
Journal of Computer Science 4 (6): 421-426, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Jalal Atoum, Department of Computer Science, Princess Sumaya University For Technology,
 Amman-Jordan, P.O. Box 1438 Al-Jubaiha, 11941 Jordan

421

Mining Functional Dependency from Relational Databases

Using Equivalent Classes and Minimal Cover

1Jalal Atoum, 2Dojanah Bader and 1Arafat Awajan
1Department of Computer Science, PSUT, Amman, Jordan

2Amman University College, Albalqa Applied University, Amman, Jordan

Abstract: Data Mining (DM) represents the process of extracting interesting and previously unknown
knowledge from data. This study proposes a new algorithm called FD_Discover for discovering
Functional Dependencies (FDs) from databases. This algorithm employs some concepts from relational
databases design theory specifically the concepts of equivalences and the minimal cover. It has
resulted in large improvement in performance in comparison with a recent and similar algorithm called
FD_MINE.

Key words: Data mining, functional dependencies, equivalent classes, minimal cover

INRODUCTION

 FDs are relationships (constraints) between the
attributes of a database relation; a FD states that the
value of some attributes are uniquely determined by the
values of some other attributes. Discovering FDs from
databases is useful for reverse engineering of legacy
systems for which the design information has been lost.
Furthermore, discovering FDs can also help a database
designer to decompose a relational schema into several
relations through the normalization process to get rid or
eliminate some of the problems of unsatisfactory
database design. The identification of these
dependencies that are satisfied by a database instance is
an important topic in data mining literature[5]. The
problem of generating or discovering FDs from
relational databases had been studied in[3,4,7,8,11,12]. A
straight forward solution algorithm is shown to require
exponential time of all inputs (number of attributes and
number of tuples in a relation).
 In this study, we are proposing a new algorithm for
discovering FDs from static databases. This algorithm
will use and employ some concepts from relational
database theory, such as the theory of equivalencies and
minimal cover of FDs. The proposed algorithm aims at
minimizing the time requirements of algorithms that
discover FDs from databases. We will compare the
result of our proposed algorithm with a previous well
known algorithm called FD_MINE[12].
 Some of the previous studies in discovering FDs
from databases presented in[2,4,8] have focused on
discovering embedded parallel query execution,

optimizing queries, providing some kind of summaries
over large data sets or discovering association rules in
stream data.
 Other studies presented in[3,7,9,11,12] have presented
various methods for discovering FDs from large
databases, these studies have focused on discovering
FDs from very large databases and had faced a general
problem which is represented by the exponential time
requirements that depend on database size (the
dimensionality problem in number of tuples and
attributes).

Functional dependencies: An FD, denoted by X→Y,
is constraint between two sets of attributes X and Y that
are subsets of some relation schema R. It specifies a
constraint on all possible tuples t1 and t2 in R such that
if t1[X] = t2[X], then they must also have t1[Y] = t2[Y].
This means that the value of the Y component in any
tuple in R depend on or are determined by the value of
the X component or alternatively the value of the X
component of any tuple uniquely (or functionally)
determines the value of the Y component.

Definition 1: If A is an attribute or set of attributes in
relation R, all the attributes in R that are functionally
dependent on A in relation R with respect to F (where F
is a set of FDs that holds on R), form the closure of A
and it is denoted by A+ or Closure(A).

Definition 2: The nontrivial closure of attribute A with
respect to F that is denoted by Closure→(A), is defined
as Closure→(A) = Closure (A)-A.

J. Computer Sci., 4 (6): 421-426, 2008

 422

Definition 3: The closure of a set F of FDs is the set of
all FDs that are logically implied by F and it is denoted
by F+.

