
Journal of Computer Science 3 (8): 666-672, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Department of Computer Engineering, École Polytechnique de Montréal, C.P. 6079, Station succ.
Centre-ville, Montréal, Québec, Canada H3C 3A7

666

A Novel Service Mobility Architecture for SIP Environments

Thierno Bah, Samuel Pierre, Roch Glitho

Department of Computer Engineering, École Polytechnique de Montréal, C.P. 6079, Station succ.
Centre-ville, Montréal, Québec, Canada H3C 3A7

Abstract: Lately, the proliferation of small portable devices has driven the introduction of a new
mobility concept called service mobility. In order to support service mobility, we introduce a new
architecture implementing mechanisms to access end user’s personalized services regardless of his
physical location. The proposed architecture leverages on mobile agent technology to transport and
move services to the end user’s registered terminals and the Session Initiation Protocol (SIP) for user
location signaling. A decentralized approach purely based on mobile agents is compared with a
centralized approach. The performance measurement results show that mobile agents are worth being
used for realizing service mobility but in specific conditions.

Keywords: mobile agents, service mobility, SIP

INTRODUCTION AND BACKGROUND

In current generations of mobile networks (1G, 2G

and 2.5G), terminal and user mobility are well
supported. However, those forms of mobility cannot
guaranty a global mobility with the proliferation of
handheld devices and the heterogeneity that will
characterize the next generation of mobile networks.
New forms of mobility have therefore emerged. Service
mobility is intended for third (3G) and beyond (4G)
generations of mobile networks. This new form of
mobility is defined as the ability for the user to
transparently access his personalized services from any
terminal with the same profile while moving.

The main motivation for supporting service
mobility is the ability to follow end users while
providing them with their services with the same look
and feel as they move. To do so, a distributed
communication paradigm is needed to update the
services and a signaling protocol is also needed to track
the user’s location and provide multimedia services.
The mobile agent paradigm can be used in an elegant
way to support service mobility in a mobile
environment [1,2]. Mobile agents are entities that can
start execution in a node, suspend execution, and move
to another node to resume execution. This new
paradigm presents many advantages for the realization
of service mobility. Those advantages are, but are not
limited to, autonomy, mobility and persistency. It is
also claimed that mobile agents reduce bandwidth

consumption, reduce processing delays, easily support
user personalization and are not affected by network
conditions. More information on mobile agents can be
found in [3] for the interested reader. The Session
Initiation Protocol (SIP) is a signaling protocol for
Internet telephony that has been officially chosen as the
standard signaling protocol for third generation
networks [4]. It allows the introduction of new types of
multimedia services integrating voice, data, and video.
We truly believe that SIP will be a major enabler for
service creation and provisioning in next generation
networks.

In this paper, we propose a new service mobility
architecture for roaming users that frequently change
working terminals. This new architecture is based on
Emako et al.’s generic service architecture [5]. An
overview of the latest work on service mobility
architectures is presented next. Then we present our
architecture and the two schemes we have implemented
for the service update. We finally evaluate the
performance of the proposed schemes and discuss the
strengths and weaknesses of each one.

Many service architectures have been developed
lately for next generation networks [6]. Some rely on
legacy tools such as Intelligent Networks (IN); others
rely on new paradigms like mobile agents. In this
overview, we focus on the few service architectures that
address a form of service mobility. The SOMA
infrastructure [7] defines a framework called User
Virtual Environment (UVE) that is implemented by a

J. Computer Sci., 3 (8): 666-672, 2007

 667

mobile agent and aims to follow end users when they
move. Another relevant architecture targeting well-
known Internet services (HTTP, FTP…) is NetChaser
[8].

Service mobility is defined as the ability for the
user to transparently access his personalized services
from any terminal with the same profile while moving.
To do so, any service architecture supporting service
mobility must address user location tracking,
transparent updating of services and personalization of
service data. Service mobility can be realized in an
elegant way by implementing a mobile agent to
transport a particular service and follow end users when
they move. In our work, we have defined a unique
mobile agent acting as a folder and transporting all the
subscribed services. This approach should be more
suitable for better management and to avoid
performance and scalability problems.

Another major contribution we would make with
this work is to provide empirical measurements to
analyze the performance of the proposed mobile agent
based architecture. In fact, the related work does not
provide any empirical measurements and/or an analysis
of the performance of the proposed architecture.
However, since performance can be a major issue in
such a mobile environment with limited portable
devices and scarce resources, we have decided to
devote a large part of our work on experimentations and
performance measurements.

