
Journal of Computer Science 3 (2): 107-112, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Dr. Thabit Sultan Mohammed, Al-Zaytoonah University, Faculty of Science and IT, Software
Engineering Department, P.O. Box-130, Amman (11733)–Jordan, E-mail: thabitsm@yahoo.com

107

Performance Improvement and Deadlock Prevention for a

Distributed Fault Diagnosis Algorithm

Thabit Sultan Mohammed
Software Engineering Department, Faculty of Science and IT, Al-Zaytoonah University

P.O. Box-130, Amman (11733)–Jordan

Abstract: This research presents an overview to the issue of fault diagnosis in distributed systems and
an evaluation study to some of the algorithms proposed in literature for performing distributed fault
diagnosis. One algorithm was chosen and adopted for implementation in a simulator for investigation.
A strategy for improving the performance of this algorithm and preventing deadlock was proposed in
this research. A measure of the improvement in performance was also presented.

Key words: Distributed systems, fault diagnosis, fault-tolerance, diagnosis algorithms, deadlock,

deadlock prevention

INTRODUCTION

 The general increase in the use of computing has
led to demands for more sophisticated facilities in terms
of speed, reliability, availability, etc... Such demands
are often supported by a general desire to decentralize.
Fault tolerance and reliability are among the design
issues that steadily gaining in importance as distributed
systems are become progressively commercialized. The
implementation of fault tolerance is vital in a number of
applications; such as safety critical applications, highly
available systems and applications in relatively
inaccessible areas. Fault tolerance, refers to the ability
of computers to withstand failures of some of their
elements and continue to operate correctly. It includes a
number of basic steps[1, 2]; fault detection, fault location
(diagnosis and identifying the faulty elements) and
repair and/or system reconfiguration.
 The theory of fault diagnosis in distributed systems
has received considerable attention over the years. The
Fundamental model[3], which referred to as the PMC
model, assumes that the system is partitioned into units
(nodes), each of which can perform tests on a subset of
remaining units. The system also includes a facility for
gathering test results and performing the diagnosis.
Such facility is referred to as global observer and is not
subject to fault.
 Later research has concentrated on more elaborate
and more general models, where it was found that
additional extensions and modifications are necessary
to make the PMC model applicable to actual systems[4].
Some of the proposed models have recognized that the
use of global observer contradicts the principle of
distributed systems and it is unrealistic to assume that
such an element is capable of observing all test results
without being itself subject to faults. In the PMC
model, it was assumed that faults are equiprobable. A

generalized model[5] took into account the probabilistic
nature of fault occurrence in the nodes of the system.
Dahbura and Masson[6] proposed a diagnosis algorithm
for a general case of t-fault diagnosable systems. In[7], a
diagnosis algorithm was proposed for locating faulty
and fault-free nodes in system comprising a number of
processors that are being allocated similar
computational tasks. The algorithm is based on a
comparison approach.
 Another series of diagnosis algorithms were
presented, which basically depend on the following
definition:

Definition: A distributed system with communication
graph C and testing graph Ts is said to be t-fault
diagnosable for a set of t or fewer faulty nodes, if and
only if, each node in the system is capable of reliably
diagnosing the condition of all other nodes in the
system, by means of test results being conducted
through Ts and by analyzing information contained in
diagnostic messages received from neighbors.
 Although these algorithms differ in detail, they are
all based on the ability of a node to perform tests on
some of its neighboring nodes and sending results back.
In[8], two algorithms, SELF and SELF2 were proposed
and in[9], algorithm SELF3 was proposed. Depending
on the assumptions of these algorithms (i.e. SELF,
SELF2 and SELF3), Hosseini et al.[10] have proposed
algorithm NEW-SELF. Later it was found that it is
possible for a temporary misdiagnosis of some fault-
free nodes as faulty, if failures in communication links
occur. For this reason, therefore a modified version of
algorithm SELF3, referred to as modified SELF3, was
proposed[11]. Theoretical proofs are usually difficult to
be given a for algorithms like these, therefore
algorithms SELF2 and NEW-SELF were implemented
in a simulated distributed system [12]and[13] and the

J. Computer Sci., 3 (2): 107-112, 2007

 108

simulation showed a temporary misdiagnosis of some
fault-free nodes due to failures in communication links.
 In this research, the modified SELF3 algorithm
will be adopted for further investigation, as we have
noticed that it is the most mature among the proposed
algorithms. For easy reference to the details of this
algorithm, section 3 will present a description of these
details.