Minimal cover: Minimal FDs or minimal cover is a
useful concept in which all unnecessary FDs are
eliminated from F. The concept of minimal cover of F
is sometimes called Irreducible Set of FDs. The
minimal cover of FDs of F is denoted by Fc.
 To find the minimal cover of a set of FDs of F, we
transform F such that for each one of its FDs that has
more than one attribute in the right hand side is reduced
to a set of FDs that have only one attribute on the right
hand side. The minimal cover Fc is then a set of FDs
such that:

• Every right hand side of each dependency is a

single attribute
• For X→A in F then the set F-{X→A} equivalent to

F
• For X→A in F and a proper subset Z of X is F-

{X→A} U {Z→A} equivalent to F

 Example 3.1, Consider the following set of FDs on
schema R (A, B, C):

F = {A→BC, B→C, A→B, AB→C}

Then the Minimal Cover of F is Fc = {A→B, B→C}.

Functional dependencies and equivalent classes: To
discover a set of FDs that are satisfied by a relation
instance, we use the partition method that divides the
tuples of this instance into groups based on the different
values of each column (attribute). For each attribute, the
number of groups is equal to the number of different
values for that attribute. Each group is called an
equivalent class[10]. For instance, given the following
relation instance as shown in Table 1 that has five
attributes with binary values:
 For attribute A, there are two different values (0
and 1), then the tuples that have 0 are {1,2,5} and the
tuples that have 1 are {3,4}. Hence, the equivalent
classes for attribute A are {{1,2,5},{3,4}}. Similarly for
the other attributes {B, C, D and E}, their equivalent
classes are as follows respectively: {{1, 2, 3, 5}, {4}},
{{1, 2, 3, 5}, {4}}, {{1, 2, 5}, {3, 4}} and {{1, 2, 4},
{3, 5}}.
 Next, we test each pair of equivalent classes of
each pair of attributes if they are same or not. For each
pair of equivalent classes that are the same, we
conclude that their corresponding attributes are
equivalent and each attribute is functionally determined

Table1: Binary relation instance
Tuple ID A B C D E
t1 0 1 0 1 0
t2 0 1 0 1 0
t3 1 1 0 0 1
t4 1 0 1 0 0
t5 0 1 0 1 1

Fig. 1: Lattice for the attributes of the relation in

Table 1

by the other. For instance, since the equivalent classes
for attribute A = the equivalent classes for attribute D,
we can conclude that attribute A is equivalent to
attribute D and consequently: (A↔D, A→D, D→A).
Furthermore, A can be added to the closure of D and D
can be added to the closure of A.
 This process is repeated for all attributes and for all
of their combinations (candidate set). For instance,
given a relation with five attributes (A, B, C, D, E) the
candidate set is {φ, A, B, C, D, E, AB, AC, AD, AE,
BC, BD, DE, CD, CE, DE, ABC, ABD, ABE, ACD,
ACE, ADE, BCD, BCE, BDE, CDE, ABCD, ABCE,
ABDE, ACDE, BCDE, ABCDE} for a total of 32 (i.e.,
25) combinations. These candidate attributes of this
relation are represented as a lattice as shown in Fig. 1.
 Each node in Fig. 1 represents a candidate
attributes. An edge between any two nodes such as E
and DE indicates that the FD: DE→D, needs to be
checked. Hence, discovering FDs from very large
databases with large number of attributes may require
an exponential time[6, 8].

FD_MINE algorithm: FD-Mine algorithm uses the
theory of FDs to reduce both the size of the dataset and
the number of FDs to be checked through the
discovered equivalences. Figure 2 shows the FD_MINE
algorithm. For more detail of this algorithm refer to [12].

J. Computer Sci., 4 (6): 421-426, 2008

 423

 FD_MINE algorithm
To discover all functional dependencies in a dataset.
Input: Dataset D and its attributes X 1 , X 2 , ... , X m
Output: FD_SET, EQ_SET and KEY_SET
{
 1. Initialization step
 Set R = {X 1 , X 2 , ..., X m }, set FD_SET = ∅ ,
 Set EQ_SET = ∅ , set KEY_SET = ∅
 Set CANDIDATE_SET = {X 1 , X 2 , ..., X m}
 For all X i ∈ CANDIDATE_SET do

