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Abstract: A heterogeneous computing environment is a suite of heterogeneous processors 
interconnected by high-speed networks, thereby promising high speed processing of computationally 
intensive applications with diverse computing needs. Scheduling of an application modeled by 
Directed Acyclic Graph (DAG) is a key issue when aiming at high performance in this kind of 
environment. The problem is generally addressed in terms of task scheduling, where tasks are the 
schedulable units of a program. The task scheduling problems have been shown to be NP-complete in 
general as well as several restricted cases. In this study we present a simple scheduling algorithm based 
on list scheduling, namely, low complexity Performance Effective Task Scheduling (PETS) algorithm 
for heterogeneous computing systems with complexity O (e) (p+ log v), which provides effective 
results for applications represented by DAGs. The analysis and experiments based on both randomly 
generated graphs and graphs of some real applications show that the PETS algorithm substantially 
outperforms the existing scheduling algorithms such as Heterogeneous Earliest Finish Time (HEFT), 
Critical-Path-On a Processor (CPOP) and Levelized Min Time (LMT), in terms of schedule length 
ratio, speedup, efficiency, running time and frequency of best results. 
 
Key words: DAG, task graph, task scheduling, heterogeneous computing system, schedule length, 

speedup, efficiency  
 

INTRODUTION 
 
 A growing emphasis on concurrent processing of 
jobs has lead to an increased acceptance of 
heterogeneous computing environments and the 
availability of a network of processors makes a cost-
effective utilization of underlying parallelism for 
applications like weather modeling, image processing, 
real-time and distributed database systems. A well-
known strategy behind efficient execution of a huge 
application on a heterogeneous computing environment 
is to partition it into multiple independent tasks and 
schedule such tasks over a set of available processors. 
A task-partitioning algorithm takes care of efficiently 
dividing an application into tasks of appropriate grain 
size and an abstract model of such a partitioned 
application can be represented by a Directed Acyclic 
Graph (DAG). Each task of a DAG corresponds to a 
sequence of operations and a directed edge represents 
the  precedence  constraints between the tasks. Each 
task can be executed on a processor and the directed 
edge shows transfer of relevant data from one processor 
to another. Task scheduling can be performed at 
compile-time or at run-time. When the characteristics of 
an application, which includes execution times of tasks 
on different processors, the data size of the 
communication between tasks and the task 

dependencies, are known a priori, it is represented with 
a static model. The objective of task scheduling is to 
map the tasks on the processors and order their 
execution so that task precedence requirements are 
satisfied and a minimum overall completion time is 
obtained. The problem of scheduling of tasks with 
required precedence relationship, in the most general 
case, has been proven to be NP-complete[1,2] for which 
optimal solutions can be found only after an exhaustive 
search.  
 Efficient application scheduling is critical for 
achieving high performance in heterogeneous 
computing systems. Because of its key importance on 
performance, the task scheduling problem in general 
has been extensively studied and various heuristics 
have been proposed in the literature[3-17]. These 
heuristics are classified into a variety of categories such 
as list scheduling algorithms, clustering algorithms, 
guided random search methods and task duplication 
based algorithms. 
 In list scheduling algorithms[4-6], an ordered list of 
tasks is constructed by assigning priority to each task 
and the tasks are selected for execution based on their 
priority. List scheduling algorithms are generally 
preferred since they generate good quality schedules 
with less complexity. List scheduling algorithms such 
as Mapping Heuristic (MH)[4], Levelized Min 
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Time(LMT)[5], Heterogeneous Earliest Finish Time 
(HEFT)[6] and Critical Path On a processor (CPOP)[6] 
are well known task scheduling algorithms for 
heterogeneous system.  
 Clustering algorithms[7-9] try to schedule heavily 
communicating tasks onto the same processor, even if 
other processors are available, thereby trading off 
parallelism with interprocess communication. It is also 
known as three phase scheduling. In the first phase, 
heavily communicating tasks are grouped into a set of 
clusters (unbounded) using linear or nonlinear 
clustering heuristics and in the second phase, clusters 
are mapped onto the set of available processors using 
communication sensitive or insensitive heuristics. In the 
third phase cluster merging or de-clustering is done 
based on the available number of processors. Task 
Duplication based scheduling Scheme (TDS)[8] and 
Clustering for Heterogeneous Processors (CHP)[9] are 
some well known task scheduling algorithm based on 
clustering approach. 
 Genetic algorithms[10-13] are of the most widely 
studied guided random search techniques for the task 
scheduling problem. Among these algorithms, the task 
matching and scheduling algorithm using a genetic 
approach[10], Problem–Space Genetic Algorithm 
(PSGA)[11] and Push-Pull[12] are proposed for 
heterogeneous processors and an incremental genetic 
algorithm (GA)[13] for the homogeneous processors. 
Although genetic algorithms provide good quality 
schedules, their execution times are significantly higher 
than other alternatives. Extensive tests are required to 
find optimal values for the set of control parameters 
used in GA-based solutions[14].  
 In task duplication based algorithms[15-17], tasks are 
duplicated on more than one processor to reduce the 
waiting time of the dependent tasks. It is an interesting 
approach that has been blended with both list 
scheduling and clustering-based techniques by various 
researchers. Critical Path Fast Duplication (CPFD)[15], 
Heterogeneous Critical Node First (HCNF)[16] and Task 
duplication Algorithm for Network of Heterogeneous 
system (TANH)[17] are a few algorithms proposed in the 
literature for heterogeneous system using task 
duplication. 
 Among the various scheduling algorithms, list 
scheduling algorithms are generally preferred for task 
scheduling, since they produce good schedule with less 
time. But, the reported list scheduling algorithms in this 
study, such as LMT, CPOP and HEFT algorithms are 
complex in nature and take higher complexity. 
Moreover the LMT algorithm does not utilize the 
earliest idle time slot between two already scheduled 
tasks on a processor. Because of this, the schedule 
length generated by the LMT algorithm is not the 
minimum always. The HEFT algorithm uses a recursive 
procedure to compute the rank of a task by traversing 
the graph upwards from the exit task. The rank of a task 
is the length of the critical path from the exit task to that 

