
Journal of Computer Science 3 (5): 335-344, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Y. Dubinsky, Department of Computer Science, Technion – Israel Institute of Technology
335

Measured Test-Driven Development: Using Measures to Monitor and Control the Unit

Development

1Y. Dubinsky and 2O. Hazzan
1 Department of Computer Science, Technion – Israel Institute of Technology

2 Department of Education in Technology & Science, Technion – Israel Institute of Technology

Abstract: We analyze Test Driven Development (TDD) from cognitive and social perspectives. Based
on our analysis, we suggest a technique for controlling and monitoring the TDD process by examining
measures that relate to the size and complexity of both code and tests. We call this approach Measured
TDD. The motivation for TDD arose from practitioners' tendency to rush into code production,
skipping the required testing needed to manufacture quality products. The motivation for Measured
TDD is based on difficulties encountered by practitioners in applying TDD. Specifically, with the need
to frequently refactor the unit, after every few test and code steps have been performed. We found that
the suggested technique enables developers to gain better control over the development process.

Key words: unit testing, Test Driven Development, measures

INTRODUCTION

 Test Driven Development (TDD), an agile software
development practice, aims to systematically overcome
some of the characteristic problems of software
development processes [1, 2, 3]. Though TDD has proven
benefits, it is still one of the more difficult practices for
implementation by software teams [4, 5]. In this paper,
we analyze this phenomenon from a human perspective
and argue that TDD can only partially solve the
problems associated with traditional testing since
additional conditions are needed in order to exhaust its
benefits. This idea has already been mentioned in the
literature. For example, in Extreme Programming
development environments, TDD is strongly supported
by other practices, like pair programming and simple
design [6]; software teams are advised to apply TDD
only when all teammates agree on its use, and in other
cases, to better give it up [7]. Indeed, TDD requires a
collaborative environment and additional supporting
practices in order to be integrated successfully into
software development processes.
 Specifically, in this paper, we suggest that TDD be
referred to as a process that, like other processes,
should be monitored and controlled. For this purpose,
we introduce a technique, named Measured TDD, that
is based on size and complexity measures and that
continuously monitors the TDD process. In addition,
we illustrate both how this technique ensures the

performance of TDD and how it provides ongoing
quality measures.
 The data presented in this paper were gathered as
part of a comprehensive research, conducted over the
past five years, on the introduction of agile software
development methods into the work of software teams,
both in academia and in industry [8, 9, 10]. In both cases,
we introduced TDD as part of the agile approach and
investigated its acceptance by developers, using several
research tools for data collection and analysis.
 In this work we analyze TDD from a human
perspective and present the data that motivated the
development of the Measured TDD technique. We then
introduce the Measured TDD technique and present
data that show how it supports development processes.
We illustrate Measured TDD using a specific example.

TEST DRIVEN DEVELOPMENT

What is Test Driven Development?: Test Driven
Development (TDD) is a programming technique that
aims to provide clean, fault-free code [1]. TDD means
that, first, we write a test case that fails and then we
write the simplest code possible that enables the test to
pass successfully. TDD implies that new code is added
only if an automated test has failed. In addition, in order
to improve our code, we perform refactoring activities
[11], among other reasons, to eliminate duplications.
Accordingly, the TDD guideline is red / green /
refactor, where red means writing a simple test that
fails; green means writing the minimal and simplest
code that causes the test to pass (In graphical testing
environments this is represented by a red/green bar

J. Computer Sci., 3 (5): 335-344, 2007

 336

displayed when the test fails/passes); refactor means
that code quality is improved without adding
functionality. This guideline is iteratively implemented
in small steps. The accumulative experience of the
community is that TDD provides high-quality code [4],
which usually means that the code is readable and
includes fewer bugs as well. Furthermore, there is
evidence that through this process, software developers
improve their understanding with respect to the
developed product [12].

