the database shown in Table 1, the 
following steps show how our suggested algorithm can 
be applied on this relation only for the first level.  
 
• Initialization step, the following identifiers would 

be initialized as follows: 
• CANDIDATE_SET= {A, B, C, D} 
• FD_SET: { } 
• EQ_SET: { } 

• Next, the algorithm iterates over the following 
steps until the candidate set is empty. 

 The procedure ComputeNonTrivialFD (Xi) iterates 
n times according to the number of attributes as 
follows: 
 
n = 1, ComputeMinimalNontrivialFD(A): Since 
attribute (A) has two attributes in its closure set {B, D}, 
for each attribute in this set, this procedure first adds 
the fact that attribute A functionally determines each 
attribute in this closure set to FD_Set (i.e., FD_Set = 
{A→B, A→D}). Next, it checks whether attribute A is 
equivalent to attribute B then to attribute D. 
Consequently, this procedure finds out that only 
attribute D is equivalent to attribute A. Therefore 
{A→D} is added to EQ_Set and immediately it updates 
the Candidate_Set by removing attribute {D} from it 
(i.e. Candidate_Set = {A, B, C}). 
 Therefore, FD_Set = {A→B, A→D} and EQ_Set = 
{A→D} 
 
n = 2, ComputeMinimalNontrivialFD(B): Attribute 
(B) has no attributes in its closure set, therefore no 
change to FD_Set and EQ_Set. Hence, Closure' (B) = 
{}, FD_Set = {A→B, A→D} and EQ_Set = {A→D} 
 
n = 3, ComputeMinimalNontrivialFD(C): Attribute 
(C) has one attribute in its closure set {B}, for each 
attribute in this set, this procedure first adds the fact 
that attribute C functionally determines each attribute in 
its closure set to FD_Set (i.e add C→B to FD_Set. 
Therefore FD_Set = {A→B, A→D, C→B}). Next this 
procedure checks whether attribute C is equivalent to 
attribute B or not. This procedure finds out that attribute 
B is not equivalent to attribute C 
 
Time coplexity of FD_Discover algorithm: The main 
body of the FD_Discover algorithm has a loop that 
iterates n times, where n is the cardinality of the 
candidate set, in the given database. Therefore, this 
main body has a time complexity of n. Within each 
iteration of the above loop, there is a call for each of the 
following procedures: 
 
• ComputeMinimalNontrivialFD(), this procedure is 

called n times each call of this procedure takes n 
iterations, for a total time of n2 

• GeneratNextLevelCandidates(Candidate_Set) this 
procedure performs two nested loops, each with n 
iteration for a total time of n2 

 
 Therefore, the total time required by the 
FD_Discover algorithm is: 
 

T(n) = n(n2+n2)) = 2n3 
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Table 2: Actual time requirements at all level for both algorithms 
(FD_MINE and the FD_Discover algorithm) for some UCI 
datasets 

   Time for Time for  
 No. of No. of FD_Discover FD_MINE 
DB name attributes tuples (min) (min) 
Abalone 9 4,177 1.05 5.55 
Balance-scale 5 625 0.003 0.04 
Breast-cancer 11 699 15.21 70.05 
Bridge 13 108 75.43*  410.48 
Chess  7 28,056 0.14 1.07 
Echocardiogram 13 132 5.55* 26.07 
Glass 11 214 1.23 3.45 
Iris 5 150 0.0002 0.03 
Nursery 9 12,960 2.56 13.14 
Machine 10 209 1.24 9.13 
 
Table 3: Time complexity comparison based on T(n) for both 

algorithms 
 No. of Coordinate FD_MINE FD_Discover 
Database name attribute of datasets 2n 4n3+n2 2n3 
Abalone 9 512 2997 1458 
Balance-scale 5 32 525 250 
Breast-cancer 11 2048 5445 2662 
Bridge 13 8192 8957 4394 
Chess  7 128 1421 686 
Echocardiogram 13 8192 8957 4394 
Glass 11 2048 5445 2662 
Iris 5 32 525 250 
Nursery 9 512 2997 1458 
Machine 10 1024 4100 2000 
 

RESULTS AND DISCUSSION 
 
 Table 2 shows the results of the actual times (on a 
PC with speed of 2.3 GHz) required for FD_MINE 
algorithm and FD_Discover algorithm for different UCI 
datasets[1] with varying number of attributes for 
discovering all FDs at all levels.  
 In Table 2 Bridge and Echocardiogram datasets 
have the same number of attributes and a similar 
number of tuples but the time required for 
Echocardiogram database is much less than the time 
required for Bridge database. This had happened 
because they have different data and Echocardiogram 
has more equivalent attributes than Bridge so the 
number of checks is less and the time required is also 
less. From these results we can notice that our 
FD_Discover algorithm needs less time than FD_MINE 
by a factor of almost 5. 
 Table 3 shows the time complexity comparison 
based on T(n) that are computed earlier for 
FD_Discover algorithm and for FD_MINE algorithm. 
 The FD_Discover algorithm reduces the number of 
FDs to be checked and produces fewer FDs than 
FD_MINE algorithm (the FDs that are discovered by 
the FD-Discover  algorithm are equivalent to those FDs 
that   are  discovered   by   the   FD_MINE   algorithm). 

ABCE

ABC ABE ACE BCE

AB AC AE BC BE CE

A B C E  
(a) 

 

ABCEABCD ABDE

ABCDE

ACDE BCDE

ABC ABD ACD ADE BCD BDE CDEABE ACE BCE

AB AC AD BD CD DEAE BC BE CE

A B DC E  
(b) 

 
Fig. 6: Semi-lattice of checked FDs, (a): FD_Discover, 

(b): FD_MINE 
 
Therefore, the Semi-lattice for FD-Discover algorithm 
will be smaller than the semi-lattice of FD-MINE 
algorithm. For instance, during the discovering process 
of the FDs from the database given in Table 1, Fig. 6a 
shows the semi-lattice of checked FDs using 
FD_Discover algorithm and Fig. 6b shows the semi-
lattice of checked FDs using FD_MINE algorithm. It is 
noticed that the semi-lattice for FD_Discover algorithm 
has fewer edges than the semi-lattice for FD_MINE 
algorithm.  
 

CONCLUSION 
 
 We have suggested a new algorithm 
(FD_Discover) to discover FDs which utilizes the 
concepts of equivalent properties and minimal 
(Canonical) cover of FDs. 
 The aim of this algorithm is to optimize the time 
requirements when compared with a previous algorithm 
called FD_MINE. The analyses of the FD_Discover 
algorithm had a better performance of a factor of 5 over 
the FD_MINE algorithm.  
 Furthermore, simulation results for both algorithms 
have shown similar results. In FD_Discover algorithm 
there is no need to check all attributes to discover 
functional dependency as a result of applying the 
equivalent properties. However, in FD_MINE 
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algorithm all attributes must be checked. In 
FD_Discover algorithm only one procedure (Procedure 
ComputeMinimalNontrivialFD) is needed to discover 
immediately FD_Set, EQ_Set and pruning Candidate 
set for next level, whereas FD_MINE algorithm needs 
three procedures one to discover FD_Set 
(ObtainFDandKey), another to discover EQ_Set 
(ObtainEQSet) and PruneCandidates and 
GenerateNextLevelCandidate to prune Candidate set 
for next level. This leads to higher complexity in 
number of nested loops and time required. 
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