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Abstract: In the present work we overview some recently proposed discrete Fourier transform (DFT)- 
and discrete wavelet packet transform (DWPT)-based speech parameterization methods and evaluate 
their performance on the speech recognition task. Specifically, in order to assess the practical value of 
these less studied speech parameterization methods, we evaluate them in a common experimental setup 
and compare their performance against traditional techniques, such as the Mel-frequency cepstral 
coefficients (MFCC) and perceptual linear predictive (PLP) cepstral coefficients which presently 
dominate the speech recognition field. In particular, utilizing the well established TIMIT speech corpus 
and employing the Sphinx-III speech recognizer, we present comparative results of 8 different speech 
parameterization techniques.  
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INTRODUCTION 

 
 The contemporary speech recognition technology 
is based on the statistical analysis of speech performed 
through powerful pattern recognition techniques, such 
as the hidden Markov models (HMM)[1] and dynamic 
programming procedures, such as the Viterbi 
algorithm[2]. One problem that has not been solved yet 
with sufficient elegance is the speech parameterization, 
which has the task to present the information carried by 
the speech signal in a compact form, so that it can be 
efficiently utilized by the HMM classifier. Presently, it 
is well understood which of the speech properties the 
speech features need to preserve and which to suppress. 
Significant efforts have been made for devising 
transformations for post-processing of the speech 
feature vectors in order to reduce the effect of signal 
alteration due to adverse environmental conditions[3] or 
variability of speech related to differences in the vocal 
tract among different speakers[4-6]. However, there are 
numerous other practical difficulties[7] that render the 
accurate recognition of speech difficult. Ultimately, the 
task of designing speech features that would lead to 
reliable speech recognition has not been solved, yet.  
 The success of MFCC[8], combined with their 
robust and cost-effective computation, turned them into 
a standard choice in speech recognition applications. 
Later studies[9] have shown that the PLP features 
outperform MFCC in specific conditions, but generally 
no large gap in performance was observed between 

them. Other speech features, such as the Perceptual 
Linear Prediction Adaptive Component Weighting 
(ACW) cepstral coefficients[10], and various wavelet-
based features, such as the SBC of Sarikaya and 
Hansen[11], WPF of Farooq and Datta[12], WPSR of 
Siafarikas et al.[13, 14], despite presenting reasonable 
solution for the same tasks, did not gain widespread 
practical use, due to their higher computational 
demands. Nowadays, many earlier computational 
limitations have been overcome, due to the significant 
performance boost of contemporary microprocessors. 
This opens possibilities for re-evaluation of the 
traditional solutions when speech features are selected 
for a specific application.  
 More often when new speech features are proposed 
they are contrasted either to MFCC or PLP and, rarely, 
to a larger number of other competitive parameters. 
Some exceptions are[13, 15, 16], etc, where the authors 
consider three or more of the previously mentioned 
speech features in addition to their proposed method. 
The lack of comparison to multiple known methods 
leads to a particular difficulty, which developers 
experience when they have to choose speech features 
for the needs of a speech recognizer. Usually, their first 
choice falls on the MFCC, since they are known to 
provide good performance and are straightforward to 
implement. The selection of alternative speech features 
is somehow complicated due to the lack of large-scale 
comparisons, especially as concerns the wavelet 
packets-based speech features. This raises the necessity 
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for a direct comparison of the traditional speech 
features against recent wavelet packet-based speech 
features in a common experimental setup, which is a 
time-demanding process. 
 In the present work, we employ the Sphinx-III 
speech recognizer[17] and the TIMIT speech database[18] 
to evaluate a large number of recent (DWPT)- and 
(DFT)-based speech parameterization approaches in a 
common experimental setup. We target at identifying 
the relative ranking of the evaluated alternative speech 
features and measuring the practical worth of replacing 
MFCC. 

