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Abstract: We presented and evaluated a new Bayesian method for range image segmentation. The 
method proceeds in to stages. First, an initial segmentation was produced by a randomized region 
growing technique. The produced segmentation was considered as a degraded version of the ideal 
segmentation, which should be then refined. In the second stage, image pixels not labeled in the first 
stage were labeled by using a Bayesian estimation, based on some prior assumptions on the regions in 
the image. Image priors were modeled by a new Markov Random Field (MRF) model. Contrary to 
most of the authors in range image segmentation, who use only surface smoothness MRF models, our 
MRF model takes into account also the smoothness of region boundaries. Tests performed with real 
images from the ABW database show the great potential of the proposed method for significantly 
improving the segmentation results. 
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INTRODUCTION 
 
 The segmentation of an image is often necessary 
to provide a compact and convenient description of 
its content, suitable for high level image analysis and 
understanding. It consists in assigning pixels to 
homogenous and disjoint regions which form a 
partition of the image. Pixels which belong to the 
same region share a common propriety, called the 
region homogeneity criterion. In range images, 
segmentation methods can be divided into two 
distinct categories: edge-based segmentation methods 
and region-based segmentation methods. In the first 
category, pixels which correspond to discontinuities 
in depth or in surface normals are selected and 
chained in order to delimit the regions in the 
image[1,2,3]. Edge-based methods are well known for 
their low computational cost; however, they are very 
sensitive to noise. On the other hand, region-based 
methods use geometrical surface features to gather 
pixels with the same proprieties in disjoint 
regions[4,5,6,7]. The region growing technique is 
widely used. First, region seeds are selected; then 
regions are enlarged by recursively including 
homogenous surrounding pixels. Compared to edge-
based methods, region-based methods are more stable 
and less sensitive to noise. However, their efficiency 
depends strongly on the selection of the region seeds. 
Some authors have used hybrid approaches. Often a 
region-based method and an edge-based one are 
combined so that detected edges are used to initialize 
and steer a region-based segmentation[8].  

 Few authors have integrated Bayesian inference 
in range image segmentation. Lavalle and 
Hutchinson[9] have used a Bayesian test to merge 
regions in both range and textured images. Region 
merging is based on some observation vectors and 
some image priors. The merging of two regions 
depends on the probability that the resulting region is 
homogenous. Jain and Nadabar[10] have proposed a 
Bayesian method for edge detection in range images. 
Considering the smoothness of image surfaces as a 
prior, they use the Line Process (LP) Markov random 
field (MRF) model[11] to label image pixels as EDGE 
or NON-EDGE pixels.  
 Wang and Wang[12] have presented a hybrid 
scheme for range image segmentation. First, they 
proposed a joint Bayesian estimation of both pixel 
labels and surface patches. Next, the solution is 
improved by combining the Scan Line algorithm for 
edge detection in range images[3] and the Multi-Level 
Logistic (MLL) MRF model[13]. Li[14] proposed a 
Markov random field model for surface smoothing 
with discontinuity preserving in range images. The 
use of the MAP-MRF (Maximum A Posteriori - 
Markov Random Field) framework has allowed 
region smoothing with preserving of both step and 
roof edges.  
 In spite of various contributions of the works 
previously cited, some aspects inherent to range 
image segmentation were omitted. Indeed, most of 
the works use Markovian models that are based 
exclusively on the surface smoothness prior. 
Moreover, the proposed methods proceed by 
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assigning pixels to clusters without ensuring the 
continuity of the resulting clusters. Typically, in the 
approach proposed by Wang and Wang [12], the pixels 
belonging to coplanar regions may be assigned 
equally to any of these regions. The spatial continuity 
constraint of resulting regions seems that it was not 
taken into account.  
 The method proposed in this study aims first at 
providing an initial segmentation version, using an 
improved region growing technique and then to refine 
this version by a Bayesian-MRF labeling. The 
refinement of the initial segmentation consists in a 
Bayesian regularization of unlabeled pixels. The 
latter are mostly close to region boundaries. A new 
Markov random field model is used to model the 
prior information on image regions, by considering 
both surface and edge smoothness. In the first stage, 
the image regions are extracted using a randomized 
region growing technique. The latter consists in a 
random sampling of region seeds. In the second stage, 
unlabeled pixels are labeled using a Bayesian 
estimation, based on two distinct priors. The first one 
consists of the surface smoothness, which is modeled 
by the MLL model [13]. The second one which is 
introduced through this work consists of the edge 
smoothness. The new MRF model uses a high-order 
neighborhood system and is based on the assumption 
that edge pixels are situated on straight lines that 
represent region boundaries. The use of the ICM 
algorithm (Iterated Conditional Modes)[15] to search 
for the optimal solution has allowed us to formulate 
region continuity by defining a constraint on the 
possible labels of a given pixel. Indeed, the label of a 
given pixel is selected among the labels 
corresponding to the regions to which the pixel is 
close. The experimentations performed with real 
images from the ABW database [16] show the great 
potential of the proposed method to provide an 
accurate segmentation of range images. 
 