task. The rank of a task in the CPOP algorithm is 
calculated in the reverse fashion, i.e., traversing the task 
graph downwards from the entry task. The rank of a 
task is length of the critical path from the entry task to 
that task. The rank computation is recursive procedure 
and also complex in both the algorithms. The 
motivation behind our work is to develop a new task-
scheduling algorithm to deliver high performance in 
terms of both performance metrics (schedule length 
ratio, speedup, efficiency and frequency of best results) 
and a cost metric (scheduling time). We proposed a new 
algorithm called PETS algorithm, which gives the best 
performance in terms of performance and cost metrics 
for DAG structured applications compared to the 
exiting scheduling algorithms such as LMT and HEFT 
and CPOP reported in this study.  
 A scheduling system model consists of an 
application, a target computing system and criteria for 
scheduling. An application program is represented by a 
Directed Acyclic Graph (DAG), G =(V, <, E), where 
V={vi, i=1…n) is the set of n tasks. The symbol < 
represents a partial order on V. For any two tasks vi, vk 
∈ V, the existence of the partial order vi < vk means that 
vk cannot be scheduled until task vi has been completed, 
hence vi is a predecessor of vk and vk is a successor of vi. 
E is the set of directed edges. Data is a n x n matrix of 
communication data, where datai,k is the amount of data 
required to be transmitted from task vi to task vk. In a 
given task graph, a task without any parent is called an 
entry task and a task without any child is called exit 
task. Without loss of generality, it is assumed that there 
is one entry task to the DAG and one exit task from the 
DAG. In an actual implementation, we can create a 
pseudoentry task and pseudoexit task with zero 
computation time and communication time. 
 A heterogeneous computing system consists of a 
set P = {pj : j =1,…, m} of m independent different 
types of processors fully interconnected by a high-
speed arbitrary network. The bandwidth (data transfer 
rate) of the links between different processors in a 
heterogeneous system may be different depending on 
the kind of the network. The data transfer rate is 
represented by an m x m matrix, Rm x m. W is a n x m 
computation cost matrix in which each wij gives the 
Estimated Computation Time (ECT) to complete task vi 
on processor pj where 1<=i<=n and 1<=j<=m. The ECT 
value of a task may be different on different processor 
depending on the processors computational capability. 
The task executions of a given application are assumed 
to be non-preemptive. The communication cost 
between two processors px and processor py, depends on 
the channel initialization at both sender processor px 
and receiver processor py in addition to the 
communication time on the channel. This is a dominant 
factor and can be assumed to be independent of the 
source and destination processors. In this study, the 
channel initialization time is assumed to be negligible. 
The communication cost of the edge(i,k), which is for 
transferring data from task vi (scheduled on processors 
px) to task vk (scheduled on processor py) is defined by 
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Ci,k = data i,k / R x,y (1) 
 Otherwise, Ci,k = 0 when both the tasks vi and vk 
are scheduled on the same processor. Further, for 
illustration, we assumed that the data transfer rate for 
each link is 1.0 and hence communication cost and 
amount of data to be transferred will be the same. A 
task graph with 11 tasks and its computation cost 
matrix given in[6] are shown in Fig. 1 and Table 1. 
 Let EST(vi,pj) and EFT(vi,pj) are the Earliest Start 
Time and Earliest Finish Time of task vi on pj, 
respectively. For the entry task ventry, EST(ventry, pj) = 0 
and for the other tasks in the graph, the EST and EFT 
values are computed recursively, starting from the entry 
task, as shown in Eqn. (2) and (3). In order to compute 
the EFT of a task vi, all immediate predecessor tasks of 
vi must have been scheduled.  
EST(vi,pj) = max {avail[j], max {AFT(vt)+Ct,i): vt 