 
Fig. 1: Block diagram of the HMM-based speech recognition   

procedure 
 
 In the following section we offer a brief outline of 
the HMM-based speech recognition process. Next, we 
describe the speech parameterization schemes of 
interest, the experimental setup and then present 
comparative results for all feature extraction methods. 
This article ends with concluding remarks. 
 

HMM-BASED SPEECH RECOGNITION 
 
 A speech recognition system operates in two 
modes: training (learning) and decoding (recognition). 
During learning it summarizes the characteristics of a 
set of sound units, e.g. phonemes, and builds models, 
which are afterwards utilized by defining the most 
probable sequence of sound units for a given speech 
sequence. During the recognition phase, these models 
are employed for decoding unknown input speech. 
 The state-of-the-art speech recognition technology 
is based on HMMs. HMMs are widely used in speech 
recognition because of their capability to model a 
sequence of discrete or continuous symbols. The speech 
signal can be approximated as a stationary signal in 

short-time intervals of about 10 milliseconds. Thus, 
speech is considered as a Markov model for many 
stochastic processes, known as states. The HMM tends 
to have, in each state, a statistical distribution called a 
mixture of Gaussians, which provides a likelihood for 
each observed vector. Each sound unit has a different 
output distribution. An HMM for a sequence of sound 
units is made by concatenating the separately trained 
hidden Markov models for the units. The most popular 
HMM used in speech recognition is the 3-state Bakis 
topology HMM with a non-emitting terminating state. 
In this topology it is assumed that each speech unit can 
be modelled by three distributions representing the 
beginning, middle and ending of it. The system can skip 
from state one to state three, bypassing state two 
completely. Such a topology implies that while the 
most general realization of the modelled sound has 
three distinct stages, some fulfilments may not have the 
middle stage. 
 A general structure of the decoding phase of an 
HMM-based system is illustrated in Fig. 1. As the 
figure presents, through pre-processing and 
parameterization steps the input speech is converted to 
a sequence of feature vectors, which is afterwards 
compared against an acoustic model, consisting of one 
HMM for every context-independent and context-
dependent sound unit. The resulting acoustic score is 
combined with the score of a language model from the 
decoder. The language model consists of the probability 
of each word of a vocabulary to appear after a preceded 
word sequence. The sequence of words with the highest 
overall score is the recognized output.   
 
SPEECH PARAMETERIZATION TECHNIQUES 

 
 Here, we consider the following relatively less 
studied speech parameterization techniques: SBC of 
Sarikaya & Hansen[11], WPF of Farooq & Datta[12], 
WPSR of Siafarikas et al.[13], OWPF of Siafarikas et 
al.[14] and HFCC-E of Skowronsky & Harris[16]. In 
addition, the well-known LFCC[8], MFCC[8] and PLP[9], 
whose performance is well studied, are employed as 
reference points. The last three speech features are well 
known and were used widely for speech recognition, 
while the HFCC-E scheme was recently proposed as a 
generalization of the MFCC that allows extended 
flexibility in the filter-bank design. 
   A general block diagram that summarizes the 
parameter estimation process for the speech 
parameterization methods under consideration is 
illustrated in Fig. 2. As the figure presents, the speech 
parameterization methods considered here share 
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Fig. 2: Block diagram of extraction of the present evaluation’s speech parameters 
 
some common processing steps. Only the procedure of 
computing the PLP cepstral coefficients differs in a 
higher degree, when compared to the other speech 
parameterizations. In the following subsections we 
outline each method and describe how the originally 
proposed speech parameterizations were adjusted to 
unified frequency bandwidth and common settings. 
 
DFT-BASED SPEECH PARAMETERIZATION  
MFCC speech features (MFCC-FB40): Among 
various MFCC implementations discussed in the 
literature[16, 19], we rely on the one introduced by 
Slaney[20]. Due to its good performance, and to the fact 
that it is the default speech parameterization for the 
Sphinx-III speech recognizer, we consider it as a 
baseline in the comparative evaluation of speech 
parameterization methods.  

