
Journal of Computer Science 3 (7): 561-565, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: R. B. Patel, Department of Computer Engineering, M. M. E. C. Mullana, Ambala, HR, India
561

A Secure Time-Stamp Based Concurrency Control Protocol For Distributed Databases

1Shashi Bhushan, 2R. B. Patel and 3Mayank Dave

1Department of Computer Engineering, HEC Jagadhari, HR, India
 2Department of Computer Engineering, M. M. E. C. Mullana, Ambala, HR, India

3Department of Computer Engineering, NIT Kurukshetra, HR, India

Abstract: In distributed database systems the global database is partitioned into a collection of local
databases stored at different sites. In this era of growing technology and fast communication media,
security has an important role to play. In this paper we presented a secure concurrency control protocol
(SCCP) based on the timestamp ordering, which provides concurrency control and maintains security.
We also implemented SCCP and a comparison of SCCP is presented in three cases (High, Medium and
Low security levels). In this experiment, It is observed that throughput of the system decreases as the
security level of the transaction increases, i.e., there is tradeoff between the security level and the
throughput of the system.

Key Words: Transaction, timestamp, Protocol, and Concurrency

INTRODUCTION

A distributed database system is described as “one

in which multiple database sites are linked by a
communications system in such a way that the data at
any site is available to users at other sites” [1]. This is a
system which has several characteristics such as: (1)
provides an interface to user which is transparent to
where the data actually resides; (2) ability to locate the
data; (3) a DBMS to process queries; (4) network-wide
concurrency control and recovery procedures; and, (5)
mediators to provide translation of queries and data
between heterogeneous systems.

In a secure distributed database system a security
level is assigned to each transaction and data. A
security level for a transaction represents its clearance
level and the security level for a data represents its
classification level. A secure distributed database
management system restricts database operations based
on the security level and provides security classes.
Concurrency control is an integral part of the database
systems. It is used to manage the concurrent execution
of operations by different transactions on the same data
item such that consistency is maintained. The most
common instances of totally ordered security levels are
the Top-Secret (TS), Secret (S), Confidential(C), and
Unclassified (U) security levels encountered in the
military and government sectors.

Communications in a distributed system is a
complicated and rapidly changing field [1]. There are

three basic components in any data communications
system: the source, the medium and the sink. The
message originates at the source, the path that the
message travels is the medium, and the mechanism that
presents the data to the user is the sink. There are many
different links, channels, or circuits over which the data
can travel resulting in a complex communication
medium. In addition, there are many characteristics that
must be considered when transferring the data: path
establishment time, network delay, transfer rate, and
reliability [1].

In this paper, we use three security levels: high,
medium and low. Transaction can be delayed or aborted
by a high security level transaction due to shared data
access. Thus, by delaying low security level
transactions in a predetermined manner, high security
level information can be indirectly transferred to the
lower security level. This is called a covert channel
problem [3]. To handle of covert channel needs
modifications in conventional Distributed Database
Management System (DDBMS) allows users to access
a database concurrently from geographically dispersed
locations interconnected by a network. Concurrent
accesses to the database have to be synchronized in
order to maintain data consistency and to ensure
correctness.

System Model: In a secure distributed database system,
the global database is partitioned into a collection of
local databases stored at different sites. It consists of a

J. Computer Sci., 3 (7): 561-565, 2007

 562

set of N number of sites, where each site iN is having
a secure database, which is a partition of global
database scattered on all the N sites. Each site has an
independent processor connected via secure (trusted)
communication links to other sites.

The secure distributed database is defined as a five
tuples >< vcstt LSTTD ,,,, , where tD is the set of data
items, rT is the set of distributed transactions, sT is the
timestamp provided by coordinator as shown in Fig. 1,
each transaction is provided a timestamp in ascending
order, cS is the partially ordered set of security levels
with an ordering relation ≤ , and vL is a mapping from

rt TD ∪ to cS . Security level icS is said to dominate
security level jcS if icjc SS ≤ . For every

cvt SxLDx ∈∈)(, and for every cvr STLTT ∈∈)(, .
Every data object x , as well as every distributed
transactionT has a security level associated with it.
Each secure database N is also mapped to an ordered
pair of security classes)(min NLv and)(max NLv , where

)(min NLv ,)(max NLv ∈ cS ,
and)()(maxmin NLNL vv ≤ . In other words, every
secure database in the distributed database has a range
of security levels associated with it. For every data item
x stored in an secure database N ,

)()()(maxmin NLxLNL vvv ≤≤ . Similarly, for every

transaction T executed
at N ,)()()(maxmin NLTLNL vvv ≤≤ . A site iN is
allowed to communicate with another site jN only

if)()(maxmax jviv NLNL = . The security policy used is

based on the Bell-LaPadula model[4] and enforces the
following restrictions:
Simple Security Property: A transaction T (subject) is
allowed to read a data item (object) x , only if

)()(TLxL vv ≤ .
Restricted Property: A transaction T is allowed to

write a data item x only if)()(TLxL vv = . Thus, a
transaction can read objects at its level or below, but it
can write objects only at its level. As in [6] we also
disallow transactions that write to higher levels for the
sake of database integrity [4, 5]. In addition to these two
requirements, a secure system must guard against
illegal information flows through covert channels.