Image segmentation by randomized region seed 
sampling 
Surface modeling: A range image is a discretized 
two-dimensional array where at each pixel (x,y) is 
recorded the distance dx,y between the range finder 
plane and the corresponding point of the scene. 
Regions in such an image represent the visible 
patches of object surfaces. To attenuate the white and 
the impulsive noise contained in the image, a 
Gaussian filter and a median filter are applied to the 
raw data. Let d* a new representation of the row 
image, where d*

x,y represents the tangent plane to the 
surface at (x,y). The best tangent plane at (x,y) is 
obtained by the multiple regression method using the 
set of neighboring pixels χ(x,y). The neighborhood 
χ(x,y) is made up of pixels (x′,y′) situated within a 
3×3 window, centred at (x,y) and with close depths 

(dx′,y′) according to a given threshold (Trh). The plane 
equation in a 3-D coordinate system may be 
expressed as follows: 
z=ax+by+c (1) 
where (a,b,-1)T is a normal vector to the plane and   

1/ 22 ++ bac  is the orthogonal distance between 
the plane and the coordinate origin. Parameters a, b 
and c at (x0,y0) are obtained by the minimization of 
the function Φ, defined as follows: 
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 The operations performed on the new image are 
based on the comparison of two planes. Indeed, we 
consider that two planes: z=ax+by+c and 
z=a′x+b′y+c′ are equal if they have, according to 
some thresholds, the same orientation and the same 
distance to the coordinate origin. Let θ be the angle 
between the two normal vectors and h the distance 
between the two planes:  

1/),,(),,()sin( 22 ++′′′⊗= bacbacbaθ and 

1/ 22 ++′−= bacch . So, the two planes are 
considered equal if sin(θ)≤Trθ  and  h≤Trh, where Trθ 
and Trh are respectively the angle and the distance 
thresholds. Plane comparison is first used to test if a 
given pixel belongs to a planar region, given its plane 
equation. It is also used to test if the pixel is, or is not, 
a pixel of interest (edge or noise pixel). In this case, 
the pixel in question is considered as a pixel of 
interest if at least one of its neighbors has a different 
plane equation, according the previous thresholds. 
 