Service Mobility Architecture: We rely on the
architecture proposed by Emako et al. [5] to build an
architecture supporting service mobility. The key
components of the architecture are the Mobile Service
Agent (MSA) that acts as a folder and transports the
subscribed services; the Service Management Unit
(SMU) is the entity that manages the users’ subscribed
services and the associated profile through the MSAs;
and finally the Service Creation Unit (SCU) offers the
appropriate service creation environment.

Requirements: To support service mobility, any
architecture must provide some tools for the
management of the user’s subscribed services. To do
so, some requirements must be respected. Those
requirements are:
• Transparency: the mobility management

mechanism must be transparent to the end user;
• User location tracking: the user must be tracked

when changing locations.
• Service updating: the service must be updated with

the latest version in all the terminals being used;
• Data personalization: the service data must be

personalized with the latest user profile in all the
terminals being used;

• Persistency: a connectionless mode of operation
should be supported.
A function for adapting the service content to the

terminal capabilities could also be required in a
heterogeneous environment. This field is actively
researched, and the interested reader is referred to [9];
however, this is out of the scope of this paper.

Software components: Our architecture relies on SIP
[10] as the underlying protocol for signaling. We
implement new schemes and new functions in the MSA
and SMU to support service mobility. Service updating
and data personalization functions are added in the
MSA’s coordinator (logic). A SIP interface for user
location tracking and an MSA manager are also added
to the SMU. The mobility can be achieved by using the
« REGISTER » message of the SIP signaling protocol
[11]. When receiving such a message, the SIP server
then alerts the SMU that keeps track of the user’s
whereabouts. Mobile agents follow end users to realize
the updating and personalization functions. Howeverm
these functions in the coordinator of the MSA can only
be initiated by an entity with the appropriate credentials
for security reasons. This control can be simply
performed with an authentication certificate. More
materiel on the security issues with the mobile agent
paradigm can be found in the following reference for
the interested readers [12].

The components of the architecture are depicted in
Figure 1. The illustrations in the remaining pages are
limited to 3 terminals for practical reasons; however,
the architecture is scalable enough to support as many
terminals as the user desires, as it will be demonstrated
with the performance measurements. The SMU is made
of two main modules: the SMUInterfaceAgent and the
MSAManagerAgent. The SMUInterfaceAgent is a
stationary agent. It interfaces with the SCU and makes
the newly created services available to the user. It also
interfaces with the SIP location server and receives a
notification whenever a user logs into a new terminal.
The location (address) of the user is part of the
notification message that is sent to the server. The
SMUInterfaceAgent forwards the address to the
MSAManagerAgent. The MSAManagerAgent is also a
stationary agent. It creates, then tracks and manages all
the MSAs through proxies.

The modules that make the MSA are depicted in
Figure 2. As shown in the figure, the support of service
mobility is mainly realized with two new operations
(i.e., “Updating”, and “Personalization”) to the set of
native operations the MSA can carry (“clone” for
example).

J. Computer Sci., 3 (8): 666-672, 2007

 668

SMU

MSA at
terminal 3

MSA at
terminal 2

SMUInterfaceAgent

MSAManagerAgent

SCU SIP Server

MSA at
terminal 1

Fig. 1: The main components of the architecture

UserProfile

. . .
.S

er
vi

ce
lo

gi
c

1

MSA coordinator

Data

S
er

vi
ce

lo
gi

c
N

Data

Updating Personalization

S
M

U
 In

te
rf

ac
e

U
se

r
In

te
rf

ac
e

Fig. 2: Software architecture of the Mobile Service

Agent (MSA)

Dynamic updating of the MSA: In order to minimize
the downtime due to the update of the services, the
MSAs have to be updated dynamically. This update can
be done by substituting, adding, and/or deleting Java
classes using dynamic class loading, which is a
powerful tool of the Java virtual machine. This
underlying mechanism provides the Java platforms with
the ability to install software components at runtime.
Liang and Bracha [13] describe this approach. Running
software is made of multiple classes that are loaded in
the running Java virtual machine. Updating this
software consists in reloading the new versions of the
changed classes in the running virtual machine. The
principle is simple, but the implementation is not trivial.
In fact, there are many live objects that are instances of
the class to be reloaded. Since these objects are live
entities, they cannot be updated to conform to the new
version of the modified class even if the class has been
reloaded. In fact, a potential problem arises when the