A user at any site can issue a global transaction
against the global schema. The global schema is
accessible to all users by one of the following
configurations:
1. Replicate the global schema on all sites.

2. Select only one site (called the coordinator) to
maintain the global schema and the global
transaction manager, and direct requests against the
global schema to that site.

3. Select number of sites (coordinators) to maintain
copies of the global schema and the global
transaction manager, and direct requests against the
global schema to the nearest coordinator.

We favor the second or the third alternative over

the first one because it is difficult to maintain a copy of
the global schema at every site. It also hinders the
expandability and simplicity of the system. The
coordinator solves the problem of assigning timestamps
in Step 2, which is responsible for assigning timestamps
to all global transactions. In this article this case is
considered, and in future we will consider a variation of
the mechanism, which supports the configuration in
Step 3.

System Architecture: In our architecture, coordinator
(rGT Global Transaction Manager) is a software
module which translates and decomposes the
transaction against the global schema into
subtransactions against local schemas, and coordinates
the execution of the subtransactions. rGT is divided
into various layers as shown in Fig. 1. The description
of various layers is as follows: First layer Transaction
Interface, this layer of architecture will receive the
global transaction from the outer sites (requesting site),
i.e., this is the only interface with which requesting sites
send their requests in the form of transaction (Queries).
This layer is responsible for the compatibility with the
global transactions coming from the other sites. Second
layer is Authentication Check Layer: This layer checks
the authentication of the requester, i.e., whether the
particular requester is authorized for the data items he is
requesting for? This layer also checks security level of
the requested data item. This may be checked according
to user name and password and security level of the
data items. Security Level Assignment layer: This layer
of the coordinator will allocate the security class to the
authorized transaction, received from the previous
layer. This assignment is implemented with the help of
a table. All the transactions are allotted a security
class/level. This is the major task of the coordinator for
securing the complete transaction.

Fourth layer is having two parts, transaction
manager and data manager. Transaction Manager: This
manager takes the security assigned and authorized
transaction from previous layer. It is also responsible
for resolving the global transaction into sub transaction.

J. Computer Sci., 3 (7): 561-565, 2007

 563

Transaction Manager also allots the timestamp to all the
sub transaction and decides the data, a requester need.
This layer is also doing site allocation with the help of
index, which contains the IP addresses of the sites that
holds the partition of the database. The sub transaction
further dispatched to the respected sites, where the data
item resides. Data Manager: This manager is
responsible for handling the complete data, i.e., all the
data received and given to the requester. Data
partitioning is also handled by this phase according to
the information received from the transaction manager.

The Data Access Tracker: In the proposed scheme,
timestamps are not maintained with the data items.
Instead, the list of timestamps associated with each data
item is stored in the Data Access Tracker (DAT) as a
part of the rGT . Each time a data item is added into a
component database, a corresponding timestamp list is
inserted in the DAT which is initially made empty. A
list of timestamps associated with data item x comprises
the timestamp of the last global subtransaction that has
written that data item, denoted by)(xWTs , and the
timestamp of the last global subtransaction that has read
it, denoted by)(xRTs . Each global subtransaction, upon
its initiation, is assigned a unique timestamp, and
timestamps are assigned in ascending order. Using the
DAT, the rGT can detect the direct conflicts between
Global transactions, and the rGT uses this information
to submit global subtransactions to each rLT in a
serializable order, as will be explained in the next
section.

The rLT is also divided into various layers as
shown in Fig. 1, which are as follows: First layer is sub
transaction interface layer. This layer resolves the
transaction (which is a sub transaction), and decides the
data required by the transaction at local Processing site.
Sub Query Manager: this layer resolves the required
data i.e., it calculates the actual data needed from the
local database. All the relevant information is passed to
the next Data Administrator Layer for further accessing
of data.
Data Administrator Layer: This layer is fully
responsible for the data management. This layer is also
responsible for security checks on the data items. This
layer also sends DAT update massage. The algorithm
presented in this paper is a part of this layer.
Local Database: This is the actual database within
which data item resides. This database is a partition of
the global database.