∈ pred(
 
v

i 
)} (2) 

EFT(vi,,pj ) = Wij+EST(vi,pj) (3)  
Where pred(vi) is the set of immediate predecessor 
tasks of task vi and avail[j] is the earliest time at which 
processor pj is ready for task execution. If vk is the last 
assigned task on processor pj, then avail[j] is the time 
that processor pj completed the execution of the task vk 
and it is ready to execute another task when we have a 
non insertion-based scheduling policy. The inner max 
block in the EST equation returns the ready time, i.e., 
the time when all the data needed by vi has arrived at 
processor pj. After a task vt is scheduled on a processor 
pj, the earliest start time and the earliest finish time of vt 
on processor pj is equal to the actual start time AST(vt) 
and the actual finish time AFT(vt) of task vt, 
respectively. After all tasks in a graph are scheduled, 
the schedule length (i.e. the overall completion time) 
will be the actual finish time of the exit task vexit. 
Finally the schedule length is defined as  

 max{ ( )}= exitSchedule Length AFT v  (4)  
 The objective function of the task-scheduling 
problem is to schedule the tasks of an application to 
processors such that its schedule length is minimized. 
 
Related works: In this section we present the related 
task scheduling algorithms for heterogeneous 
computing environment that we used for comparison 
with our algorithm, which are Levelized Min Time 
algorithm[5], Heterogeneous Earliest Finish Time 
algorithm[6] and Critical Path On a processor 
algorithm[6]. 
 
Levelized min time (LMT) algorithm: It is a two-
phase algorithm. The first phase groups the tasks that 
can be executed in parallel in a level by level fashion. 
The second phase is a greedy method that assigns each 
task to the “fastest" available processor. A task in a 
lower level has higher priority for scheduling than a 
task in a higher level. Within the same level, the task 
with the highest average computation cost has the 
highest priority. If the number of tasks in a level is 
greater than the number of available processors, the 
fine-grain tasks are merged into a coarse-grain task  
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Fig. 1: Task Graph given in[17] 
 
Table 1: Computation cost matrix (W) given in[17] 
Task vi P1 P2 P3 
1 4 4 4 
2 5 5 5 
3 4 6 4 
4 3 3 3 
5 3 5 3 
6 3 7 2 
7 5 8 5 
8 2 4 5 
9 5 6 7 
10 3 7 5 
11 5 6 7 
 
until the number of tasks is equal to the number of 
processors. Then the tasks are sorted in reverse order 
(largest task first) based on average computation time. 
Beginning from the largest task, each task will be 
assigned to the processor that minimizes the sum of 
computation cost of the task and the communication 
costs with tasks in the previous layers and does not 
have any scheduled task at the same level. For a fully 
connected graph, the time complexity is O (v2 x p2) 
when there are v tasks and p processors.  
 
