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Abstract: Researches are keen to know astonishing and intricate details of the nature. Each creature 
has its own admiring abilities and performs their routine task in more efficient manner. The bug 
navigation system has drawn keen attention among research community to know how they are able to 
perform their routine task in utmost skillful manner. The lizard is capable of identifying slowly varying 
features and able to trap the insects with more admiring skill set. The Lizard Learning Algorithm 
(LLA) was proposed for tracking invariant features which uses modified slow feature analysis. The 
article covers mathematical treatment for the slow feature analysis, proposed modification, higher 
order neural network training and ORL database for experimentation purpose. The results are most 
pleasing compared to conventional classifiers for the invariant features.  
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INTRODUCTION 
 
 The bug-navigation system reveals most effective 
techniques carried out by the small living creatures to 
meet their bread and butter. It was shocking to note that 
the small paddle bug is able to choose exact straight-line 
path to reach their nest from unknown/new-location. 
The ant column is triggered the development of more 
efficient tracking algorithms. Further the small spider is 
capable of choosing an optimal shortest path in a widely 
spread environment. On the same line in this paper it is 
proposed a lizard learning algorithm capable of tracking 
invariant features. The study reveals that the effortless 
techniques used by lizards while capturing the insects 
are so effective. They capture the slowly varying 
features of the insect while tracking and detecting its 
exact location. These techniques are suitable for 
implementing the invariant pattern recognition. 
 Slow feature analysis (SFA)[1,2] is a new 
unsupervised algorithm to learn nonlinear functions that 
extract slowly varying signals from time series[1]. SFA 
was originally conceived as a way to learn salient 
features of time series in a way invariant to frequent 
transformations[2]. Such a representation would of 
course be ideal to perform classification in pattern 
recognition problems. Most such problems, however, do 
not have a temporal structure and it is thus necessary to 
reformulate the algorithm. The basic idea is to construct 
a large set of small time series with only two elements 
chosen from patterns that belong to the same class. In 
order to be slowly varying, the functions learned by 
SFA will need to respond similarly to both elements of 
the time series and therefore ignore the transformation 

between the individual patterns. As a consequence, 
patterns corresponding to the same class will cluster in 
the feature space formed by the output signals of the 
slowest functions, making it suitable to perform 
classification with simple techniques such as Gaussian 
classifiers.  
 The higher order neural network require one pattern 
should be presented only once during the learning stage. 
This ability makes them faster compared to single order 
multi-layered networks. However their computational 
complexity exponentially grows with respect to the size 
of the image. In this study some modifications are 
suggested so that the network can be trained for OCR 
database.  
 
The SFA algorithm: We can now formulate the Slow 
Feature Analysis (SFA) algorithm[2] 
 
Mathematical constraints: Given a multidimensional 
time series x(t) = (x1(t),... ,XN(T))T, t ε [t0,t1], find a set of 
real-valued functions g1(x),..., gM(X) lying in a function 
space F such that for the output signals yj(t) := gj(x(t)) 

2( ) : ( )∆ =j j ty y  is minimal (1) 
Under the constraints 
( ) 0=j ty  (zero mean) (2) 

2( ) 1=j ty  (unit variance) (3) 

, ( ) 0∀ < =i j ti j y y  
(decorrelation and order), (4) 
with (.)t and y indicating time averaging and the time 
derivative of y, respectively. 
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 Equation (1) introduces a measure of the temporal 
variation of a signal (the �-value of a signal) equal to 
the mean of the squared derivative of the signal. This 
quantity is large for quickly-varying signals and zero for 
constant signals. The zero-mean constraint (2) is present 
for convenience only, so that (3) and (4) take a simple 
form. Constraint (3) means that each signal should carry 
some information and avoids the trivial solution gj(x) = 
0. Alternatively, one could drop this constraint and 
divide the right side of (1) by the variance (yj)t- 
Constraint (4) forces different signals to be uncorrelated 
and thus to code for different aspects of the input. It also 
induces an order, the first output signal being the 
slowest one, the second being the second slowest, etc. . 
 
Linear expansion: For the linear case the function gj(x) 
becomes  

( ) = T
j jg x w x  (5) 

Where x is the input vector and w is the weight vector.  
 On solving the above function with the constraints 
(1), (2), (3) 

( )∆ =j jy λ  (6) 
 The eigenvectors are stored in the ascending order 
of eigenvalues to provide slowly varying signals with 
smaller indices[3].  
 
Nonlinear expansion: Expand the input data and 
compute the mean over time h0 := (h(x))t to obtain the 
expanded signal 

0: ( )= −z h x h  (7) 

1 0( ( ),..., ( ))= −Mh x h x h  (8) 
 
Slow feature extraction: Solve the generalized 
eigenvalue problem 

=AW BWA  (9) 

: ( )= ��T tA zz  (10) 

: ( )= T
tB zz  (11) 

 The K eigenvectors w1,... ,wK (K � M) 
corresponding to the smallest generalized eigenvalues �1 
� �2 � ... � �K

[4] define the nonlinear input-output 
functions g1(x),..., gK(X) ε F: 

0( ) ( ( ) )= −T
j jg x w h x h  (12) 

which satisfy Constraints (2)-(4) and minimize (1). 
 