 Assumptions: The proposed transaction model is
based on the following assumptions: There is only one

global transaction manager (which works like
coordinator) per federation of databases. No
modifications are allowed to rLT . A global transaction
can have at most one sub-transaction. No site or
communication failure is considered. The processing of
a transaction requires the use of CPU and data items
located at local site or remote site. No replication of
data items at various sites is considered here. Arrivals
of transactions at a site are independent of the arrivals
at other sites. The model assumes that each global
transaction is assigned a unique identifier. Each global
transaction is decomposed into subtransactions to be
executed by rLT , and these subtransactions inherit the
identifier of the global transaction. The problem of
finding a correct decomposition for a given transaction
will not be addressed in this paper. Transactions make
requests for the data items and concurrency control is
implemented at the data item level. A secure (trusted)
communication network interconnects the sites. There
is no global shared memory in the system and all sites
communicate via messages exchange over the secure
(trusted) communication network.

Transaction Interface

Authentication Check

Security Level
Assignment

Transaction
Manager

Data
Manager

Site Allocator DAT

Coordinator

Sub Transaction Interface

Sub Query Manager

Data Manager

Local Database

To coordinator

Processing Site

Global Transaction Manager (rGT).

Local Transaction Manager (rLT).

Fig. 1: System Architecture

 Implementation
 Serializing Global Subtransactions: For the
concurrency control of global transactions, the rGT
uses the information available in the DAT to produce a
correct serialized order for global transactions. This
order is enforced at local sites by the interface process
at each site. For example, let GS be the set of global
subtransactions to be executed at a local site. Global
database consistency is guaranteed if there exists a total
ordering of subtransactions from GS such that, if a
subtransaction iS precedes a subtransaction Sj in this
ordering, then for every pair of atomic operations iO
and jO , from iS and Sj , respectively, iO proceeds jO
in each local schedule [7]. Therefore, if the rGT submits
global subtransactions to the involved rLT in a
serializable order, we can guarantee the concurrency
control of the global transactions. Serializing the global

J. Computer Sci., 3 (7): 561-565, 2007

 564

subtransactions can be done by applying the timestamp
ordering protocol using the information in the DAT.

 Modifying the Local Transaction Managers: Global
serializability can be guaranteed if Local
Transactions rLT provide the local serialized orders to
the Global Transactions (rGT). Since some rLT do not
provide the serialized order, Sugihara [2] suggested the
creation of a local controller at each site. The local
controller maintains the serializability graph of that site
and is responsible for detecting a cycle. A global
schedule is serializable if the global graph does not
have a cycle. Concurrency control based on distributed
cycle detection solves the global concurrency control
problem and achieves higher degree of concurrency at
the expense of violating the local autonomy.

Simulation Model: To evaluate the performance of
developed concurrency control algorithm, we have
developed simulation model for the distributed
database. Architecture of the simulation model is shown
in Fig. 2. The model consists of a global database which
is partitioned into a collection of local databases. These
local databases stored at N sites which is connected
through network. There is no replication of data items.
There are one coordinator which generates the
transactions and dispatch to the relevant sites (for which
that request is). This coordinator is responsible for
generating the workload for each data site and assigning
time stamp to each transaction.

Sink

Memory

Blocked

Ready Queue

Database
Operation

Computation

Commit

Terminate

Wait Queue

Transaction
Arrival

Site1 Network
Manager

Site2

Site3

Transaction
Dispatcher

Coordinator
Transaction
Generator

Transaction
Manager

Site4

Fig. 2: Simulation Model
Each transaction in the system is distinguished by a

globally unique transaction id. Each other processing
site consists of transaction manager, a concurrency
controller, a CPU, a ready queue, a local database, a
communication interface, a sink, a wait queue. For
every operation on the data object, it has to go through

the concurrency control component to obtain a lock on
the object. If the request is denied, the transaction is
placed in to the wait queue. The waiting transaction will
be awakened when the requested lock is released and
all the locks are available. If the request of all the locks
is granted, the transaction will access the memory and
perform computation on data items. Transactions may
commits or aborts and release all the locks it has been
holding. The sink component of the model is
responsible for gathering the statistics for the
committed or terminated transactions.

Transaction Vs Miss Ratio

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Transactions
M

is
s

R
at

io

Low Securit y

Medium Securit y

High Secur it y

Fig. 3: Transactions Vs Miss Ratio

 A Secure Concurrency Control Protocol: This
section presents a global concurrency control
mechanism based on the timestamp ordering. A
transaction against the global schema issued at any
component is handled by the rGT . This is also act as
coordinator. A rGT is a software module which
translates and decomposes the transaction against the
global schema into subtransactions against local
schemas, and coordinates the execution of the
subtransactions.