application is executing a method that belongs to an
instance of a class that needs to be reloaded. In this
case, the application is forced to finish executing the
method before the new version of the class can be
loaded. If the new version does not define the method
or if it has a new version of the method, the old version
is executed anyways. However, those problems called
the schema evolution problem can be bypassed easily
by adopting a modular approach and organizing the
software into different class loaders [14]. The following
example will illustrate that fact. A user subscribes to a
service by adding an instance of the Service class in his
profile. A first approach is to define the Service class as
a whole class containing the data of the service and the
specific methods for executing the service. Instead,
another approach (the one we use here) organizes the
service into a modular entity made of two different
classes: a Method class containing the methods for
executing the service and a Data class containing the
specific data of the service. In this way, we only need to
reload the Data class if the user modifies the data
(preferences) of the service instead of reloading the
whole class, therefore avoiding the potential problems
associated with reloading an active class.

Service Updating and Personalization Schemes: Two
novel schemes are proposed to address service updating
and personalization for service mobility. For both
schemes, the location of the user and the migration of
the first MSA is performed the same way through SIP
signaling. As soon as the user registers at a new
terminal sending a “REGISTER” message to the SIP
location server, the server sends the terminal address to
the SMU. The SMU creates an MSA containing the
subscribed services with the customized data and
moves it toward the new terminal. The updating
approach is however different, depending on the used
scheme. The first scheme uses a hybrid approach that is
centralized. In fact, mobile agents are used to follow
mobile users and RMI is used to synchronously update
the agents. The updating is initiated by the central entity
i.e. SMU that remotely invokes the “updating” and/or
the “personalization” function of the MSA using RMI
calls with the services and/or user data profile as
parameters of the call. This approach is however
optimized by initiating the RMI calls in parallel for
each terminal, without having to wait for the
synchronous process to finish on a given terminal
before initiating it on another terminal. The second
scheme uses a pure agent based approach that is
decentralized. In fact, in this approach, the updating
process is delegated to an updating agent that is created
at the SMU unit. That updating agent asynchronously
updates the MSAs after touring all the terminals where
he calls the “updating” and/or the “personalization”

J. Computer Sci., 3 (8): 666-672, 2007

 669

function locally. The major benefit of delegating the
updating task to a mobile agent is that the updating is
done locally and asynchronously in a decentralized
fashion. Furthermore, this approach offers a high level
of persistency since if a terminal is disconnected from
the network, the updating agent waits until the terminal
becomes available to accomplish its task.
A full scenario involving 3 terminals is depicted in
Figure 3.

Terminal
T2

Terminal
T3

SMU SIP Server

REGISTER

Notification

REGISTER

Notification

Clone the MSA

REGISTER

Notification

Clone the MSA

Change user profile

Update MSAs
using RMI

Migration of
the MSA Clone

Migration of the MSA

Migration of
the MSA Clone

Terminal
T1

Launch the
update agent

Centralized
approach

Decentralized
approach

Fig. 3: Sequence diagram illustrating the two schemes

The scenario goes as follows:
• The user registers at terminal T1. The SIP location

server sends the terminal address to the SMU. The
SMU creates an MSA containing the subscribed
services and customized data and sends it to
terminal T1.

• The user now registers at T2 while still registered
at T1. The SIP location server informs the SMU
that the user has logged in at terminal T2. The
SMU tells the MSA located at T1 to clone itself. A
new MSA is created and migrated to T2.

• The user now registers at T3, in addition to T1 and
T2. The SIP location server informs the SMU that
the user has logged in at T3. The SMU tells the
MSA at T2 to clone itself and initiates the
migration of the newly created MSA at T3.

• Now the user makes changes to his service profile
at T2 (registers to a new service and/or updates the
version of a registered service and/or changes the
preferences data of a registered service…). The
SMU is then notified. Two schemes are now
possible depending on the approach that is used:

Centralized approach: the SMU asks the MSAs
located at T1, T2 and T3 to proceed with the updates by
remotely initiating a call to their “updating” and/or
“personalization” function using RMI. The calls are
initiated in parallel to optimize the process. The
changes to be made are transmitted as a parameter of
the calls. When it is a change to the preferences data of
a registered service, the request is only sent to T1 and
T3.
Decentralized approach: the SMU creates an updating
agent containing the changes and initiates its migration
to terminal T1, to terminal T2 if necessary (in the case
the user registers to a new service or updates the
version of a registered service; it is not relevant to send
the updating agent to T2 if it is a change to the
preferences data of a registered service) and to the
terminal T3 where it updates the MSA locally.