Heterogeneous earliest finish time (HEFT) 
algorithm: It is also two-phase task scheduling 
algorithm for a bounded number of heterogeneous 
processors. The first phase namely, task-prioritizing 
phase is to assign the priority to all tasks. To assign 
priority, the upward rank of each task is computed. The 
upward rank of a task is the critical path of that task, 
which is the highest sum of communication time and 
average execution time starting from that task to exit 
task. Based on upward rank priority will be assigned to 
each task. The second phase (processor selection phase) 
is to schedule the tasks onto the processors that give the 
earliest finish time for the task. It uses an insertion-
based policy which considers the possible insertion of a 
task in an earliest idle time slot between two already 
scheduled tasks on a processor, should be at least 
capable of computation cost of the task to be scheduled 
and also scheduling on this idle time slot should 
preserve precedence constraints. The time complexity 
of HEFT algorithm is equal to O (v2 x p) where v is the 
number of tasks in a dense graph and p is the number of 
processors. 
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Critical path on a processors (CPOP) algorithm: 
This is similar to HEFT algorithm, but it uses different 
strategies in each phase. The first phase namely, task-
prioritizing phase is to assign the priority to each task. 
In this phase, upward rank (given in HEFT algorithm) 
and downward rank values for all tasks are computed. 
The downward rank is computed by adding average 
execution time and communication time starting from 
entry task to the task excluding execution time of the 
task for which downward rank is computed. The sum of 
downward and upward rank is used to assign the 
priority to each task. Initially, the entry task is the 
selected task and marked as a critical path task. An 
immediate successor (of the selected task) that has the 
highest priority value is selected and it is marked as a 
critical path task. This process is repeated until the exit 
node is reached.  
 In the second phase, task with highest priority is 
selected for execution. If the selected task in on the 
critical path, then it is scheduled on the critical path 
processor. The critical processor is the one that 
minimizes the cumulative computation costs of the 
tasks on the critical path; otherwise, it is assigned to a 
processor, which minimizes the earliest execution finish 
time of the task. The time complexity of CPOP 
algorithm is equal to O (v2 x p) where v is the number 
of tasks in a dense graph and p is the number of 
processors.  
 
Low complexity performance effective task 
scheduling (PETS) algorithm: The proposed 
algorithm consists of three phases, viz., level sorting, 
task prioritization and processor selection. The detailed 
explanation of each phase of the algorithm is given 
below: 
  
Level sorting phase: In the level sorting phase, the 
given DAG is traversed in a top-down fashion to sort 
task at each level in order to group the tasks that are 
independent of each other. As a result, tasks in the same 
level can be executed in parallel. Given a DAG G = (V, 
E), level 0 contain entry task. Level i consist of all tasks 
vk such that, for all edges(vj,vk), task vj is in a level less 
than i and there exists at least one edge(vj,vk) such that 
vj is in level i-1. The last level comprises of some of the 
exit tasks. For example, for the task graph given in Fig. 
1, there are 5 levels; level 1 consists of task 1 (entry 
task), level 2 consists of task 2, 3 and 4, level 3 consists 
of task 5, 6, 7 and 8, level 4 consists of task 9 and 10 
and level 5 consists of task 11 (exit task).  
  
Task prioritization phase: In the task prioritization 
phase, priority is computed and assigned to each task. 
For assigning priority to a task, we have defined three 
attributes namely, Average Computation Cost (ACC), 
Data Transfer Cost (DTC) and the Rank of Predecessor 
Task (RPT). The ACC of a task is the average 
computation cost on all the m processors and it is 
computed by using Eqn.(5) 

,1
( ) /

=
= Σ

m

i i jj
ACC v w m  (5) 

 The DTC of a task vi is the amount of 
communication cost incurred to transfer the data from 
task vi to all its immediate successor tasks and it  is 
computed at each level l using Eqn.(6)  

,
1

( ) :
=

= <∑
n

i i j
j

DTC v C i j  , where n is the number of 

nodes in the next level  
= 0, for exit tasks (6) 
 The RPT of a task vi is the highest rank of all its 
immediate predecessor tasks and it computed using 
Eqn.(7) 
RPT(vi) = Max{rank(v1),rank(v2),,,…,rank(vh)} 
Where v1,v2…..vh are the immediate predecessors of vi  
= 0, for entry task (7)  
 Rank is computed for each task vi based on its 
ACC, DTC and RPT values. We have used the 
maximum rank of predecessor tasks of task vi as one of 
the parameter to calculate the rank of the task vi and the 
rank computation is given in Eqn. (8).  
rank(vi) =round{ACC(vi)+DTC(vi)+RPT(vi) } (8)  
 Priority is assigned to all the tasks at each level l, 
based on its rank value. At each level, the task with 
highest rank value receives the highest priority 
followed by task with next highest rank value and so 
on. Tie, if any, is broken using ACC value. The task 
with minimum ACC value receives higher priority. For 
example, for the task graph given in Fig. 1, the ACC, 
DTC, RPT, rank and priority values are computed as 
follows: For task v1, there are three immediate 
successor tasks v2, v3, v4 and the communication cost 
between v1 and to these tasks are 2, 2, 2 respectively. 
Hence, the DTC of task v1 is 6 (2+2+2). The RPT value 
of task v1 is 0, since it is the entry task. The ACC value 
of task v1 is 4 and the rank value of the task v1 is 10 
(4+6+0). The priority of task v1 is 1, since it is the only 
task in level 1. Likewise the ACC, DTC, RPT, rank and 
priority are computed for all tasks in the task graph and 
the computed value is shown in Table 2.  
 