In brief, assuming sampling frequency of 16 kHz, 
Slaney implemented a filter bank of 40 equal area 
filters, which cover the frequency range [133, 6855] 
Hz. The centre frequencies of the first 13 filters are 
linearly spaced in the range [200, 1000] Hz with a step 
of 66.67 Hz and the ones of the next 27 are 
logarithmically spaced in the range [1071, 6400] Hz 
with a step 1.0711703logStep = . 

The MFCC computation starts with applying the 
-N point DFT: 
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Finally, the DCT (3) provides the MFCC-FB40 
parameters: 
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where j is the serial index of the cepstral coefficient, 
M is the number of filters in the filter-bank and J is 
the number of MFCC that are needed. For speech 
recognition 13J =  is a widely accepted value.  
      For the purpose of fair comparison, we accepted the 
frequency range of MFCC [133, 6855] Hz as binding 
for all other speech parameterization methods under 
consideration in this study. 
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LFCC speech features (LFCC-FB40): The LFCC[8] 
are computed following the methodology of the MFCC-
FB40 (as described in the previous section) with the 
only difference that the Mel-frequency warping step is 
skipped. Thus, the desired frequency range is 
implemented by a filter-bank of 40 equal-width and 
equal-height linearly spaced filters. The bandwidth of 
each filter is 164 Hz, and the whole filter-bank covers 
the frequency range [133, 6857] Hz. Obviously, the 
equal bandwidth of all filters renders unnecessary the 
effort for normalization of the area under each filter.   
      Analytically, the computation of the LFCC speech 
features is performed as follows: The -� point DFT (1) 
is applied on the discrete time domain input signal 

( )x n . Next, the filter bank is applied on the magnitude 

spectrum ( )X k  and the logarithmically compressed 

filter-bank outputs iX  are computed (2). Finally, the 
DCT (3) is applied on the filter-bank outputs (2) to 
obtain the LFCC FB-40 parameters. Analogically to the 
MFCC FB-40 we compute only the first  13J =  
parameters. 

 
PLP speech features (PLP-FB19): The PLP 
parameters[9] rely on Bark-spaced filter-bank of 18 
filters for covering the frequency range [0, 5000] Hz. 
Specifically, the PLP coefficients are computed as 
follows: Firstly the discrete time domain input signal 

( )x n  is subject to the -N point DFT (1), and then the 
critical-band power spectrum is computed through 
discrete convolution  

2.5
2

1.3
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of the power spectrum with the piece-wise 
approximation of the critical-band curve[9, 19], where B  
is the Bark warped frequency obtained through the 
Hertz-to-Bark conversion. Equal loudness pre-emphasis 
is applied on the down-sampled ( )Bθ  and then 
intensity-loudness compression is performed. To the 
result obtained so far an inverse DFT is performed to 
obtain the equivalent autocorrelation function. Finally, 
the PLP coefficients are computed after autoregressive 
modelling and conversion of the autoregressive 
coefficients to cepstral coefficients. 
      Here this filter-bank was adapted to the desired 
frequency range by discarding the first (lowest 
frequency) filter and all filters whose centre frequencies 
reside beyond 6855 Hz. This modification led to a 
filter-bank of 19 filters that cover the frequency range 
[100, 6400] Hz, which is the closest feasible 
implementation to the desired frequency range.  

HFCC-E of Skowronsky & Harris: Skowronski & 
Harris[16] introduced the Human Factor Cepstral 
Coefficients (HFCC-E). In the HFCC-E scheme the 
filter bandwidth is decoupled from the filter spacing. 
This is in contrast to the earlier MFCC 
implementations[8, 20], where these were dependent 
variables. Another difference to the MFCC is that in 
HFCC-E the filter bandwidth is derived from the 
equivalent rectangular bandwidth (ERB), which is 
based on critical bands concept introduced by Moore 
and Glasberg[21] rather than on the Mel scale. Still, the 
centre frequency of the individual filters is computed by 
utilizing the Mel scale. Furthermore, in HFCC-E 
scheme the filter bandwidth is further scaled by a 
constant, which Skowronski and Harris labelled as E-
factor. Larger values of the E-factor E={4, 5, 6} were 
reported[16] to contribute for improved noise robustness. 