Region growing by randomized region seed 
sampling: Inspired from the RANSAC algorithm[17], 
our region growing technique is based on random 
sampling of the region seeds. A generated seed is 
accepted if only the surface estimation quality q at 
this seed is greater than a given threshold Q. For 
every accepted seed, a region growing is performed 
by recursively including homogenous pixels situated 
on the borders of the region in growth. A given seed 
centred at (xt,yt) is formed by the pixels in a W×W 
window, belonging to the same plane. The seed 
quality is represented by the minimum of estimation 
qualities of pixels that form the seed. Selection-
growing process is repeated until no new region can 
be created. Random sampling of region seeds allows 
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to select the best seeds. These latter are characterized 
by a good quality. It allows to include in a given 
region the largest possible set of homogenous pixels. 
Indeed, several seeds within the same region can be 
generated; however none of these seeds is accepted. 
The first generated seed for which the quality q is 
greater than Q will be accepted and considered for 
region growing. The randomized growing algorithm 
is described as follows: 
t=0 
Repeat 
    Generate a random position (xt,yt) 
    If seed quality q>Q then 
        Perform a region growing starting from (xt,yt) 
    EndIf 
    t=t+1 
Until none new region was generated since t-dT 
 // dT is a given time interval;  dT>>1 
 For each generated region Rl, the residual 
variance σl

2 is calculated as follows: 
∑
∈
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where (al,bl,cl)  are the plane equation parameters of 
the region Rl. This parameter will be used in Bayesian 
edge regularization. 
 Note that in 2-D images, the variance σ2 depends 
only on the noise. Consequently, it is considered 
constant for all the regions of the image. However, in 
range images σ2 depends on both noise and surface 
orientation, regarding the plane of the range finder. 
Its value is proportional to the angle of the surface 
inclination.  
 Region growing by randomized region seed 
sampling has provided better results, compared to 
deterministic region growing (Fig. 1b,c). However, 
the resulting segmentation often remains 
unsatisfactory. In Fig. 1c, we can note that most of 
the unlabeled pixels are those close to region 
boundaries. We present in the next section a new 
Bayesian method which allows refining the resulting 
segmentation by a reliable labeling of unlabeled 
pixels.  
 
Edge regularization by bayesian inference 
MAP-MRF pixel labeling: We have used the 
piecewise smoothness of image surfaces as well as 
the piecewise smoothness of region boundaries as 
priors to model distributions of pixel labels in range 
images. Let S denote the image lattice. At each site 
(x,y)∈S, dx,y is the depth at the site and  d*

x,y 
represents the corresponding plane equation 
parameters: d*

x,y=(ax,y,bx,y,cx,y).  
 Let M be the number of regions in the image. So, 
each site (x,y) can take a label fx,y from the set of 
labels L={l1,…,lM}. The labeling set F={fx,y, (x,y)∈S, 
fx,y∈L}, represents a segmentation of the image. If we 
assume that F is Markovian, segmenting S according  

   
(a) (b) 

 
(c) 

Fig. 1: Region growing. (a) Range image (abw.test.6); 
(b) Segmentation result by a deterministic 
region growing; (c) Segmentation result by a 
randomized region growing 

 
to the MAP-MRF framework[18] is equivalent to 
calculate the maximum a posteriori (MAP) of the 
distribution of the set F: P(F/d), by considering F as a 
Markov Random Field (MRF).  
According to Bayes’ rule, the maximum a posteriori 
P(F/d) is expressed as follows: 

)(
)()/()/(

dp
FPFdpdFP =  (5) 

)(1)( FUeZFP −−=  is the a priori probability of F 
obtained according to the Markov-Gibbs equivalence 
theorem[19]. ∑ −= F

FUeZ )(  is a normalization constant 
called the partition function.  
The a priori energy U(F) is a sum of clique potentials 
Vc(F) over the set of all possible cliques C: 

∑ ∈= Cc c FVFU )()( . 
 In our MRF model we have considered two sets 
of cliques: the set C1 of cliques, formed by two 
neighboring sites according to the 4-neighborhood 
system and the set C2 of cliques, formed by 9 sites 
located in a 3×3 window. By using the parameter ζ, 
(ζ<0), the potential V1 of cliques in C1 is defined as 
follows: 
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 In order to define the potential V2 of cliques in 
blocks of 3×3 sites, we use the following notations: 
let c9 be a clique of 3×3 sites centred at (x,y) : 
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Let’s define the transformation Γ, defining the order 
of sites in cliques of C2;  Γ : C2 → F9, so that: 