Table 2: The DTC, ACC, RPT, rank and priority values for the 

tasks in Fig. 1 
Level Task DTC ACC RPT rank Priority 
1 1 6 4  0 10 1 
2 2 4 5 10 19 1 
2 3 1 5.25 10 16 3 
2 4 4 3 10 17 2 
3 5 2 3.75 19 25 2 
3 6 4 3.5 19 27 1 
3 7 2 5.75 17 25 3 
3 8 3 3.5 17 24 4 
4 9 2 5.75 26.5 34 2 
4 10 4 4.25 26.5 35 1 
5 11 0 6.5 34.75 41 1 
 
Processor selection phase: In the processor selection 
phase, the processor, which gives minimum EFT for a 
task is selected and the task is assigned to that 
processor. It has an insertion-based policy, which 
considers  the  possible  insertion of a task in an earliest  
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Table 3: The Computed EST, EFT value on processors P1, P2, P3 for the tasks in Fig. 1 
 Processors 
 ------------------------------------------------------------------------------------------------------- 
 P1 P2 P3 
 --------------------------- --------------------------- ----------------------------- Predecessor Processor 
Task EST EFT EST EFT EST EFT tasks selected 
1  0  4  0  4  0  4 Null P1 
2  4  9  6  11  6 11 1 P1 
4  9 12  6  9  6  9 1 P2 
3  9 13  9 15  6 10 1 P3 
5  9 13 12 17 12 15 2 P1 
8 12 14  9 13 11 16 4 P2 
6 12 15 13 20 10 12 2,3 P3 
7 12 17 13 21 12 17 4 P1 
10 17 20 19 26 19 24 6,7,8 P1 
9 20 25 14 20 14 21 5,6 P2 
11 22 27 24 30 24 31 9,10 P1 
 
Step 1: read the DAG, associated attributes values and the number of 
processor P; 
Step 2: for all tasks vk at each level Li do 
Step 3: begin 
 compute ACC(vk),DTC(vk) and RPT (vk ); 
 rank(vk) = ACC(vk) + DTC(vk) + RPT (vk ); 
 tie, if any, is broken based on ACC value, the task with minimum  
ACC value receives  the higher priority followed by the task with next 
minimum ACC value and so on; 
Step 4: construct a priority queue using ranks; 
Step 5: while there are unscheduled tasks in the queue do  
 begin 
 select the first task, vk from the priority queue for scheduling; 
 for each processor pk in the processor set P do 
 begin 
 compute EFT (vk,pk) value using insertion based scheduling policy;  
 assign the task vk to processor pk, which minimizes the EFT;  
 end; 
 end; 
 end; 
Step 6: end. 
Fig. 2: Proposed PETS algorithm 
 
idle time slot between two already scheduled tasks on a 
processor. At each level, the EST and EFT value of 
each task on every processor is computed using Eqn. 
(2) and (3). Calculation of EST and EFT values for the 
task graph in Fig. 1 is illustrated below: For example, 
for the task 1, EST(1,P1)=0, EFT(1,P1)=4, 
EST(1,P2)=0,EFT(1,P2)=4 and EST(1,P3)=0, 
EFT(1,P3)=4). For task 4, EST(4,P1)= max{9, 
max(4)}=9, EFT(4, P1)=9+3=12, EST(4, P2) = max{0, 
max(6)}=6, EFT(4,P2) = 6+3=9 and EST(4,P3) = 
max{0,max(6)}=6, EFT(4, P3)=6+3=9. Likewise EST 
and EFT values for all the tasks in the graph are 
computed. The tasks are selected for execution based 
on their priority value. Task with highest priority is 
selected and scheduled on its favorite processor 
(processor which gives the minimum EFT) for 
execution followed by the next highest priority task. 
Similarly all the tasks in each level are scheduled on to 
the suitable processors.  
 The processors selected for assigning the tasks in 
Fig. 1 is as follows: For example, task 1 is the entry 
task and all the three processors P1, P2 and P3 give the 
same  EFT  value,  one  of  the  processor  is  selected 
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(c) PETS Algorithm 