In brief, assuming sampling frequency of 12500 Hz 
Skowronski & Harris proposed the HFCC-E filter bank 
composed of 29 Bark-warped equal height filters, 
which cover the frequency range [0, 6250] Hz. The 
computation of the HFCC-E starts with -N point DFT 
(1) of the discrete input signal ( )x n . Next, the HFCC-E 

filter-bank is applied on the magnitude spectrum ( )X k  
and the log-energy filter bank outputs are computed (2). 
Finally, the DCT (3) is applied to decorrelate the 
HFCC-E FB-29 parameters. For the purpose of fair 
comparison with the other speech parameterization 
schemes considered here, we compute only the first 

13J =  cepstral coefficients. 
      In order to adapt the frequency range of the HFCC 
filter-bank to the one considered here we discarded the 
first two filters (these with lowest centre frequencies) 
and added a new one at the other end (highest centre 
frequency). This modification led to a filter-bank of 28 
filters, which covers the frequency range [125, 6844] 
Hz. Furthermore in order to better understand the 
influence of the number of filters in the filter-bank on 
the speech recognition performance, we designed two 
other filter-banks that cover the same frequency range: 
(i) with 23 filters and (ii) with 40 filters. Their design 
was motivated by the MFCC implementations in 
HTK[22] and Slaney[20]. In the present work, we consider 
the E-factor 1E =  for all HFCC-E designs. 
 
DWPT-BASED SPEECH PARAMETERIZATION 
The SBC of Sarikaya & Hansen: Sarikaya & Hansen 
in[11] performed a wavelet packet decomposition of the 
frequency range [0, 4] kHz such that the 24 frequency 
subbands obtained follow the Mel scale for the task of 
stressed speech monophone recognition problem. 
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Following certain experimentations, they proposed a 
specific wavelet packet decomposition that provided the 
best overall result among a reasonable number of 
wavelet packet trees. The proposed analysis emphasizes 
low to mid frequencies assigning more subbands in 
these bands; overall, their decomposition preserves 
approximately a log-like distribution of the subbands 
across frequency. The wavelet packet decomposition is 
followed by the computation of the energy in each 
subband and the scaling by the number of transform 
coefficients in that subband. The corresponding 
subband signal energies for each frame are computed 
by the following relationship: 
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where W xψ  is the wavelet packet transform of signal 

x , i  is the subband frequency index and iN  is the 
number of coefficients in the i th subband. Wavelet 
packet transform was implemented by using 
Daubechies’ wavelet filter of order 32. The resulting 
speech features, which Sarikaya & Hansen named 
Subband Based Cepstral Coefficients (SBC), were 
derived with the application of DCT transformation on 
the subband energies: 
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for  1,...,j J= , where J  is the number of SBC 
parameters and �  is the total number of frequency 
bands. 
      To adjust the filter-bank of SBC to the desired 
frequency range we did the following two 
modifications: The initial two subbands were discarded 
and six new subbands with bandwidth of 500 Hz each 
were added at the end of the original frequency range. 
This kept the Mel-scale like frequency warping and led 
to the actual frequency range of [125, 7000] Hz that is 
covered by 28 frequency subbands, and that is the 
closest feasible implementation of the desired 
bandwidth. 
 
The WPF of Farooq & Datta: Farooq and Datta[12] 
performed a wavelet packet decomposition of the 
frequency range [0, 8] kHz such that the obtained 24 
frequency subbands closely follow the Mel scale for the 
task of phoneme recognition. Following their method, 
the phonemes were analyzed through 24 filters 
constituting a wavelet packet based filter-bank. 