How does TDD help overcome some of the problems
inherent in testing?: In this sub-section, we analyze
how TDD can help overcome some of the common
problems associated with traditional testing that are
encountered in software projects. The TDD analysis
presented in this section further reinforces the
importance attributed to human aspects of software
engineering [13]. Thus, it is people-centered and
addresses cognitive, social, affective and managerial
elements. The analysis in this section is structured
around arguments frequently offered to explain why, in
many cases, traditional testing is skipped. Such
arguments are accompanied by explanations on how
TDD might help overcome these obstacles. In the
subsequent sub-section, however, based on two data
sets, we conclude that TDD processes should be more
closely controlled in order to better exhaust their
potential. This conclusion constitutes the motivation for
the Measured TDD technique.

Not enough time to test: Traditionally, unit testing, if
it exists, is performed after the code is written and
usually under time pressure. Thus, according to Van
Vliet, "the testing activity often does not get the
attention it deserves. By the time the software has been
written, we are often pressed for time, which does not
encourage thorough testing" [14: p. 397]. However,
"postponing test activities for too long is one of the
most severe mistakes often made in software
development projects. This postponement makes testing
a rather costly affair" (ibid.). Since TDD introduces unit
tests throughout the entire development process, this
problem is eliminated in TDD processes.

Testing provides negative feedback: Traditional
testing processes require the developer to find bugs in
his or her own work; in other words, testing activities
end in failure. Indeed, who would enjoy that? [15, 16]. In
TDD, the rules of the game are reversed. TDD ends in
success: after the test fails, code is written and the test
passes – success! To illustrate this perspective, we
quote the reflection of a practitioner, Michael Feathers:
(http://c2.com/cgi/wiki?CodeUnitTestFirst) "Why don't
people like testing? Well, the traditional way of testing

is tough to take. You write what seems to be perfectly
sensible code, then you write a test and the test tells you
that you failed. No one wants to hear that. Let's turn it
around. Write the test first; run it. Of course it fails..
You haven't written the code under test yet. Start
writing code.. keep testing. Soon, the test will tell you
that you've succeeded!"

Responsibility for testing is transferred: In
traditional environments, bugs are found and, in many
cases, also fixed by other practitioners rather than by
the developer who actually wrote the code. In TDD
processes, the responsibility for testing is borne by the
person who writes the code.

Testing is a low-status job: In traditional software
development environments, testing is carried out at the
end of the production line, and, inspired by traditional
working class jobs, the task is attributed low status,
which in turn leads to tension among different groups
of employees. Cohen et al. [17] reported that "though
most organizations recognize the need for high-quality
testers and their specialized skill set, testers still
struggle to win the respect they deserve. … The lack of
status and support makes the tester’s job more difficult
and time consuming, as the struggle for recognition
becomes part of the job itself" (p. 80). Since in TDD
processes all developers test their own code, this
negative feeling towards testing is eliminated.

Testing is hard to manage: From a managerial
perspective, it is sometimes claimed that in general,
testing is a hard process to manage and, in particular,
testing slows down the development process. Since
TDD is firmly integrated throughout the entire software
development process, it turns development and testing
into controlled processes. Furthermore, the fact that
TDD is done by writing automatic (not manual) tests,
further increases the control level. Indeed, introducing
TDD might slow down the development process in the
short term simply because testing is actually performed.
In the long run, however, it assists in shortening the
integration period (especially when performing
continuous integration).

Testing is hard: Testing is also difficult from a
cognitive perspective mainly because it is not always
clear what tests are suitable for a specific purpose and
how much testing should be done. The following
reflection of a practitioner, Ron Jeffries, explains how
TDD supports the testing from the cognitive
perspective (http://c2.com/cgi/wiki?RonJeffries): "A
key aspect of this process: don't try to implement two
things at a time, don't try to fix two things at a time.
Just do one. When you get this right, development turns

J. Computer Sci., 3 (5): 335-344, 2007

 337

into a very pleasant cycle of testing, seeing a simple
thing to fix, fixing it, testing, getting positive feedback
all the way. Guaranteed flow.". Being a detail-oriented
and explicit process, TDD improves one's
understanding of what should be developed since the
test must be written prior to the writing of the code.