Fig. 3: The schedule length generated by CPOP, 
HEFT and PETS algorithms 

 
randomly. Here P1 is selected for executing task 1.  For 
task 2, the EFT value on three processors P1, P2 and P3 
are 9, 11 and 11. Since P1 gives minimum EFT, it is 
selected for executing task 2. Similarly all other tasks in 
the task graph are scheduled on to the suitable 
processor. The processor selected for executing each of 
the tasks in Fig. 1 is shown in Table 3. The proposed 
algorithm is given in Fig. 2. 
 The time complexity of PETS algorithm is equal to 
O( e) (p + log v), where v and  e are the number of tasks 
and edges respectively and p is the number of 
processors. 
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Fig. 4: Task graph given in[6] 
 
Table 4: Computation cost matrix (W) given in[6] 
Task P1 P2 P3 
1 14 16 9 
2 13 19 18 
3 11 13 19 
4 13 8 17 
5 12 13 10 
6 13 16 9 
7 7 15 11 
8 5 11 14 
9 18 12 20 
10 21 7 16 
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(a) CPOP Algorithm (b) HEFT Algorithm 

1

2 3
4
6

7

8

5

9
10

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3

Processor

Sc
he

du
le

 L
en

gt
h

 
(c) PETS Algorithm 

Fig. 5: The schedule length generated by CPOP, 
HEFT and PETS algorithms 

 
We used breadth first search for level sorting which 
takes O(e) time complexity only, since the 
implementation is done by adjacency lists. If the 

adjacency matrix is used for implementation the 
complexity is O(v2). A binary heap was used to 
implement the priority queue, which has time 
complexity of O(log v). Each task in the priority queue 
is checked with all the p processors in order to select a 
processor that gives the earliest finish time. Hence the 
overall complexity of the algorithm is O(e) (p+log v). 
As an illustration, Fig. 3 presents the schedules 
obtained by the CPOP, HEFT and PETS algorithms for 
the sample DAG of Fig. 1. The schedule length 
generated by PETS algorithm is 27, is shorter than the 
schedule length produced by HEFT and CPOP 
algorithms which are 30 and 38 respectively.  
 We have also obtained the schedule generated by 
the PETS, HEFT and CPOP algorithms for the task 
graph given in Fig. 4 and its computation cost matrix 
given in Table 4. Figure 5 presents the schedule 
generated by CPOP, HEFT and PETS algorithms. The 
schedule length generated by PETS algorithm is 77, is 
shorter than the schedule length produced by HEFT and 
CPOP algorithms which are 80 and 87 respectively.  
 

PERFORMANCE ANALYSES  
AND DISCUSSION 

 
 In this section, we present the comparative 
evaluation of proposed PETS algorithm and the existing 
algorithms for heterogeneous system such as LMT, 
HEFT and CPOP for DAGs with various characteristics 
by simulation. For this purpose, we consider two sets of 
graphs as the workload for testing the algorithms: 
randomly generated task graphs and the graphs that 
represent some of numerical real world problems. We 
have used Intel Xeon processors with 1 GHz speed for 
our experiments.  
 
Comparison metrics: We have used the following 
metrics to evaluate the proposed algorithm.  
 
Schedule length ratio (SLR): SLR is the ratio of the 
parallel time to the sum of weights of the critical path 
tasks on the fastest processor.  
 
Speedup: Speed up is the ratio of the sequential 
execution time to the parallel execution time. 
 
Efficiency: Efficiency is the ratio of the speedup value 
to the number of processor used to schedule the graph. 
 
Number of occurrences of the better quality of 
schedules: The numbers of times that each algorithm 
produced better, worse and equal quality of schedules 
compared to every other algorithm. 
 