Following the decomposition, the total energy pE  in 

each subband �  was calculated as follows:  

( )2
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p j p
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where ,j pC  is the j th coefficient in the p th subband, 

pN  is the number of wavelet packet coefficients in the 

p th subband and M  is the number of subbands. The 
energies in each subband are further normalized with 
the number of wavelet packet coefficients in the 
corresponding subband as follows 

/ ,  1,...,p p pF E N p M= = ,                                         (8) 

providing average energy per wavelet coefficients per 
subband pF . The authors performed the wavelet packet 

decomposition using Daubechies’ wavelet filter of 
order 12 in order to obtain features with emphasis on 
the lower frequency subbands. Subsequently, the 
normalized subband energies obtained at the output of 
the filter-bank were logarithmically compressed and 
subsequently decorrelated by applying the DCT. The 
feature set consisted of the first 13 coefficients of the 
resultant vector.  
     To adjust the filter-bank of WPF to the desired 
frequency range we discarded the first and the last 
subbands, which lead to 22 subbands that cover the 
range [125, 7000] Hz. This is the closest feasible fit to 
the desired frequency range. 
 
WPSR of Siafarikas et al.: The wavelet packet 
features (WPSR) of Siafarikas et al.[13] were initially 
developed for the needs of speaker recognition, but here 
they are adapted to the speech recognition task. As 
discussed in the literature, wavelet packet analysis can 
be further enhanced and fine-tuned by carefully 
selecting a wavelet function (and consequently the 
corresponding wavelet and scaling filters) that is 
appropriate for the specific application in order to 
provide various time-frequency representations. The 
variety of existing wavelet families has been explored 
in order to augment the frequency localization abilities 
of the selected wavelet packet transform. The Battle-
Lemarié polynomial spline wavelet of order 5 was 
found as the best choice for the basis function of the 
wavelet packet transform.  
     In contrast to the SBC and WPF F&D speech 
features, which are based on the Mel scale, the 
formulation of the WPSR wavelet packet features 
exploited the suitability of the various wavelet packet 
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orthonormal transforms for the approximation of the 
psychoacoustic effect explained by the critical bands 
concept, which was introduced by Fletcher[23]. In their 
original design the authors used 66 filters to cover the 
frequency range [0, 4000] Hz. To adapt this filter-bank 
to the speech recognition task it was modified to have 
smoothly increasing frequency resolution as follows: 
resolution 31.25 Hz for the range [0, 1000] Hz, 
corresponding to 32 subbands; resolution 62.5 Hz for 
[1000, 2500] Hz, 24 subbands; resolution 125 Hz, for 
[2500, 4000] Hz, 12 subbands. These minor changes 
led to two extra subbands in the range [0, 4000] Hz, so 
that the totals become 68. The desired frequency range 
was implemented by discarding the first four subbands 
and adding a number of subbands at the end, in two 
different ways:  
   1) 23 new subbands with resolution 125 Hz each were 

added. A total of 87 subbands covering the 
frequency range [125, 6875] Hz was obtained. 

   2) 12 new subbands with resolution of 250 Hz each 
were added. This led to a total of 76 subbands 
covering the frequency range [125, 7000] Hz. 

Consequently, these two versions of the WPSR differ 
only in the implementation of the upper part of the 
desired frequency range. In the following they are 
referred to as WPSR125 and WPSR250, respectively. 
 
Overlapping WPF of Siafarikas et al.: Siafarikas et 
al.[14] introduced a generalization of the Wavelet Packet 
Transform refered to as Overlapping Wavelet Packet 
Transform (OWPT) that allows an effective utilization 
of specific frequency intervals of interest. Carefully 
selected basis vectors belonging to different levels of 
the OWPTs are grouped together in order to create an 
even larger collection of overlapping transforms. This is 
achieved by organizing all the OWPTs for levels 

0, ,j J= �  into a tree structure, called Wavelet Packet 
(WP) tree. 