Why is TDD not sufficient? Why it is still not
performed at full scale?: Indeed, as illustrated in the
previous section, TDD helps cope with traditional
problems related to traditional testing. This section
presents two illustrative data sets that show that
practitioners still find it hard to use TDD. These data
sets, as well as other data, motivated us to further

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Functions

TD
D

 S
te

ps

Number of TDD Steps
Average

(a)

0
5

10
15
20
25
30
35
40
45
50

Checking
function/class

existence

Checking
parameters
correctness

Checking
exceptional

Cases

Checking
functionality

Checking input Checking
number of
elements

Checking code
improvements

N
um

be
r o

f T
D

D
 T

ra
ns

iti
on

s

 (b)

Fig. 1: TDD steps and the reasons for the respective TDD transitions

elaborate on the TDD framework and to develop the
Measured TDD technique.

Data Set 1. TDD Steps: An examination of 31
functions, developed using TDD, reflect a total of 129
TDD steps. The participants were asked to save the file
that corresponds to each TDD step, to explain why they
moved on to the next step, and to document their
refactoring activities. By refactoring activities we refer
to code refactoring activities that should be carried out
frequently, on the level of the currently-developed unit,

every time after several test and code steps have been
developed.
 Figure 1a presents the number of TDD steps for
each of the 31 functions, as well as the average number
of TDD steps per function (horizontal, dashed line),
which was found to be 4.16. Figure 1b presents the
reasons given for making TDD transitions to the next
step in the development of the examined functions, as
reported by the participants, as well as the number of
times each reason was given. As can be observed,
the two main reasons for moving to the next TDD step
are checking the functionality of the feature to be

J. Computer Sci., 3 (5): 335-344, 2007

 338

implemented and checking exceptional cases. An
examination of the participants' reports on their
refactoring activities revealed that the participants did
not perform code refactoring at all, i.e., they did not
stop to improve the unit code each time after several
test and code steps had been developed; rather, they
continued developing till the unit coding was
completed.
 We note that we examine the refactoring activities
performed during the development of specific functions
developed by TDD as part of a large software project.
Refactoring activities that are on the level of the project
as a whole, such as improving class hierarchies are not
included in the analysis presented in this paper.

Data set 2. Reflection on TDD: Participants were
asked to reflect on the TDD activity. Following are
some of the participants’ expressions, categorized into
pros and cons.
 Developers described the advantages of TDD as
follows:

 “It makes us think ahead”;
 “There are less bugs. Developers are forced to

produce high-quality software”;
 “It helps us get acquainted with the software

components”;
 “It makes us think before coding”;
 “It requires writing minimum code in order for the

tests to pass”;
 “It saves time that used to be dedicated to bug

finding”;
 “It helps in quality assurance!”

 Developers described the disadvantages of TDD as
follows:

 “Work is delayed because of relatively simple
items”;

 “It requires double the time to write code”;
 “It increases development time“;
 “There is no global view when dealing with

complicated components”;
 “Is hard to identify the critical cases”;
 “Is not suitable for every kind of task”;
 “Is a waste of time if the code is later not used”.

 An examination of these reflections reveals two
main observations.
 First, developers tend to refer to TDD as a thinking
activity in general, and as a thinking-before-coding
activity in particular. This observation means that when
TDD guides the development process, coding is not