Set Closure'[X i] = ∅
 2. Iteration step
 While CANDIDATE_SET ? ∅ do
 {
 For all X i ∈ CANDIDATE_SET do
 {
 ComputeNonTrivialClosure(X i)
 ObtaintFDandKey(X i)
 }
 ObtainEQSet(C ANDIDATE_SET)
 PruneCandidates(CANDIDATE_SET)
 GenerateCandidates(CANDIDATE_SET)
 }
3. Display (FD_SET, EQ_SET, KEY_SET)
 }

Fig. 2: The main procedure of FD_MINE algorithm

Time complexity of FD-MINE algorithm: The main
body of the FD_MINE algorithm has a loop that iterates
n times, where n is the cardinality of the candidate set
in the given database. Therefore, this main body has a
time complexity of n. Within each iteration of the above
loop, there is a call for each of the following:

• A loop that iterates n times over all attributes in the

Candidate_Set within each iteration of this loop
there is call for each of the following procedures:
• ComputeNonTrivialClosure(), this procedure

iterates n times
• ObtainFDandKey(), this procedure iterates n

times. For a total time of n (n+n)= 2 n 2
• ObtainEQSet(), this procedure performs two nested

loops each with n iterations for a total time of n2.
• PruneCandidates(CANDIDATE_SET. this

procedure performs one loop with n iteration.
• GenerateCandidates(CANDIDATE_SET) this

procedure performs two nested loops each with n
iterations for a total time of n2.

 Therefore, the total time required by the FD_MINE
algorithm is:

T (n) = n (2 n2+n2+n+n2) = 4n3+n2

Suggested work: In this study, we suggest an
algorithm that discovers all FDs from databases that

 FD_Discover algorithm:
Input: dataset D and its attribute X 1 , X 2 ,….,Xn
Output: Minim al FD_Set, Candidate Set for next
level
1. Initialization step
 Set R= attribute (X1 , X 2 ,….., X n)

 Set FD_Set = φ
 Set EQ_Set = φ
 Set Candidate_Set= {X 1 , X 2 ,….., X n }

 2. Iteration step

 While Candidate_Set ? φ Do {
 For all Xi ∈ Candidate_Set Do {
 FD_Set =
 ComputeMinimalNontrivialFD(Xi)
 }
 GenerateNextL evelCandidates(Candidate
 _Set
 }

 3. Display FD_SET, EQ_Set

Fig. 3: The main procedure of the FD_Discover

algorithm

reduces the number of attributes and FDs to be checked.
The suggested algorithm called FD_Discover and it will
incorporate the following concepts.

• An incremental minimal (Canonical) cover

computation during each phase of discovering FDs
to minimize the number of FDs to be checked

• During each phase of the algorithm and for each
attribute, we compute its nontrivial closure
attributes. For each equivalent pair of attribute
closures, we remove one of them from the
candidate set of attributes. Also, we add the fact
that these two attributes are equivalent (↔). This
will reduce the number of attributes to be checked
during each phase of the algorithm

FD_Discover algorithm: To introduce our
FD_Discover algorithm the following terms should be
defined:
 EQ_Set = Set of discovered equivalent set in form:
X ↔ Y.
 Candidate_Se t= attributes over a dataset to be
checked (Relation Attributes).
 Xi: One of the attributes in candidate_set. Figure 3
shwos the main procedure of the FD_Discover
algorithm.
 The main procedure of the FD_Discover algorithm
calls the ComputeMinimalNontrivialFD(Xi) that is
shown in Fig. 4. This procedure computes for each

J. Computer Sci., 4 (6): 421-426, 2008

 424

 Procedure ComputeMinimalNontrivialFD (Xi)
{ For each Y ⊂ R - Xi Do
 If (|? Xi | = | ? XiY | then
 Add Y to closure’ [Xi]

Add Xi → Y to FD_Set
Add XiY to T mpList

 If (| ? Y | = | ? YXi |) then
 Add Xi to closure' [Y]