),...,()),(( 1,11,19 ++−−=Γ yxyx ffyxc   (8) 

By using the parameter κ, (κ<0) and considering 
possible configurations of cliques in C2 (Fig. 2) the 
potential V2 can thus be expressed as follows: 
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Where φ((x′,y′),(x,y),(x″,y″)) is the angle between the 
two vectors (x′-x, y′-y)T and (x″-x, y″-y)T.  
 The potential V1 models surface smoothness, 
whereas V2 models edge smoothness. Configurations 
used to define V2 depend on the surface type. For 
images containing polyhedral objects, considered in 
this work, V2 is defined on the basis that the boundary 
between two adjacent regions is formed by pixels 
belonging to the same straight line (Fig. 2). So, 
configurations which correspond to locally 
unsmoothed edges are penalized by using a positive 
clique potential (-κ). 
 The likelihood distribution p(d/F), is obtained by 
assuming that the observations d are degraded by an 
independent Gaussian noise: 

),(
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So, the likelihood distribution is expressed as 
follows: 
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with the likelihood energy U(d/F) defined by: 
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Since p(d) is constant for a fixed d, the solution F* is 
obtained by maximizing the a posteriori probability 
P(F/d) ∝ p(d/F)P(F), which is equivalent to 
minimizing the a posteriori energy 
U(F/d)=U(d/F)+U(F): 

))()/((maxarg* FUFdUF
F

+=  (13) 

       
(a)  (b) 
Fig. 2: Clique potential V2(c9) defined according to 

the edge smoothness prior. (a) Full locally 
smooth edge: V2(c9)=κ; (b) Partial locally 
smooth edge: V2(c9)=0; Otherwise, the edge is 
not locally smooth : V2(c9)=-κ 

 
Computation of the optimal solution: By assuming 
that F is Markovian and the observations {dx,y} are 
conditionally independent, we have used the ICM 
algorithm to minimize the a posteriori energy U(F/d). 
By considering U(F/d) as a sum of energies over all 
image sites: ∑ ∈= Syx yxyx dfUdFU ),( ,, )/()/( , we can 
separate it in two terms: 

∑
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where S′ is the set of sites which have not been 
labeled in the first stage (by region growing): 
S′={(x,y)∈S |  fx,y  is undefined}. Assuming the 
correctness of the labeling of the set S-S′ (performed 
in the first stage), the term ∑ ′−∈ SSyx yxyx dfU),( ,, )/( is 
thus constant. 
Minimizing the energy U(F/d) is equivalent to 
minimizing the energy U′(F/d) which corresponds to 
the sites in S′: ∑ ′∈=′ Syx yxyx dfUdFU ),( ,, )/()/(   (15) 
 The assumption of the correctness of the labeling 
of S-S′ allows also to define a constraint on the set of 
possible values that a site in S′ can have during the 
execution of the ICM algorithm. Indeed, the label fk

x,y 
at the iteration k, of a site (x,y) is chosen among the 
set L′(x,y)⊂L containing the labels of the sites, 
labeled in the first stage and located in a W×W 
window centred at (x,y). Formally, L′(x,y) is defined 
as follows:  
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 The two previous heuristics allow to speed up the 
calculation of the minimum of the a posteriori energy 
U′(F/d). They allow also to satisfy the region 
continuity constraint. For the latter problem, if we 
assume that the distance between two coplanar 
regions R and R′ is greater than W, the labels lR and lR′ 
corresponding respectively to R and R′, cannot belong 
to the same set L′(x,y). For example, if the site (x,y) 
belongs to R, it can not be labeled lR′, although 
energies U′(lR/dx,y) and U′(lR′/dx,y) are equal. 
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(a) (b) (c) 

   
(d) (e) (f) 