perceived by developers as a spontaneous developer-
computer interaction, but rather, developers perceive it
as an activity that requires thinking before performing.
This can be explained by the fact that unlike TDD,
which forces the developer to think before coding, in
many other cases developers tend to start coding
intuitively.
 The second observation is the contradictions and
conflicts that TDD introduces. For example, one
developer claimed that TDD ensures fewer bugs occur
and consequently leads to shorter integration times. At
the same time, however, this developer claimed that the
time overhead that TDD introduces is a disadvantage.
Another developer claimed that since she thinks before
coding, she knows exactly what she is going to code. At
the same time, however, this developer indicated a
feeling of uncertainty when practicing the TDD
approach. A third developer claimed that TDD disrupts
the coding continuity, but acknowledged its
convenience. These contradicting reflections may be
explained by the fact that, traditionally, developers used
to code first and test later; TDD forces them to perform
these activities in a reversed order. Accordingly, their
first TDD experiences cause mixed feelings and
contradicting opinions.
 Based on the above illustration, it is clear that TDD
has many benefits and that it indeed might help cope
with some of the cognitive, affective, social and
managerial problems associated with traditional testing
(as aforementioned). However, our Data Set 1 and the
accumulated experience of the agile community tell us
that though TDD does help overcome many of the
problems associated with traditional testing processes
by providing a tight and clear testing procedure to
follow, it is not fully performed in agile projects and is
still considered to be one of the more difficult practices
to introduce when the decision to apply the agile
approach in the organization is taken. Furthermore,
even when TDD is applied, developers tend to reduce
the number of TDD steps and to skip the refactoring
phase, which is required repeatedly after every few
TDD steps. In addition, according to Data Set 2, the
new work habit that TDD introduces leads to some
confusing feelings.
 We propose that the reason for these phenomena is
that, like other processes that must be measured,
disciplined and controlled, TDD processes should also
be measured and controlled. Specifically, we suggest
that measures be taken alongside the TDD steps, to lead
and guide this process. To that end, we present a
technique whereby two measures are added to the TDD
process, rendering it a more controlled process. We call
this technique Measured TDD.

J. Computer Sci., 3 (5): 335-344, 2007

 339

MEASURED TDD

 So far in this paper, we have analyzed problems
associated with traditional testing and have presented
data sets to illustrate why TDD, although it overcomes
some of such problems, is still insufficient. In this
section we introduce the Measured TDD technique,
which deals with these yet unsolved problems and aims
to improve the performance of TDD by incorporating
measures and control elements into the TDD process
itself.
 Specifically, at the end of each TDD step,
developers measure the size and complexity of the
developed code. Size is determined by the number of
lines and complexity is determined by calculating the
cyclomatic complexity [18, 19], whereby a sequential
method has a complexity of 1, and each decision that
causes a binary split adds 1 to the complexity. The
Metrics software for example provides Eclipse plug-in
that automatically calculates McCabe cyclomatic
complexity (http://metrics.sourceforge.net/). Size and
complexity are measured also with respect to the
evolved test. We note that other measures can be taken

as well. However, we choose the aforementioned
measures since they are simple, easy to use and can be
taken automatically.
 Measured TDD has the added value of measuring
while developing. Specifically, the use of the size and
complexity measures helps developers determine when,
while implementing TDD steps of both the test and the
code, they should refactor the code. This observation is
reflected in Data Set 3.

Data Set 3. Size and Complexity Measures: An
examination of the size and complexity measures of 19
different functions developed through a Measured TDD
process and of the 75 TDD steps associated with these
19 developed functions reveals the following
observations.
 First, since in general each line of code is inspected
by several tests (and each test is usually one line long),
more lines of test are expected than lines of code.
Indeed, the 19 different functions developed through

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
M easured TDD steps per task

Li
ne

s
of

 C
od

e

S tep 1
Step 2

Step 3
Step 4
Step 5

Step 6

(a)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Measured TDD steps per task

cy
cl

om
at

ic
 c

om
pl

ex
ity Step 1

Step 2
Step 3
Step 4
Step 5
Step 6

(b)

Fig. 2: Code size and complexity for Measured TDD steps

J. Computer Sci., 3 (5): 335-344, 2007

 340

the Measured TDD process yielded about two times
more lines of test (1582) than lines of code (800).
 Second, as can be observed in Fig. 2, which
presents the size (2a) and complexity (2b) of the code
for each Measured TDD step, most of the functions
were developed in three or four Measured TDD steps.
Fig. 2a shows that most functions have less than 20
lines of code, which means that the functions are
simple. Figure 2b, which presents the code complexity
of each Measured TDD step in terms of cyclomatic
complexity, further validates this assumption about the
nature of the function developed through the Measured
TDD process.
 Third, though the number of TDD steps did not
increase relative to Data Set 1 (the average number of
Measured TDD steps for these 19 functions was 3.95),
we will see later on that the added value of the
Measured TDD is expressed mainly by the actual
performance of refactoring activities that lead to
simpler code. We note that when Data Set 3 is
combined with another data set that refers to 16