Deadlock in distributed algorithms: All the above
mentioned algorithms and infact any other distributed
algorithm, are considered to be composed of processes,
which are executed at system nodes and exchange
information with each other by message passing. Once
these algorithms are applied, special attention need to
be focused on the problem of deadlock. Deadlock refers
to the case in which there exists a group of waiting
processes, such that no process in this group can send
message (release resource) until it receives the required
message (resource) from other processes in the group.
When this occurs, all these will wait permanently and
the progress of their execution is halted. Hence, the
execution of processes can turn out to be completely
useless unless proper and careful control is executed.
To handle deadlocks in distributed systems, one can try
to adopt approaches known from centralized systems;
i.e. prevention, avoidance and detection with
recovery[14,15] and[16]. The necessary and sufficient
conditions for deadlock are (mutual exclusion, no
preemption, hold and wait and circular wait). Deadlock
prevention is based on violating these conditions[17].
 Modified SELF3 algorithm took into consideration
deadlock avoidance, where “interrogation messages”
are designed such that they traverse the testing graph
only through acyclic paths. This is assumed by
appending a set of nodes referred to as set T , where a
node that is contained in T should not be re-interrogated
by another node, receiving a message comprising this
set, about the condition of an accused node. The
handling of deadlock is a complex process due to the
nature of a distributed system, where no node has
accurate knowledge of the system state[18]. The stability
of a deadlock handling approach greatly depends on the
application and environment.
 This fact has become apparent when implementing
the modified SELF3 algorithm for investigation with
different topologies of distributed systems. Different
topologies has led to different formulations of the set T
with some of them causing a violation to the guarantee
that no node will be re-interrogated about the condition
of an accused node. Such re-interrogations mean
replicated actions leading to extra messages and may
force messages to traverse cyclic paths. The possible
variants of the formulations of the set T and the
diagnosis scenarios are also presented. A strategy for
avoiding replicated actions and a measure of the extra
messages saved are discussed in them.

Description of the modified SELF3 algorithm: The
modified algorithm SELF3[11] assumes that every node
Pi in the system has two sets ND-FLURi and LNK-
FLURi. The elements of ND-FLURi are faulty nodes in
the system, while the elements of LNK-FLURi are
faulty communication links between Pi and the nodes
with which it has direct communication links. When a
node Pq is assigned to test another node Pr, they are
called tester and testee respectively. The algorithm
employees the following forms of messages.
1. [Pr by Pq node], this message is referred to as

‘broadcasting message’ and it means that node Pq
has determined that node Pr is faulty.

2. [Pq – Pr link], this is also a ‘broadcasting message’
and it means that the direct communication link
between Pq and Pr is faulty.

3. [?,T,Pq,Pr,Pq], this is called ,’interrogation
message’. Whenever a node Pq testes a node Pr and
Pr fails the test, then Pq will interrogate all its fault-
free testees Ps’s (i.e the nodes that have passed the
test performed on them by Pq) about the condition
of Pr, by sending an interrogation message, of the
form shown, to Ps. As it has been mentioned in the
previous section, the set T is used in this type of
messages to ensure that they traverse the testing
graph only through acyclic paths. The initial
content of this set is;

)]([qsq PBYTESTEDPPT −∈∪= .
4. [YES,Pq, Pr,Ps], this message is for ‘transmitting

test result’. When node Ps receives an interrogation
message, it will conduct a test on Pr if it is a tester
for this node and if Pr passes the test then this
message will be sent.

5. [NO, Pq,Pr, Ps], this message is also for
‘transmitting a test result’. It is to be sent back in
two cases, first if node Ps, which has received an
interrogation message regarding the condition of Pr
is a tester and Pr fails the test by Ps, second, if Ps is
not a tester of Pr and it has no fault-free testees

t sP TESTED BY(P)∈ − such that tP T.∉
Alternatively, if Ps is not a tester of Pr but it has
some fault-free nodes t sP TESTED BY(P)∈ − and

tP T,∉ then Ps will set tT T [P], = ∪ and then
interrogate each node Pt regarding the condition of
Pr by sending a message [?,T,Pq,Pr,Ps] to Pi.

 Consider a node such as Ps, which has interrogated
a number of nodes (say Pt). If node Ps receives a
message of the form [YES,Pq,Pr,Pt] from at least one of
the nodes Pt, then it will pass a similar message
[YES,Pq,Pr,Ps] to node Pq, which is its interrogator.
 However, if node Ps does not receive at least a
“YES” message from any of the nodes Pt, then it has to
wait until it receives a message [NO,Pq,Pr,Pt] from all
of them. A similar message of the form [NO,Pq,Pr,Pt]
will then be sent to its interrogator Pq. These actions,
which are described at node Ps will be followed by
every other node, that has been interrogated.