 

  

 

 (g) (h)  
Fig. 3: Segmentation results of abw.test.8 image. (a) Range image; (b) Redered image; (c) Ground truth 

segmentation (GT); (d) USF result; (e) WSU result; (f) UB result; (g) UE result; (h) BRIS result 
 

RESULTS 
 
Evaluation framework: Hoover et al. have proposed 
a dedicated framework for the evaluation of range 
image segmentation algorithms[16], which has been 
used in several related works[3,20,7,6,4]. The framework 
consists of a set of real range images and a set of 
objective performance metrics. It allows to compare a 
machine-generated segmentation (MS) with a 
manually-generated segmentation, supposed ideal and 
representing the ground truth (GT). The most 
important performance metrics are the numbers of 
instances respectively of correctly detected regions, 
over-segmented regions, under-segmented regions,  
 

missed regions and noise regions. Region 
classification is performed according to a compare 
tool tolerance T; 50%<T≤100%, which reflects the 
strictness of the classification. The 40 real images of 
the ABW database are divided into two subsets: 10 
training images and 30 test images. The training 
images are used to estimate the parameters of a given 
segmentation method. Using these parameters, the 
method is applied to the test images. The 
Performance metrics are computed and stored in 
order to be used to compare the involved methods. In 
our case, four methods, namely USF, WSU, UB and 
UE, cited in [16] are involved in the comparative 
study. 
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Parameter selection: Since the evaluation 
framework provides a set of training images with 
ground truth segmentation (GT), we have opted for a 
supervised approach for the estimation of parameters. 
For the proposed method, named BRIS for Bayesian 
Range Image Segmentation, six parameters should be 
fixed: Trθ , Trh, W, Q, ζ and κ. The performance 
criterion used in parameter selection is the average 
number of correctly detected regions with the 
compare tool tolerance T set to 80%. The parameters 
are divided into two subsets: 1) Trθ , Trh, W and Q 
which represent respectively the angle threshold, the 
depth threshold, the window size and the seed quality 
threshold. These parameters are used by the 
randomized region growing algorithm. 2) Parameters 
ζ and κ express respectively the clique potentials V1 
and V2. These two parameters are used in the 
segmentation refinement. 
 For the first parameter subset: Trθ , Trh , W and  
Q , 256 combinations namely (Trθ , Trh , W, Q)∈ 
{15°,18°,21°,24°}×{12,16,20,24}×{5,7,9,11}×{0.90,
0.95,0.97,0.99}, were run on the training images. The 
threshold Trθ was set to 21°. Note that higher values 
of this parameter under-differentiate regions 
regarding their orientations and lead to an under-
segmentation of the image. However, lower values 
over-differentiate regions and lead to an over-
segmentation. It results in a high number of false and 
small regions, which should be merged in the true 
neighboring regions. The threshold Trh is set to 16. 
Values significantly greater than 16 can lead to 
inappropriate merging of some parallel overlapped 
regions. However, if Trh is significantly less than 16, 
highly sloping surfaces can not be detected as planar 
regions[3]. This results in a high rate of missed 
regions. Parameters  W  and  Q   were  set 
respectively  to  7  and  0.97.  The  selected value of 
W permits to estimate the plane equation by 
considering a wide neighborhood (W2 pixels), 
whereas Q ensure that the plane parameters are 
reliable and the window W×W is not located between 
two different regions. 
 We have used the Coding method[19] to estimate 
the parameters ζ and κ. For each image in the training 
set, a pair of values of these parameters is calculated. 
The two averages are then used as the parameter 
values. We have used a single Coding of the set S-S′. 
It corresponds to the cliques of 3×3 sites. Indeed, we 
assume that the regularization of the region 
boundaries is more convenient for the labeling of 
unlabeled pixels, because these pixels are mostly 
close to the region boundaries. The optimal values for 
each training image is calculated by the simulated 
annealing algorithm[21], using a Gibbs sampler[11]. The 
average values of  ζ and κ obtained with the training 
set were respectively -0.373×10-5 and -0.587×10-4.  