SFA for pattern recognition: The pattern recognition 
problem can be summarized as follow. Given C distinct 
classes c1,..., cC and for each class cm a set of Pm patterns 
p1

(m ).., p(m)
Pm we are requested to learn the mapping c(.) 

between a pattern pj
(m) and its class c(pj

(m ) = cm. We 
define P := Σc

m=1 Pm to be the total number of patterns. 
 In general in a pattern recognition problem the 
input data does not have a temporal structure and it is  

 
Fig. 1: Schematic description of a third-order network 
 
thus necessary to reformulate the definition of the SFA 
algorithm. Intuitively, we want to obtain a set of 
functions that respond similarly to patterns belonging to 
the same class. The basic idea is to consider time series 
of just two patterns (pk

(m) , pl
(m) ), where k and l are two 

distinct indices in a class cm. 
 Rewriting Equation (1) using the mean over all 
possible pairs we obtain 

( )2( ) ( )

1 , 1
1

( ) . ( ) ( )
= =

<

∆ = −��
mpc

m m
j j k j l

m k l
k

y a g p g p  (13) 

where the normalization constant a equals one over the 
number of all possible pairs, i.e. 

21

1

=

=
�

c

mm

a
P

 (14) 

 We reformulate Constraints (2)-(4) by substituting 
the average over time with the average over all patterns, 
such that the learned functions are going to have zero 
mean, unit variance and be de-correlated when applied 
to the whole training data. This reduces to an 
optimization problem.  

( )

1 1

1
( ) 0

= =

=��
mpc

m
j k

m k

g p
p

 (zero mean) (15) 

2
( )

1 1

1
( ) 1

mpc
m

j k
m k

g p
p = =

=��  (unit variance) (16) 

( ) ( )

1 1

1
, ( ) ( ) 0

mpc
m m

j k j k
m k

i j g p g p
p = =

∀ < =��   

(de-correlation and order) (17) 
* Additional material is available at 

http://yann.lecun.com/exdb/mnist/. More 
information about SFA is available[5]. Several 
authors[4-6] proposed variant solutions for slow 
feature analysis. 

 
HONN architecture: The HONN (Higher Order Neural 
Network)[7-9] out performs single order multi layered 
networks. The HONN requires application of learning 
pattern only once. Hence its response is faster. They are 
able to exploit the inter-relations among the input data 
while providing invariant pattern recognition. The third 
order network is shown below. 
 The output of a third-order network can be de-
scribed by the following equation: 

� �= � �
� �
���i iabc a b c

a b c

y f w x x x  (18) 
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Fig. 2: Training with facial features ORL Database 
 
where i is the output index, w is the weight associated 
with a particular triangle, y is the actual output, x is a 
binary input and a, b and c are the indices of the inputs. 
A schematic  description  of this network is shown in 
Fig. 1. 
In the training phase, a perceptron-like rule is used: 

( )iabc i i a b cw t y x x xη∆ = −  (19) 
where t is the expected training output, y is the actual 
output, g is the learning rate and x is a binary input. The 
exponential increase of the triangles with the input  
image   is    the    major problem   in  higher order neural  

 
(i) 

 
(ii) 
Fig. 3: Recognition with eye data using (i) BPF & (ii) 

HONN 
 
networks. By restricting to the contour cells (active 
pixels) and similarities among the triangles are used to 
reduce the number of triangles and weight classes 
during the process of training. The following tabular 
form gives the complexity problem of HONN with 
image size[10,11].  
 
Table 1: The number of triangles as a function of input image size 
Input image size Number of triangles 
4x4 560 
8x8 41664 
12x12 487 344 
20x20 10586800 
40x40 681387200 
100 x100 1.6662x10" 
256 x 256 4.6910 xlO13 

 
 Number of weight classes is equal to the number of 
triangles which is equal to 

3CIN  

!
( 3)!3!

=
−
IN

NoT
IN

 (20) 
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where IN is the number of input nodes. The number of 
possible triangles for different input sizes is given in 
Table 1. 
 
HONN training: 
1. The coordinates of active pixels on the contour are to be stored 

in separate X,Y arrays for every pattern. 
2. Compute the active triangles for every pattern using the 

coordinates (xa,ya),(xb,yb),(xc,yc) and identify weight classes(W). 
Similar triangles are to be placed in the same class.  

3. Initialize the weights with the number of triangles contained by 
them (Nk).  

4. Compute the output 
� �

= � �
� �
�i ij kj

j

y f w N  

5. Update the concerned weight if Nkj >0 ( )∆ = −ij i iw t yη  

 
Example application: We illustrate our method by its 
application to a person identification using eyes and 
faces for invariant recognition. We consider the CBCL 
and ORL face database, which contains of a 20 people 
approximately 200 images for the person. From the 
ORL database 10 eyes inclusive of left eye and right eye 
are considered during the process of training (Fig. 2). 
They are able to recognize the person in-spite of 
variations due to the expressions.  
 The features obtained from SFA are trained using 
both conventional back-propagation algorithm and 
higher order neural network. The higher order neural 
network with eyes features given better recognition rate.  
 

CONCLUSION 
 
 Our experimental results show the higher order 
neural network training gives 15% higher performance 
conventional backpropagation (Fig. 3). We have tried 
with double backpropagation training the results are not 
uniformly encouraging. The work can be extended by 
adding self similarity probabilities while capturing slow 
features. Further this work can be extended for 
seen/expression analysis.  
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