functions developed through a Measured TDD for
which the average number of Measured TDD steps was
5.5 steps (an increase of 32% relative to Data Set 1), the
average number of Measured TDD steps for the 35
functions is 4.66, which indicates a 12% increase
relative to Data Set 1.
 Fourth, Fig. 2b reveals that the cyclomatic
complexity in most cases is less than 5. As mentioned
before, this means that indeed most of these functions
are not complicated. In one case, for example, in which
the cyclomatic complexity soared to 27, the code was
checked and it was found that the task included nine
hash table manipulation functions. When complexity
was higher than 5, developers suggested improvements
and in some cases also implemented them. In two of the
19 cases, in which the cyclomatic complexity was
reduced (#6 and #10), the size of the code was also
reduced (see Fig. 3). We conclude that since
developers constantly monitor their work, Measured
TDD keeps complexity, as well as size of code, low.

Case #6: Lines of Code

0

5

10

15

1 2 3 4 5

Case #10: Lines of Code

0

50

100

150

1 2 3 4

Case #6: Cyclomatic Complexity

0
0.5

1
1.5

2
2.5

1 2 3 4 5

Case #10: Cyclomatic Complexity

0
1
2
3
4
5

1 2 3 4

Fig. 3: Reduction in cyclomatic complexity and code size

J. Computer Sci., 3 (5): 335-344, 2007

 341

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

Measured TDD steps

Number of
Lines

Test
Code

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Measured TDD steps

Cyclomatic
complexity

Test
Code

Fig. 4: Test and code measures of SearchCommand

ILLUSTRATING MEASURED TDD

 This section illustrates the Measured TDD process
by a Java class that was part of a project developed in
the academia. The project was conducted in a ‘Projects
in Operating Systems’ course that the first author
teaches at the department of Computer Science of the
Technion, Israel. The project deals with the
development of a shell language that enables search in
several digital libraries [20]. In order to increase
awareness to measures as well as to their implications,
the developers were asked to complete a tracking table
containing the following information: number of step,
test and code descriptions, size of test and code,
cyclomatic complexity of test and code, and a
description of the refactoring activities performed. The
developers were told that they must complete all table
columns for each TDD step and, specifically, a
refactoring description must be written for all steps,
even if they decide that a specific step requires no
refactoring.

 The name of the class was SearchCommand.
Table 1 presents a tracking table for the class, as
submitted by one of the developers. As can be
observed, the table was indeed used by the developer to
track the development process. The refactoring column
was completed for all 12 steps and indicates the exact
step (#7) where the developer became aware of the
need to refactor. At this stage, the developer also started
to make use of the measures, citing the high cyclomatic
complexity as the rationale for her need to refactor.
Though the need to refactor was detected in Step #7,
the developer decided to continue with the class
development before performing the refactoring (see the
Comments column). The refactoring of both code and
test was carried out in the last two steps (#11 and #12
respectively).
 Figure 4 presents the test and code measures as
reported in the tracking table (Table 1). It is clear that
both refactoring activities (of the code and of the test)
reduced the size and lowered the complexity of both
code and test. It can be concluded that, as a result, the
clarity and simplicity of both test and code increased.