Performance Evaluation :To analyze the performance
of the architecture we have proposed, we built a test
environment based on the two schemes we proposed
earlier. We made measurements of the delay and
network load involved in the updating process for each
scheme. For this first contribution, we built our test
environment using a static network, where all the
workstations were connected to the same segment of a
100 Mbits/second Ethernet bus in the local area
network.

Metrics: We used two metrics in our analysis: the
delay and the network load.
The delay measures the duration of the updating
process. It is influenced by three main factors:
• The size of the service logic: when a new version

of the service is available, the service has to be
transferred to all the MSAs. The transfer delay
depends on the size of the service.

• The size of the service data: when the user makes
changes to customized data, the new data has to be
transferred to the MSAs on the other terminals. The
transfer delay depends on the size of the service
data.

• The number of terminals where the user is
registered: since each terminal the user is registered
in contains an MSA that has to be updated, the
updating time depends on the number of involved
terminals.

The network load measures the amount of data
transferred in the network during the updating process.
This metric, like the previous one, is mainly influenced

J. Computer Sci., 3 (8): 666-672, 2007

 670

by the size of the service logic, the size of the service
data and the number of terminals.

RESULTS AND DISCUSSION

We measured the delay as a function of the number
of terminals. The measurements were obtained from
several evaluation sessions conducted for a whole week
during the night (when the network is not very loaded)
in order not to influence the results. During this period,
the local network latency was around 0.4s and the
average available bandwidth was around 75
Mbits/second. To get more accurate results, we reported
the data from 10 samples. We took the average of 5
samples with a standard deviation less than 5 %.
Results are shown for a big service (Figure 4a with a
size of 5000 Kbytes), a small service (Figure 4b with a
size of 500 Kbytes) and the service data (Figure 4c with
a size << 500 Kbytes) for the centralized (C) and
decentralized (D) approaches.

Fig. 4a Delay – Big service

0
2
4
6
8

10
12
14

1 2 3 4 5 6

Number of terminals

Ti
m

e
(s

)

C

D

Fig. 4b Delay – Small service

0

2

4

6

8

10

2 3 4 5 6

Number of terminals

Ti
m

e
(s

)

C

D

Fig. 4c Delay – Service data

The network load is also plotted as a function of the
number of terminals for a big service (Figure 5a with a
size of 5000 Kbytes), a small service (Figure 5b with a
size of 500 Kbytes) and the service data (Figure 5c with
a size << 500 Kbytes).

0
5000

10000
15000
20000
25000
30000
35000

1 2 3 4 5 6

Number of terminals

Lo
ad

 (M
B

yt
es

)

C

D

Fig. 5a Network load – Big service

0

1000

2000

3000

4000

1 2 3 4 5 6

Number of terminals

Lo
ad

 (M
B

yt
es

)

C

D

Fig. 4b Network load – Small service

0

10
20
30
40
50

1 2 3 4 5 6
Number of terminals

Time (s)
C
D

J. Computer Sci., 3 (8): 666-672, 2007

 671

0
10
20
30
40
50
60
70

1 2 3 4 5

Load (KBytes)

N
um

be
r

of
 te

rm
in

al
s

C

D

Fig. 4c Network load – Service data

In all cases, the centralized approach has a delay

that is much more important than its counterpart as
depicted in Figures 4a, b and c. In fact, the
decentralized approach involves many steps that require
a lot of processing: the creation of the updating agent;
the transmission of the service code to the agent; the
serialization; the migration; and the un-serialization of
the agent at each destination. Furthermore, the updating
agent has to migrate several times to reach all the
MSAs on all the connected terminals. On the other
hand, the centralized approach only involves the
transmission of the new service or data to the MSAs
through a remote call to the updating method without
any further processing. This process is furthermore
optimized by initiating the remote calls in parallel
specifically to reduce delay.