 Figure 3 shows the segmentation results of the 
image abw.test.8, with the compare tool tolerance T 
set to 80%. This image was considered as a typical 
image to compare the involved methods[16,6]. Figure 
3a, 3b and 3c show respectively the range image, the 
rendered image and the ground truth segmentation 
(GT). Figure 3d,  3e  3f and  3g are segmentation 
results obtained respectively by USF, WSU, UB and 
UE methods. Figure 3h presents the segmentation 
result obtained by our method.  
 Metrics in Table 1 show that all image regions 
detected by the best-referenced segmenter (UE) were 
detected by our method. Except the shadowed region, 
where all methods fail to detect, all object regions 
were detected. The incorrectly detected regions are 
those with small sizes and situated on the horizontal 
support. Compared to the other methods, values of 
incorrect detection metrics are also good. Our method 
is equivalent to UE and scored higher than the others. 
 
Table 1:  Comparison results with abw.test.8 image for T=80% 
Method GT 

Region 
Correct 
detect. 

Over- 
segm. 

Under- 
segm. 

Miseed Noise. 

USF 21 17 0 0 4 3 
WSU 21 12 1 1 6 4 
UB 21 16 2 0 3 6 
UE 21 18 1 0 2 2 
BRIS 21 18 2 0 1 1 
 
Table 2: Average results of the different involved methods for 

T=80% 
Method GT 

Region 
Correct 
detec. 

Over- 
segm. 

Under- 
segm. 

Miseed Noise. 

USF 15.2 12.7 0.2 0.1 2.1 1.2 
WSU 15.2 9.7 0.5 0.2 4.5 2.2 
UB 15.2 12.8 0.5 0.1 1.7 2.1 
UE 15.2 13.4 0.4 0.2 1.1 0.8 
BRIS 15.2 13.1 0.4 0.1 1.7 0.9 
 

 
 
Fig. 4: Average results of correctly detected regions 

of all methods, according to the compare tool 
tolerance T; 50%<T≤100% 
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 Table 2 shows the average results obtained with 
all test images and for all performance metrics. The 
compare tool tolerance was set to the typical value 
80%. By considering both correct detection and 
incorrect detection metrics, obtained results show a 
very good efficiency of our method. 
 Figure 4 shows the average numbers of correctly 
detected regions for all test images and according to 
the compare tool tolerance T; T∈{51, 60, 70, 80,90 
and 95%}. 
 Results show that the number of correctly 
detected regions by our method is in average better 
than those of USF, UB and WSU. For instance, our 
system scored higher than WSU for all the values of 
the compare tool tolerance T. It scored higher than 
USF for T∈{80%, 90%, 95%} and better than UB for 
T∈{50, 60,70 and 80%}. For all incorrect detection 
metrics (Over-segmentation, Under-segmentation, 
Missed, Noise), our method has equivalent scores to 
those of UE and USF. The two latter scored higher 
than UB and WSU. 
 

CONCLUSION 
  
 We have presented in this paper a new Bayesian 
method for range image segmentation. Region 
growing by randomized seed sampling, introduced in 
this work provides an initial degraded segmentation. 
Results at this stage are better than those obtained 
with deterministic region growing. The refinement of 
the initial segmentation using the MAP-MRF 
framework has allowed improving significantly the 
segmentation results. We have presented a new MRF 
model which allows to model both surface and edge 
smoothness, considered as prior assumptions on 
regions in range images.  
 Extensive tests were performed on real images 
from the ABW database. Obtained results show the 
great potential of the proposed method for providing 
an efficient and accurate range image segmentation. 
The proposed method can be extended to curved 
objects, by defining the surface proprieties specific to 
these objects, as well as the appropriate MRF models. 
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