J. Computer Sci., 3 (5): 335-344, 2007

 342

Table 1: The Measured TDD tracking table for SearchCommand
Test Code Test

lines#
Code
lines#

Test
CC

Code
CC

Refactor Comments

1 Sanity Check Method signature 11 3 1 1 Not needed
- I didn't
start yet

Method
signature
and test's
tearUp
method

2 Set parameter
– text

Handle text
parameter

19 9 4 3 Not needed

3 Set parameter
– name

Handle name
parameter

31 14 6 5 Not needed

4 Set parameter
-searchList

Handle
searchList
parameter

40 19 8 7 Not needed

5 Set parameter
-meta

Handle meta
parameter

51 26 10 9 Not needed

6 Set parameter
–op

Handle op
parameter

62 31 12 11 Not needed

7 Set parameter
–caseSensitive

Handle
caseSensitive
parameter

74 36 14 13 CC high ->
need
refactoring,
later

Needed
refactoring,
I'll do it at
end

8 Set parameter
–rank

Handle rank
parameter

84 41 16 15 CC high ->
need
refactoring,
later

Needed
refactoring,
I'll do it at
end

9 Set parameter -
intoResultList

Handle
intoResultList
parameter

95 46 18 17 CC high ->
need
refactoring,
later

Needed
refactoring,
I'll do it at
end

10 Set parameter
–popup

Handle popup
parameter

106 51 20 19 CC high,
code HIGH
-> need
refactoring

Finished
method,
now
refactoring

11 Refactor
existing code

Refactoring by
introducing
checkValue
function, it will
reduce both CC
and CodeLines

106 26 20 10 Introduced a
method that
reduced
code
duplication

12 Refactor test
code

Refactor test
code by
introducing a
help test method

16 26 2 10 Introduced a
method that
reduced
duplication
in test code

 To illustrate how Measured TDD is used, we present
the code for three of the steps (#1, #7, and #12). The test
of Step #1 consists of a sanity check. The developer
checks that SearchCommand can be instantiated.
Naturally, this test fails since no code exists at that time
(note that the developed class extends the abstract class
ACommand, and therefore three empty methods are
created). Both measures are low and no refactoring action
is needed.

 The examination of Step #7 shows that the code
indeed grew longer and now includes many repetitions.
The code complexity measure for this step is 13 and
increases to 19 before refactoring is performed (see Table
1).
 Finally, in Steps #11 and #12, refactoring is
performed. Both test and code are improved by
introducing a method that eliminates code
duplications. The measures indicate that the code is

J. Computer Sci., 3 (5): 335-344, 2007

 343

indeed more concise and simpler (see Table 1 and
Fig. 4). Following is the refactored code.

Code of Step #1
package gsdl.command;
import gsdl.exception.*;
public class SearchCommand extends ACommand {
 public void setParameter(String name, String value) throws IllegalCommandException {
 }
 public void verifyParameters() throws IllegalCommandException {
 }
 public void execute() throws ScriptException {
 }
}

Code of Step #7
package gsdl.command;
import gsdl.exception.*;
public class SearchCommand extends ACommand {
 private static final String PARAM_TEXT = "-text";
 private … [variables declaration and initialization]
 public void setParameter(String name, String value) throws IllegalCommandException {
 if (PARAM_TEXT.equals(name)) {
 if (value == null || value.length() == 0)
 throw new IllegalCommandException(STR_GOT_NULL_VALUE + name);
 } else if (PARAM_NAME.equals(name)) {
 if (value == null || value.length() == 0)
 throw new IllegalCommandException(STR_GOT_NULL_VALUE + name);
 else
 strName = value;
 } else if (PARAM_LIST.equals(name)) {
 if (value == null || value.length() == 0)
 throw new IllegalCommandException(STR_GOT_NULL_VALUE + name);
 else
 strSearchList = value;
 } else if … [Same for more PARAM_’s]
 ..
 }
 else throw new IllegalCommandException("Got invalid parameter: " + name);
 }
 public void verifyParameters() throws IllegalCommandException { }
 public void execute() throws ScriptException { }
}

Code of Step #12
package gsdl.command;
import gsdl.exception.*;
public class SearchCommand extends ACommand {
 private static final String PARAM_TEXT = "-text";
 private … [variables declaration and initialization]
 public void setParameter(String name, String value) throws IllegalCommandException {
 checkValue(name, value);
 if (PARAM_TEXT.equals(name)) {
 } else if (PARAM_NAME.equals(name)) {
 strName = value;
 }else if (PARAM_LIST.equals(name)) {
 strSearchList = value;
 }else if … [Same for more PARAM_’s]
 ..
 }