Running time of the algorithms: The running time 
(the scheduling time) of an algorithm is its execution 
time for obtaining the output schedule of a given task 
graph. 
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Randomly generated application graphs: A random 
task graph generator has been developed, which allows 
the user to generate a variety of test DAGs with various 
characteristics that depends on several input parameters 
and they are number of tasks in the graph (v), out 
degree (β), in degree (γ), shape parameter of a graph 
(α), Communication to Computation Ratio (CCR) and 
Range percentage of computation cost (η). By varying 
α value we can generate different shape of the task 
graph. The height of the graph is randomly generated 
from a uniform distribution with a mean value equal to 

/v α  and the width for each level is randomly 
selected from a uniform distribution with mean value 
equal to *v α . A dense graph (shorter graph with 
high parallelism) and a longer graph (low parallelism) 
can be generated by selecting α >>1.0 and α <<1.0 
respectively. CCR is the ratio of the average 
communication cost to the average computation cost. If 
a DAG’s CCR value is very low, it can be considered as 
a computation intensive application. Range percentage 
of computation costs on processors (η). It is basically 
the heterogeneity factor for processors speeds. A high 
percentage value causes a significant difference in a 
task’s computation cost among the processors and a low 
percentage indicates that the expected execution time of 
a task is almost equal on any given processor in the 
system. The average computation cost of each task vi in 
the graph, i.e., Wi, is randomly selected from a uniform 
distribution with range[0,2*Wdag], where Wdag is the 
average computation cost of the given graph, which is 
set randomly in the algorithm. Then, the computation 
cost of each task vi on each processor pj in the system is 
randomly set from the following range: 
Wi*(1-η/2)<=Wi,j<=Wi*(1+η/2) (9)  
 For experiments, we set the following range of 
values for the parameters. v = {30, 40, 50, 60, 
70,80,90,100}, α = {0.5,1.0,2.0}, β = {1,2,3,4,5}, γ = 
{1, 2, 3, 4, 5}, CCR = {0.1, 0.5, 1.0, 5.0, 10.0} and 
η={0.1,0.5,1.0}. 
  

RESULTS 
 
 The experimental results are organized in two 
major test suites..   
 
Test suite 1: In this test suite, we evaluated the quality 
of schedules generated by each of the algorithms for 
random task graphs with respect to various graph 
characteristics values. We have generated a large set of 
random task graphs with different characteristics and 
scheduled these task graphs on to a heterogeneous 
computing system consists of 15 processors. The 
average SLR and speedup generated by each of the 
algorithm are plotted and are shown in Fig. 6a and Fig. 
6b. Each data point in the reported graph is the average 
of the data obtained in 240 experiments. 
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(f) Average Running Time 

Fig. 6: Performance of the algorithm for random task 
graphs 

 
The average SLR value based ranking (starting with 
minimum ending with maximum) of the algorithms is 
{PETS, HEFT, CPOP and LMT} and the Speedup 
value based ranking (starting with maximum and 
ending with minimum) of the algorithms is {PETS, 
HEFT, CPOP and LMT}. The average SLR value of 
the PETS algorithm on all generated graphs is better 
than the HEFT algorithm by 8%, the CPOP algorithm 
by 17% and the LMT algorithm by 40%. 
 We have also evaluated the performance of the 
algorithm with respect to various CCR and graph 
structure values and the outcomes of these results are 
shown in Fig. 6c and Fig. 6d. Each data point in the 
reported graph is the average of the data obtained in 
220 experiments. These experiments also confirm that 
PETS algorithm substantially outperforms reported 
algorithms for various CCR value and for different 
graph structure. Further, we evaluated the efficiency of 
the algorithms by scheduling task graphs consisting of 
fixed number of tasks (120) on to heterogeneous 
computing system consisting of varying number of 
processors (4,8,12,16,20). For this experiment, we have 
used 1000 numbers of randomly generated task graphs. 
The results obtained by this experiment are shown in 
Fig. 6e. As expected the average SLR is reduced while 
increasing the number of processors and at the same 
time PETS outperforms LMT, CPOP and HEFT 
algorithms. The average running time of each of the 
algorithms is calculated for the above experiments and 
it shown in Fig. 6f. The graph shows that the PETS 
algorithm is the fastest one and the LMT algorithm is 
the slowest one. On average the PETS algorithm is 
faster than the HEFT algorithm by 23%, the CPOP 
algorithm by 39% and the LMT by 48%. 
 
Test suite 2: In this test suite, we considered 
application graphs of three real world problems, such as 
LU decomposition, Fast Fourier Transformation (FFT) 
and molecular dynamics code given in[6,15]. For the 
experiment of LU decomposition, heterogeneous 
computing systems with five processors, CCR and the 
range percentage of computation cost values are used.  
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(b) Efficiency 