Having constructed the WP tree, the coefficient 
vectors n

jW  can be collected together to form a set 

{ }: 0, , 0, 2 1n j
jS W j J n= = = −� � , where each n

jW S∈  

is nominally associated with the frequency band n
jI . 

Any subset 1S S⊂  that provides a complete 

overlapping coverage of the interval [ ]0,1/ 2  with 

coefficient vectors n
jW  yields an OWPT. In this way, 

OWPT provides a flexible tiling of the time-frequency 
plane with various frequency resolutions in the 
corresponding time intervals along with emphasis in 
specific frequency subbands. 

 In[14] it has been reported that the following 
resolutions and overlapping areas provide the  best 
speaker verification performance: resolution 31.25 Hz 
in the range [0, 1000] Hz; resolution 62.5 Hz for [875, 
1500] Hz,  [2000, 2625] Hz and [3000 3500] Hz; and 
resolution 125 Hz for [1500, 2000] Hz and [2375, 
3000] Hz. Furthermore in order to adjust this WP tree 
to the frequency range of interest, we have excluded 
from the filterbank the subbands residing in the interval 
[0, 125] Hz and added extra frequency bands with 
resolution 125 Hz in the frequency range [4000, 6875] 
Hz. This resulted into a WP tree with a total of 92 
frequency subbands, which cover the frequency range 
[125, 6875] Hz. 
 

EXPERIMENTAL SETUP 
 
     The speech parameterizations of interest were 
evaluated on the TIMIT speech recognition corpus[18]. 
Its well-understood and widely-used experimental 
protocol facilitates the interpretation of results and 
provides the means for direct comparison to other 
speech features, which were not considered in the 
present work.  
    In brief, the audio material consists of single-channel 
16-bit linear microphone recordings with sample rate of 
16 kHz, representing 8 American-English dialects, 
subdivided into training and testing sets. The phonetic 
representation (pronunciation) of all the words in the 
TIMIT prompts was carried out with the exploitation of 
the lexicon provided with the database. In the lexicon, a 
phoneme set of 38 phonemes {aa, ae, ah, ahr, aw, ay, 
b, ch, d, dh, eh, er, ey, f, g, hh, ih, iy, jh, k, l, m, n, ng, 
ow, oy, p, r, s, sh, t, th, uh, uw, v, w, y, z} is utilized. 
     For each speech feature set, an acoustic model was 
trained in a two step procedure. Initially, an acoustic 
model was trained utilizing the speech material and the 
corresponding transcriptions. This acoustic model was 
force-aligned against the transcription of the training 
data in order to extract the phonetic representations of 
the words with multiple pronunciations. Next, the 
force-aligned transcriptions were used to train new 
acoustic models following the same procedure.  
Specifically, 13-dimensional feature vectors were 
utillized. For the speech parameterization methods that 
perform pre-emphasis in time domain, we used 1st 
order FIR filter with pre-emphasis factor equal to 0.97. 
Afterwards, the speech was segmented into frames of 
16 or 25.625 milliseconds length with rate 100 frames 
per second. Furthermore, for the DFT-based features, 
each frame was weighted by a Hamming window. Due 
to the compact representation of the wavelets this is not 
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necessary in the DWPT-based schemes. The delta and 
double-delta coefficients were appended to the base 13, 
which led to 39-dimentional feature vectors. No 
automatic gain control or variance normalization was 
applied. 