 Add Y →Xi to FD_Set
 Add Xi ↔Y to EQ_Set

 RemoveY from candidate_set
End If

 End If
 Next Attribute
}

Fig. 4: ComputeMinimalNontrivialFD

 Procedure
GenerateNextLevelCandidates(CANDIDATE_SET)
{
For each Xi ∈ CANDIDATE_SET do
 For each Xj ∈ CANDIDATE_SET do
 If (Xi[1]=Xj[1], …, Xi[k-2] = Xj[k-2] and
 Xi[k-1] < Xj[k-1]) then
 {Set Xij = Xi join Xj
 If ∃Xij∈ TmpList then delete Xij
 Else
 Compute the partition ПXij of Xij
 endif
} // end procedure

Fig. 5: GenerateNextLevelCandidates (CANDIDATE_

SET)

attribute its nontrivial closure set. For each attribute Xi
if Y in its closure then add Xi→Y to the FD_Set and
add XiY to TmpList.
 Furthermore, this procedure checks each pair of
attributes whether their closures are equivalent or not.
For each equivalent pair remove one of the attributes
from the candidate set of attributes. Figure 5 shows the
GenerateNextLevelCandidates procedure.

Example: Given the database shown in Table 1, the
following steps show how our suggested algorithm can
be applied on this relation only for the first level.

• Initialization step, the following identifiers would

be initialized as follows:
• CANDIDATE_SET= {A, B, C, D}
• FD_SET: { }
• EQ_SET: { }

• Next, the algorithm iterates over the following
steps until the candidate set is empty.

 The procedure ComputeNonTrivialFD (Xi) iterates
n times according to the number of attributes as
follows:

n = 1, ComputeMinimalNontrivialFD(A): Since
attribute (A) has two attributes in its closure set {B, D},
for each attribute in this set, this procedure first adds
the fact that attribute A functionally determines each
attribute in this closure set to FD_Set (i.e., FD_Set =
{A→B, A→D}). Next, it checks whether attribute A is
equivalent to attribute B then to attribute D.
Consequently, this procedure finds out that only
attribute D is equivalent to attribute A. Therefore
{A→D} is added to EQ_Set and immediately it updates
the Candidate_Set by removing attribute {D} from it
(i.e. Candidate_Set = {A, B, C}).
 Therefore, FD_Set = {A→B, A→D} and EQ_Set =
{A→D}

n = 2, ComputeMinimalNontrivialFD(B): Attribute
(B) has no attributes in its closure set, therefore no
change to FD_Set and EQ_Set. Hence, Closure' (B) =
{}, FD_Set = {A→B, A→D} and EQ_Set = {A→D}

n = 3, ComputeMinimalNontrivialFD(C): Attribute
(C) has one attribute in its closure set {B}, for each
attribute in this set, this procedure first adds the fact
that attribute C functionally determines each attribute in
its closure set to FD_Set (i.e add C→B to FD_Set.
Therefore FD_Set = {A→B, A→D, C→B}). Next this
procedure checks whether attribute C is equivalent to
attribute B or not. This procedure finds out that attribute
B is not equivalent to attribute C

Time coplexity of FD_Discover algorithm: The main
body of the FD_Discover algorithm has a loop that
iterates n times, where n is the cardinality of the
candidate set, in the given database. Therefore, this
main body has a time complexity of n. Within each
iteration of the above loop, there is a call for each of the
following procedures:

• ComputeMinimalNontrivialFD(), this procedure is

called n times each call of this procedure takes n
iterations, for a total time of n2

• GeneratNextLevelCandidates(Candidate_Set) this
procedure performs two nested loops, each with n
iteration for a total time of n2

 Therefore, the total time required by the
FD_Discover algorithm is:

T(n) = n(n2+n2)) = 2n3

J. Computer Sci., 4 (6): 421-426, 2008

 425

Table 2: Actual time requirements at all level for both algorithms
(FD_MINE and the FD_Discover algorithm) for some UCI
datasets

 Time for Time for
 No. of No. of FD_Discover FD_MINE
DB name attributes tuples (min) (min)
Abalone 9 4,177 1.05 5.55
Balance-scale 5 625 0.003 0.04
Breast-cancer 11 699 15.21 70.05
Bridge 13 108 75.43* 410.48
Chess 7 28,056 0.14 1.07
Echocardiogram 13 132 5.55* 26.07
Glass 11 214 1.23 3.45
Iris 5 150 0.0002 0.03
Nursery 9 12,960 2.56 13.14
Machine 10 209 1.24 9.13