Fig. 7: Performance of algorithms for LU 
Decomposition graphs 

 
Since the structure of the application is known, the 
parameters such as number of tasks, in degree and out 
degree are not needed. A new parameter matrix size (n) 
is used in place of number of tasks (v). The total 
number of task in a LU decomposition graph is equal to 
(n2+n-2)/2. We evaluated the performance of the 
algorithms at various matrix sizes from 5 to 15 with an 
increment of one. The smallest size graph in this 
experiment has 14 tasks and the largest one has 119 
tasks. Figure 7a gives the average SLR values of the 
algorithms at various matrix sizes from 5 to 15 with an 
increment of one, when the number of processors is 
equal to five.  
 For the efficiency comparison, the number of 
processors used in our experiments is varied from 2 to 
16; the CCR and range percentage parameters have the 
same set of values. Figure 7b gives efficiency 
comparison for LU decomposition graphs when matrix 
size if 15. The experiments conducted using Gaussian 
Elimination graphs confirm that PETS outperforms 
other reported algorithms in terms of average SLR and 
efficiency. 
 For FFT related experiment the graph 
characteristics such as CCR and the range percentage of 
computation cost values are used. Since the structure of 
the application is known, other parameters such as 
number of tasks, in degree and out degree are not 
needed. The number of data points in FFT is another 
parameter in our experiments, which varies from 2 to 
32 incrementing powers of 2. Figure 8a presents the 
average SLR values for FFT graphs at various sizes of  
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Table 5: Pair-wise comparison of the scheduling algorithms 

 PETS HEFT CPOP LMT COMBINED 

PETS 
Better 
Equal 
Worse 

* 
 8565 
 2452 
 1233 

 9467 
 1112 
 1671 

10927 
 735 
 588 

79% 
12% 
 9% 

HEFT 
Better 
Equal 
Worse 

 1233 
 2452 
 8565 

* 
 9579 
 613 
 2058 

11147 
 491 
 612 

60% 
10% 
30% 

CPOP 
Better 
Equal 
Worse 

 1671 
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 9467 

 2058 
 613 
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* 
10927 
 735 
 588 

40% 
 7% 
53% 

LMT 
Better 
Equal 
Worse 

 588 
 735 
10927 

 612 
 491 
11147 

 588 
 735 
10937 

* 
 5% 
 5% 
90% 
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Fig. 8: Performance of the algorithms FFT application 
graphs 

 
input points. Figure 8b presents the efficiency values 
obtained for each of the algorithms with respect to 
various numbers of processors with graphs of 32 data 
points 
 The task graph of the molecular dynamics code 
given in[6] is also part of our experiment since it has an 
irregular task graph. Since the number of task is fixed 
in the application and the structure of the application is 
known, the graph characteristics CCR and the range 
percentage of computation cost values are alone used. 
Figure 9a shows the performance of the algorithms 
(Average SLR) with respect to five different CCR 
values when number of processors is equal to six. The 
efficiency comparison of the algorithms is given in Fig. 
9b. The experiments conducted using molecular 
dynamics graphs also show the supremacy of the PETS 
algorithm over the HEFT, CPOP and LMT algorithms. 
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Fig. 9: Performance of the algorithm for molecular 
dynamics structure 

 
 Finally we present the frequency of quality 
schedule produced by each of the algorithms. To obtain 
the frequency of quality schedule produced by each of 
the algorithm, we counted the number of times that 
each scheduling algorithm in the experiments 
conducted in test suite 1 and test suite 2 (around 12250 
experiments)   produced  better , worse, or equal 
schedule  length  compared  to  every other algorithm. 
Table 5 indicates the comparison results of the 
algorithm on the left with the algorithm on the top. The 
“combined” column shows the percentage of graphs in 
which the algorithm on the left gives the better, equal, 
or worse performance than all other algorithms 
combined. The ranking of algorithms, based on 
occurrences of best results, is {PETS, HEFT, CPOP 
and LMT}. 
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CONCLUSION 
 
 The task scheduling algorithm PETS proposed here 
has been proven to be better for scheduling DAG 
structured applications onto heterogeneous computing 
system in terms of average schedule length ratio, 
speedup, efficiency, running time and frequency of best 
results. The performance of the PETS algorithm has 
been observed experimentally by using large set of 
randomly generated task graphs with various 
characteristics and application graphs of three world 
problems such as LU decomposition, Fast Fourier 
Transformation and Molecular Dynamics code. The 
simulation results confirm that PETS algorithm is 
substantially better than that of the existing algorithms 
such as LMT, CPOP and HEFT. The complexity of 
PETS algorithm is O (e) (p+log v), which is less when 
compared with other scheduling algorithms reported in 
this study. We have planned to extend this algorithm for 
arbitrary-connected networks.  
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