The acoustic models used 3-state Bakis-topology 
HMMs with a non-emitting terminating state. One 
HMM model was built for each of the 38 monophones 
plus one model for silence. Means and variances of 
every model were initialized and, subsequently the 
context-independent (CI) phone models were trained 
through the Baum-Welch algorithm. During training the 
initial acoustic model, we carried out 15 iterations, 
while for the final one (which uses the force-aligned 
transcriptions) the number of iterations depended on the 
convergence ratio, i.e. on the likelihood of the current 
to the previous iteration ratio. The training process was 
terminated when the convergence ratio became less 
than 0.02. Next, context-dependent (CD) untied 
triphone models were trained for every triphone that 
had occurred at least 8 times in the training data. The 
CD models were initialized using the values of the 
parameters of the corresponding CI models and trained 
with the Baum-Welch algorithm. The training protocol 
was similar to the one used in the CI step. 
Subsequently, decision trees were built to determine 
which HMM states of all untied models present 
similarities to train global states (senones). In total 1000 
senones were trained as derived from empirical rules[24]. 
Triphones that contributed to the training of a senone, 
also called tied-state, share that senone. At the next 
step, the decision trees were pruned, so as the number 
of leaves to become equal to the selected number of tied 
states (not including the CI states). Finally, the CD tied 
models were trained. The HMM states were modelled 
by a mixture of 8 Gaussian distributions by 
progressively splitting and retraining the models to 2, 4 
and 8 Gaussians per state. 

In the decoder, the HMM acoustic model is utilized 
in the recognition of the test speech data. The resultant 
acoustic scores are combined with weighted 
probabilities provided by a language model. Here, a tri-
gram language model, built utilizing the CMU 
Language Model Toolkit[25] was used. We used all 
TIMIT sentences for the training of the language 
model. 
     The Sphinx-III decoder was set as follows: Beam 
selecting HMMs at each frame= 1.0e-55; Beam 
selecting word-final HMMs at each frame= 1.0e-55; 
Beam selecting HMMs transitioning to successors at 
each frame= 1.0e-55; Max # of histories to maintain at 
each frame= 120; Max # of active HMMs to maintain at 

each frame= 30000; Max # of distinct word exists to 
maintain at each frame= 25; Silence word probability 
=1.0; Language weight= 9.5. Settings that are not 
referred here have their default values, as specified in 
the Sphinx-III documentation[24]. 
 

EXPERIMENTAL RESULTS 
 
     All speech feature sets were processed in a uniform 
manner as described in the previous section. The 
MFCCs are considered as the baseline speech 
parameters. The word error rate (WER) and the 
sentence error rate (SER) in percentages are presented 
in Table 1. The total number of words in TIMIT test 
subset is 14553, and the number of sentences 1680. In 
all tables, the errors of word substitutions, deletions and 
insertions are designated as WS, WD and WI 
respectively. The number 16 in the brackets after the 
designation of the wavelet packet-based speech features 
denotes that these features in fact utilize only the first 
16 milliseconds of the speech frame. This is forced by 
the requirement of the DWPT analysis that the number 
of input samples has to be exact power of 2.  
 
Table 1. Results for window 25.625 milliseconds 

Feature WS WD WI WER(%) SER(%) 
SBC (16) 597 194 117 6.2 21.3 
WPSR125 (16) 596 212 113 6.3 21.8 
OWPF (16) 586 221 120 6.4 22.1 
WPSR250 (16) 592 218 128 6.5 21.6 
WPF F&D (16) 619 207 161 6.8 22.9 
LFCC-FB40 635 223 152 6.9 23.5 
HFCC-FB23 799 162 231 8.2 27.3 
HFCC-FB40 819 184 261 8.7 28.2 
HFCC-FB28 844 157 266 8.7 28.9 
PLP-FB19 868 150 295 9.0 29.4 
MFCC-FB40 860 176 278 9.0 29.9 

 
     As presented in Table 1 all speech features evaluated 
here outperformed the baseline MFCCs. This was an 
expected outcome and confirms the results reported by 
the corresponding authors. However, from a practical 
point of view, it is more interesting to investigate the 
ordering and the actual improvement these speech 
features lead to when compared to the baseline. As the 
results show the lowest error rates were achieved for 
the SBC of Sarikaya & Hansen, followed by the 
WPSR125, OWPF and WPSR250 of Siafarikas et al., 
the WPF of Farooq & Datta, and afterwards by the 
DFT-based speech features. An interesting observation 
is that the LFCC-FB40, which uses a bank of equal-
bandwidth filters with linear spacing of the central 
frequencies, outperformed the HFCC, PLP, and MFCC, 
which all possess frequency warping inspired by the 