When it comes to the network load, the
decentralized approach outperforms the centralized one
in specific cases. In fact, the decentralized approach
creates less traffic than the centralized one when heavy
data is involved in the transfer. It creates less network
traffic for a service transfer (heavy data) as depicted in
Figures 5a and 5b while creating much more traffic for
a service preference data transfer (small data) as
depicted in Figure 5c. This can be explained by the fact
that the agent only transports its data state, which
consists of all the non-transient instance variables of the
agent class, and does not transport any transient data as
it is the case with RMI in the hybrid approach. Also,
intermediate results are not transmitted when using
mobile agents in the decentralized approach. However,
those benefits are apparent only for a data size that is
important enough to counterbalance the overhead
associated with the creation of the mobile agent.
Therefore, to be efficient when using a mobile agent
based approach, the load that has to be transferred must
reach a specific data size threshold. This threshold is

around 500 Mbytes in our experience. It is however
dependant on the nature of transfer.

CONCLUSION

In this paper, we proposed a new architecture to
support service mobility. A short critical overview of
the existing architectures was done, requirements were
identified and new features and schemes were proposed
to meet those requirements. A performance evaluation
was done and results analyzed.
In the scope of this work, we used static terminals for
practical reasons to realize the experiences. In future
work, we will used mobile terminals, running our
experiments in a mobile wireless network that is closer
to the targeted networks (3G and beyond). The schemes
we use are also static. In the future, we shall derive
algorithms for deciding which scheme to use,
depending on the metrics (delay and/or network load
optimization) we want to optimize. In addition we
could explore schemes where there is no centralized
network entity involved in the updates with cooperating
agents. Such schemes could be useful for mobile Ad
hoc networks. Other paradigms such as emerging web
services could also be used to realize the service
mobility.

REFERENCES

1. Vasiu L. and Mahmoud Q. H., 2004. Mobile agents

in wireless devices. IEEE Computer, 37 (2): 104 –
105.

2. Yu Y. and Zhang P., 2003. Service mobility in
mobile network. Proceedings International
Conference on Communication Technology ICCT.
2 (1): 1698 – 1701.

3. Chess D., Harrison C. and Kershenbaum A., 1995.
Mobile Agents: Are They a Good Idea? IBM
Research Division, T.J. Watson Research Center,
Yorktown Heights, New York, available at URL:
http://www.cs.dartmouth.edu/?agent/papers/chapter
.ps.Z. 16

4. Glitho R., 2000. Advanced Service Architectures
for Internet Telephony: A Critical Overview. IEEE
Network Magazine, 14 (4): 38-44.

5. Emako B., Glitho R. and Pierre S., 2003. A Mobile
Agent based Advanced Service Architecture for
Wireless Internet Telephony: Design,
Implementation and Evaluation. IEEE Transactions
on Computers, 52 (6): 690-705.

J. Computer Sci., 3 (8): 666-672, 2007

 672

6. Glitho R., 2001. Emerging alternatives to today's
advanced service architectures for Internet
telephony: IN and beyond. Computer Networks, 35
(5): 551-563.

7. Bellavista P, Corradi A. and Stefanelli C., 2001.
Mobile Agent Middleware For Mobile Computing.
IEEE Computer, 34 (3): 73-81.

8. Stefano D. and Santoro C., 2000. NetChaser: Agent
Support for Personal Mobility. IEEE Internet
Computing Magazine, 4 (2): 74-79.

9. Timmerer C. and Hellwagner H., 2005.
Interoperable adaptive multimedia communication.
IEEE Multimedia, 12 (1): 74 – 79.

10. Schulzrinne H. and Rosenberg J., 2000. The
Session Initiation Protocol: Internet Centric
Signaling. IEEE Communications Magazine, 38
(10): 134-141.

11. Lou D., Jiang D., Yeap T. and O'Brian W., 2005.
Personalized service mobility and security in SIP-
based communications. 13th IEEE International
Conference on Communications, 1 (1) : 113-117.

12. Benachenhou L. and Pierre S., 2006. Protection of
a Mobile Agent with a Reference Clone. Computer
Communications Special issue on Dependable
Wireless Sensor Networks, 29 (2): 268-278.

13. Liang S. and Bracha G., 1998. Dynamic Class
Loading in the Java Virtual Machine. Proceedings
of the Conference on Object-Oriented
Programming Systems, Languages, and
Applications, 1 (1) : 36-44

14. Hirschfeld R. and Kawamura K, 2006. Dynamic
service adaptation: Experiences with Auto-adaptive
and Reconfigurable Systems. Software Practice
and Experience, 36 (11) : 1115-1131.