Table 3: Time complexity comparison based on T(n) for both

algorithms
 No. of Coordinate FD_MINE FD_Discover
Database name attribute of datasets 2n 4n3+n2 2n3
Abalone 9 512 2997 1458
Balance-scale 5 32 525 250
Breast-cancer 11 2048 5445 2662
Bridge 13 8192 8957 4394
Chess 7 128 1421 686
Echocardiogram 13 8192 8957 4394
Glass 11 2048 5445 2662
Iris 5 32 525 250
Nursery 9 512 2997 1458
Machine 10 1024 4100 2000

RESULTS AND DISCUSSION

 Table 2 shows the results of the actual times (on a
PC with speed of 2.3 GHz) required for FD_MINE
algorithm and FD_Discover algorithm for different UCI
datasets[1] with varying number of attributes for
discovering all FDs at all levels.
 In Table 2 Bridge and Echocardiogram datasets
have the same number of attributes and a similar
number of tuples but the time required for
Echocardiogram database is much less than the time
required for Bridge database. This had happened
because they have different data and Echocardiogram
has more equivalent attributes than Bridge so the
number of checks is less and the time required is also
less. From these results we can notice that our
FD_Discover algorithm needs less time than FD_MINE
by a factor of almost 5.
 Table 3 shows the time complexity comparison
based on T(n) that are computed earlier for
FD_Discover algorithm and for FD_MINE algorithm.
 The FD_Discover algorithm reduces the number of
FDs to be checked and produces fewer FDs than
FD_MINE algorithm (the FDs that are discovered by
the FD-Discover algorithm are equivalent to those FDs
that are discovered by the FD_MINE algorithm).

ABCE

ABC ABE ACE BCE

AB AC AE BC BE CE

A B C E
(a)

ABCEABCD ABDE

ABCDE

ACDE BCDE

ABC ABD ACD ADE BCD BDE CDEABE ACE BCE

AB AC AD BD CD DEAE BC BE CE

A B DC E
(b)

Fig. 6: Semi-lattice of checked FDs, (a): FD_Discover,

(b): FD_MINE

Therefore, the Semi-lattice for FD-Discover algorithm
will be smaller than the semi-lattice of FD-MINE
algorithm. For instance, during the discovering process
of the FDs from the database given in Table 1, Fig. 6a
shows the semi-lattice of checked FDs using
FD_Discover algorithm and Fig. 6b shows the semi-
lattice of checked FDs using FD_MINE algorithm. It is
noticed that the semi-lattice for FD_Discover algorithm
has fewer edges than the semi-lattice for FD_MINE
algorithm.

CONCLUSION

 We have suggested a new algorithm
(FD_Discover) to discover FDs which utilizes the
concepts of equivalent properties and minimal
(Canonical) cover of FDs.
 The aim of this algorithm is to optimize the time
requirements when compared with a previous algorithm
called FD_MINE. The analyses of the FD_Discover
algorithm had a better performance of a factor of 5 over
the FD_MINE algorithm.
 Furthermore, simulation results for both algorithms
have shown similar results. In FD_Discover algorithm
there is no need to check all attributes to discover
functional dependency as a result of applying the
equivalent properties. However, in FD_MINE

J. Computer Sci., 4 (6): 421-426, 2008

 426

algorithm all attributes must be checked. In
FD_Discover algorithm only one procedure (Procedure
ComputeMinimalNontrivialFD) is needed to discover
immediately FD_Set, EQ_Set and pruning Candidate
set for next level, whereas FD_MINE algorithm needs
three procedures one to discover FD_Set
(ObtainFDandKey), another to discover EQ_Set
(ObtainEQSet) and PruneCandidates and
GenerateNextLevelCandidate to prune Candidate set
for next level. This leads to higher complexity in
number of nested loops and time required.