J. Computer Sci., 3 (8): 608-616, 2007 
 

 615 

human auditory system. The superior results for the 
DWPT-based speech features is due to: (i) the balanced 
time-frequency resolution these wavelet packet trees 
provide, when compared to the uniform frequency 
resolution of the DFT-based ones, and (ii) to the more 
suitable (for analysis of non-stationary speech signals) 
basis functions, which are more reasonable choice, 
when compared to the cosine functions. 
     Next, for the purpose of fair comparison, all 
experiments involving the DFT-based speech features 
were repeated for window size of 16 milliseconds, 
which corresponds to the effective frame size that the 
DWPT-derived speech features utilize. The results are 
presented in Table 2. As the table presents, the DWPT-
derived speech features retained their superiority. With 
small exceptions in the ordering of the DFT-based 
speech features, the ranking remained the same as in 
Table 1.   
 
Table 2. Results for window 16 milliseconds 

Feature WS WD WI WER(%) SER(%) 
SBC 597 194 117 6.2 21.3 
WPSR125 596 212 113 6.3 21.8 
OWPF 586 221 120 6.4 22.1 
WPSR250 592 218 128 6.5 21.6 
WPF F&D 619 207 161 6.8 22.9 
LFCC-FB40 635 223 152 6.9 23.5 
HFCC-FB40 736 173 194 7.6 25.5 
HFCC-FB28 759 176 183 7.7 26.0 
HFCC-FB23 764 179 189 7.8 25.7 
MFCC-FB40 733 167 247 7.9 27.1 
PLP-FB19 868 150 295 9.0 29.4 

 
In order to assess the statistical significance of obtained 
results, the T-test was performed for every pair of 
results (see Table 3). The grey cells in the table 
correspond to pairs, which are not statistically different, 
i.e. to pairs for which the T-test has produced absolute 
value smaller than the significance threshold 1.98.  
 
Table 3. T-test for the 16 millisecond window results 
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SBC 0.50 0.75 1.19 2.96 3.89 6.71 7.10 8.00 8.21 12.92 
WPSR125  0.26 0.71 2.53 3.48 6.38 6.79 7.69 7.91 12.70 
OWPF   0.45 2.31 3.26 6.20 6.61 7.51 7.74 12.57 
WPSR250    1.88 2.82 5.80 6.22 7.10 7.35 12.20 
WPF F&D     0.86 3.93 4.36 5.09 5.41 10.25 
LFCC-40      3.18 3.64 4.34 4.69 9.64 
HFCC-40       0.47 0.94 1.39 6.21 
HFCC-28        0.44 0.90 5.69 
HFCC-23         0.50 5.51 
MFCC-40          4.91 

     As it can be seen from Table 3, the experimental 
results for some speech feature sets are not statistically 
different. In detail, the SBC of Sarikaya & Hansen and 
the WPSR125, OWPF and WPSR250 of Siafarikas et 
al. are not statistically different. Furthermore, the WPF 
of Farooq & Datta is statistically identical to the LFCC-
FB40, as well as the HFCC features with the MFCCs. 
     Finally, summarizing the results presented in Table 
2, we can see that the SBC speech features 
demonstrated relative reduction of the WER by more 
than 20% and 30%, when compared to the baseline 
MFCC and the PLP, respectively. 
 

CONCLUSION 
 
     We would like to stress that the evaluation results 
presented here demonstrate that the widely-used Mel-
frequency cepstral coefficients are not the most 
appropriate choice of parameters when maximization of 
the absolute speech recognition performance is desired. 
We deem that developers of speech recognizers will 
benefit considerably from the present work, since it 
could save duplication of efforts for implementing and 
comparing multiple speech features. 
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