Algorithm for write operation on data item x issued

by subtransaction iS with timestamp iTs :
If (iTxRTs s>)() {

Abort (iS) ;
} ElseI f (iTxWTs s>)() {

Ignore (iS) ;
}ElseI f()()(ivv SLxL ==) /*)(&)(ivv SLxL is
securi ty leve l o f data i tem x & transact ion iS
*/
{

Write lockTo(x) ;
Execut ion(x) ;

)(xWTs = iTs ;
Update DAT to iTs ;

}Else{
Abort(iS) ; /* access denied due to

securi ty */
}

J. Computer Sci., 3 (7): 561-565, 2007

 565

Algorithm for read operation on data item x issued
by sub transaction iS with timestamp iTs :

If (iTxWTs s>)(){

Abort(iS);
Rollback(iS);

}ElseIf()()(ivv SLxL ≤){
ReadlockTo(x);
ExecuteOn(x);

)(xRTs = iTs ;
Update DAT to iTs ;

}Else{
Abort(iS);
Rollback(iS);

}
If a global subtransaction is rolled back by the

mechanism, it will cause all other subtransactions
pertaining to the same global transaction to roll back as
well. By rolling back a global transaction at the
coordinator site, before sending its subtransactions to
the relevant rLT , the execution autonomy of rLT will
be enhanced [8]. This is the result of maintaining the
DAT with the rGT . However, global transactions are
not likely to be rolled back frequently.

Performance Study: This section presents the
performance results of our simulation experiments. The
aim of the experiments is to obtain a measure of the
performance price that needs to be paid to provide
security in a distributed database system. This price was
measured as a comparison between the throughput of
transactions of non-secure concurrency protocol and
that of secure concurrency protocol at three security
levels, (i.e., high, medium and low). The throughput is
the number of transactions committed per second. Thus,
our primary performance measure is the proportion of
missed deadlines or miss ratio (MR) which is defined as
the percentage of input transactions that system is
unable to complete on or before their deadlines, i.e.,
MR = number of transactions aborted / number of
transactions submitted to system for processing.

Fig. 3 shows the transaction throughput as a
function of the transaction arrival rate per site. It can be
seen that the throughput of both concurrency control
protocols initially increases with the increase in arrival
rates then decreases when arrival rate becomes more
than 5. However the overall throughput of secure
concurrency protocol is always less than non- secure
concurrency protocol. We also observe that the
throughput of high security level transactions is lower
than that of low security level transactions as arrival
rate increases. This is because higher priority is given to
low security level transaction. The high security level
transaction is aborted and restarted after some delay

whenever a data conflicts occur between a high security
level transaction and low security level transaction.

CONCLUSIONS

In this paper we have presented an algorithm for
controlling the concurrency secure mode. This
algorithm provides security to the data while providing
a concurrent access to the data from database. It is
observed that throughput of the system decreases as the
security level of the transaction increases, i.e., the
probability of successful execution of transactions is
decreasing. It means there are a tradeoff between the
security level and the throughput of the system.

We are in the process of investigating schemes by
which the performance of high security level
transactions can be improved without compromising
with the security. Further we are looking to secure real
time distributed systems by which the performance of
high security level transactions can be improved
without compromising the security.

REFERENCES

1. Ricardo, Catherine, 1990. Database Systems:

Principles, Design and Implementation. MacMillan
Publishers, New York.

2. K. Sugihara, 1987. Concurrency Control Based on
Distributed Cycle Detection, In Proceedings of
International Conference on Data Engineering, pp. 267-274.

3. N. Kaur, R. Singh, A. K. Sarje, M. Misra, 2005.
Performance Evaluation of Secure Concurrency
Control Algorithm for Multilevel Secure
Distributed Database Systems. In IEEE
Proceedings of the International Conference on
Information technology: Coding and Computing
(ITCC’05), 1: 249 – 254.

4. D.E. Bell and L.J. LaPadula, 1976. Secure
Computer Systems: Unified Exposition and
Multics Interpretation. The MITRE Corp.

5. T.F. Keefe, W.T. Tsai, J. Srivastava, 1993.
Database Concurrency Control In Multilevel
Secure Database Management Systems. IEEE
Transaction on knowledge and Data Engineering, 5
(6) 1039-1055.

6. I. Ray, L. V. Mancini, S. Jajodia and E.
Bertino,2000. ASEP: A Secure and Flexible
Commit Protocol for MLS Distributed Database
Systems. IEEE Transactions on Knowledge and
Data Engineering, 12(6): 880 – 899.

7. S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth,
and A. Silberschatz, 1992. The Concurrency
Control Problem in Multidatabases: Characteristics
and Solutions. ACM SIGMOD International
Conference on Management of Data, San Diego,
California, June 2-5, 1992, pp: 288-297.

8. S.M. Chung, K.A. Elghayegh, 1993. A Timestamp-
Based Concurrency Control Algorithm for
Heterogeneous Distributed Databases. In
Proceedings of the Fifth International Conference
on Computing and Information, May 27 - 29, 1993,
pp: 438-442.