J. Computer Sci., 3 (5): 335-344, 2007

 344

 else throw new IllegalCommandException("Got invalid parameter: " + name);
 }
 public void verifyParameters() throws IllegalCommandException { }
 public void execute() throws ScriptException { }
 private void checkValue(String name, String value) throws IllegalCommandException {
 if (value == null || value.length() == 0)
 throw new IllegalCommandException(STR_GOT_NULL_VALUE + name);
 }
}

CONCLUSION
 In this paper we present a technique for function
development that uses size and complexity measures
for monitoring and controlling the TDD process.
Though the use of these measures for the improvement
of software development processes is already known,
we suggest that the contribution of our work is
expressed by the application of these measures in the
context of TDD.
 As mentioned above, measures are known to be
beneficial for software development in general. In the
case of measured TDD, we found that it overcomes
difficulties developers face with applying and
sustaining TDD and, specifically, encourages function
refactoring; thus the TDD advantage of developing high
quality software is gained. The simple and easy-to-
automate measures ensure no significant overhead.
 From a broader perspective, measured TDD
provides us a means to promote automated unit tests
which are considered to be the basis for the evolved
software design.

REFERENCES

1. Beck, K., 2003. Test-Driven Development By

Example, Addison Wesley.
2. Feathers, M., 2004. Working Effectively with

Legacy Code, Prentice Hall.
3. Newkirk, JW and Vorontsov, AA., 2004. Test-

Driven Development in Microsoft .NET, Microsoft
Press.

4. George, B. and Williams, L., 2003. An initial
investigation of test driven development in
industry, Proceedings of the ACM Symposium on
Applied Computing, March 09-12, Melbourne,
Florida.

5. Meszaros, G., Smith, S. M and Andrea, J., 2003.
The test automation manifesto, Proceedings of the
XP/Agile Conference, pp. 73-81.

6. Beck, K., 2000. Extreme Programming Explained,
Addison-Wesley.

7. Ambler, S.W., 2006. Introduction to Test Driven
Development (TDD),
http://www.agiledata.org/essays/tdd.html, Last
updated: July 28, 2006.

8. Dubinsky, Y. and Hazzan, O., 2005. The
construction process of a framework for teaching
software development methods, Computer Science
Education 15(4), pp. 275–296.

9. Dubinsky, Y., Talby, D., Hazzan, O. and Keren,
A., 2005. Agile Metrics at the Israeli Air Force,
Agile Conference, Denver, Colorado.

10. Talby, D., Hazzan, O., Dubinsky, Y. and Keren,
A., 2006. Agile software testing in a large-scale
project, IEEE Software, Special Issue on Software
Testing.

11. Fowler, M., 1999. Refactoring: Improving the
Design of Existing Code, Addison-Wesley
Professional.

12. George, B., Williams, L. A., 2004. A structured
experiment of test-driven development,
Information & Software Technology 46, pp. 337–
342.

13. Tomayko, J. and Hazzan, O., 2004. Human
Aspects of Software Engineering, Charles River
Media.

14. Van Vliet, H., 2000. Software Engineering –
Principles and Practices, Wiley.

15. Hamlet, D. and Maybee, J., 2001. The Engineering
of Software, Addison Wesley.

16. Hazzan, O. and Leron, U., 2006. Why Do We
Resist Testing?, System Design Frontier 3(8), pp.
13-17.

17. Cohen, C. F., Birkin, S. J., Garfield, M. J. and
Webb, H. W., 2004. Managing conflict in software
testing, Communications of the ACM 47(1), pp.
76-81

18. McCabe, T., 1976. A Complexity Measure, IEEE
Transactions on Software Engineering, December,
pp. 308- 320.

19. Watson, A.H. and McCabe, T.J., 1996. Structured
Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric, NIST Special
Publication 500-235.

20. Dubinsky, Y., Catarci, T., and Kimani, S., 2006.
Active Data and the Digital Library Shell, The
Joint Conference on Digital Libraries (JCDL),
Workshop on Digital Libraries in the Context of
Users’ Broader Activities, Chapel Hill, NC, USA.