REFERENCES

1. Blake, C.L. and C.J. Merz, 1998. UCI repository of

machine learning databases. Dept. of Information
and Computer Science, University of California,
Irvine, CA. http://www.ist-world.org/
ResultPublicationDetails.aspx?ResultPublicationId
=166f0434fd5c422898e1ee4618d683f6.

2. Dorneich, A., R. Natarajan, E. Pednault and
F. Tipu, 2006. Embedded predictive modeling in a
parallel relational database. SAC’06, Dojan,
France., April 23-27 2006, ACM 1-59593-108-
2/06/004. pp: 569-574. http://portal.acm.org/
citation.cfm?id=1141277.1141409.

3. Huhtala, Y., J. Kärkkäinen, P. Porkka and
H. Toivonen, 1999. TANE: An efficient algorithm
for discovering functional and approximate
dependencies. Comput. J., 42: 100-111.
http://www.citeulike.org/user/seungwon/article/164
8417

4. Jiang, N. and L. Gruenwald, 2006. research issues
in data stream association rule mining. ACM
SIGMOD Record, 35: 14-19.
http://doi.acm.org/10.1145/1121995.1121998.

5. Jyrki Kivinen and Heikki Mannila, 1995.
Approximate inference of functional dependencies
from relations. Theor. Comput. Sci., 149: 129-149.
http://portal.acm.org/citation.cfm?id=210500.2105
05&dl=GUIDE&dl=ACM

6. Mannila, H., 1996. Data mining: Machine learning,
statistics and databases. 8th International
Conference on Scientific and Statistical Database
Management, Stockholm, Sweden. Los Alamitos,
CA: IEEE Computer Society Press, 1996. June
18-20. http://doi.ieeecomputersociety.org/10.1109/
SSDM.1996.505910.

7. Mannila, H. and K. Räihä, 1987. Dependency
inference. Proceedings of the 13th International
Conference on Very Large Data Bases (VLDB’87),
Morgan Kaufmann Sept. 1-4, 1987, pp.155-158.
ISBN 0-934613-46-X. http://portal.acm.org/
citation.cfm?id=645914.671482.

8. Nambiar, U. and S. Kambhampato, 2004. Mining
approximate functional dependencies and concept
similarities to answer imprecise queries. In:
Proceedings of the 7th International Workshop on
the Web and Databases: Colocated with ACM
SIGMOD/PODS 2004 (Paris, France, June 17-18.
WebDB '04, ACM, New York, NY, 67: 73-78.
http://doi.acm.org/10.1145/1017074.1017093.

9. Perugini, S. and N. Ramakrishnan, 2007. Mining
web functional dependencies for flexible
information access. J. Am. Soc. Inform. Sci.
Technol., 58: 1805-1819. http://portal.acm.org/
citation.cfm?id=1294889

10. Silberschatz, A., H.F. Korth and S. Sudarshan,
2006. Database System Concepts. 5th Edn. Boston,
MA: McGraw-Hill. ISBN 007124476X.
http://webcat.hud.ac.uk/ipac20/ipac.jsp?full=31000
01~!549638~!0&profile=cls.

11. Wyss, C. and C. Giannella and E. Robertson, 2001.
FastFDs: A heuristic-driven, depth-first algorithm
for mining functional dependencies from relation
instances. In: Proceedings of 3rd International
Conference of the Data Warehousing and
Knowledge Discovery, Munich, Germany Sept. 5-7
2001, Springer. ISBN 978-3540425533 pp. 101-
110. http://portal.acm.org/citation.cfm?id=646110.
679455&coll=GUIDE&dl=GUIDE.

12. Yao, H., H.J. Hamilton and C.J. Butz, 2002.
FD_MINE: Discovering Functional Dependencies
in a Database Using Equivalences 2002. IEEE
International Conference on Data Mining
(ICDM02), IEEE Computer Society, Maebashi
City, Japan, ISBN 0-7695-1754-4,Dec. 9-12,
2002, pp. 729-732. http://doi.ieeecomputersociety.
org/10.1109/ICDM.2002.1184040.