J. Computer Sci., 3 (2): 107-112, 2007

 109

 At node Pq (the initial tester), a different set of
actions are required to be taken against the receipt of a
test result message. If at least one message of type
“YES” has been received at node Pq from any of the
nodes, that it has interrogated about the condition of Pr,
then it recognizes that Pr is fault-free but the
communication path between Pq and Pr is faulty. This
information will be kept locally in LNK-FLURq.
Otherwise, if Pq receives messages of type ”NO” from
all the nodes that it has interrogated about the condition
of Pr then it will consider node Pr faulty, hence a
message of the form [Pr by Pq node] will be
broadcasted to every one of its testers.
 Whenever a node Pv receives a message [Pr by Pq
node] from a fault-free testee, it will consider Pr to be
faulty and hence add Pr to its list of faulty nodes ND-
FLURv and it will send a message to every one of its
testers.

Possible variants of set T formulations: When the
modified SELF3 algorithm is chosen to be investigated,
we find that a simulated distributed system requires a
number of assumptions. Among these assumptions is a
unified message format with fields that can cover and
control detailed actions of the system. One of these
fields holds a time stamp, representing local clocks of
the nodes[19].
 Earlier we mentioned that every interrogation
message includes a set of nodes called set T, which is
used to ensure that interrogation message travels only
through acyclic paths. At a node Pq, which has accused
another node Pr, the interrogation message(s) regarding
the condition of Pr, that is(are) sent by Pq will have a
set T, which is defined by; T = all fault-free testees of
Pq. Consider that one of these messages is being
received by node Pm, which is not a tester of node Pr.
Node Pm will interrogate its fault-free testees FT(Pm),
provided they are included in set T of the message it
has received. The interrogation messages, which node
Pm will send, are provided with a set T, that is modified
into)(mPFTTT ∪= .
 While the interrogation paths are branching in their
search for a tester of the accused node, it is possible for
a single node, especially in a graph with long paths, to
be involved with more than one interrogation path. We
will continue with our proposed case in which Pq
accused Pr and assume that node Pt, which is not a
tester of node Pr, has received messages from Pm and Pn
interrogating about the condition of Pr. Let these carry
sets Tm and Tn respectively. If this case is to be
simulated, various situations can arise due to the
differences in sets Tm and Tn and to the sequencing of
execution of the messages by node Pt.
 Let the fault-free testees of Pt be FT(Pt) then these
testees should be related to the sets Tm and Tn according
to one of the following five situations:

t m t

n t n t m

t m t n

t m t n

t m t n

t m t n

(a) FT(P) T FT(P)

T and FT(P) T FT(P) T

(b) FT(P) T and FT(P) T

(c) FT(P) T FT(P) T

(d) FT(P) T FT(P) T

(e) FT(P) T FT(P) T

∩ ⊄ ∩

∩ ⊄ ∩

∩ = φ ∩ = φ

∩ = ∩

∩ ⊃ ∩

∩ ⊂ ∩

 These five possibilities are illustrated in Fig. 1a-e.
Each case (a-e) is assumed to represent part of an
interrogation phase during a diagnosis procedure of
node Pr. In this Fig. 1, we assume that node Pt
originally has a set of fault-free testees composed of Pi
and Pv and the nodes in this set are, for each case (i.e, a-
e), assumed to be related differently, as testers and
testees, to nodes Pm and Pn. This difference in relation
between nodes Pm, Pn, Pi and Pv will cause the
differences between t mFT(P) T∩ and t nFT(P) T∩ .

The diagnosis scenarios: When node Pt executes the
two messages, the actions that will be taken depend
only on the contents of the sets Tm and Tn and not on
which message is first or last to be executed. The
situations for cases (a) and (b) are straightforward and
therefore they will only be defined briefly in this
section. In case (a), node Pt will interrogate different
sets of testees when it executes the messages from Pm
and Pn. Node Pi will be interrogated when the message
from Pm is executed, while node Pv is interrogated when
the message from Pn is executed. In case (b), however,
the execution of each one of the two messages by node
Pt will generate a reply of type “NO”, since this node is
neither a tester of node Pr nor has some fault-free
testees that are not included in the sets Tm and Tn to
interrogate.
 Meanwhile in cases (c-e), the situation is somehow
different. In case(c), for instance, the same set of testees
will be interrogated whichever message is executed first
and this set will be interrogated again, when the other
message is executed. In (d) and (e), however, the testees
which will be interrogated twice, after executing the
two messages, are those which occur in both

t mFT(P) T∩ and t nFT(P) T∩ . By interrogating a set
of testees, or part of it, for the same reason more than
once, node Pt has infact repeated similar actions. This
has happened in cases (c), (d) and (e), where this node
has executed all the interrogation messages it has
received independently, considering only the contents
of the set T and this infact complies with the algorithm
of[11]. In this algorithm, a node like Pt is not required to
consider its previous actions before sending an
interrogation message to another node. Such a practice
will result in generating more interrogation messages
and hence the formation of a number of replicated
paths, which can be considered as redundant. These
extra messages have no advantage to the diagnosis
process and even a deadlock. On the contrary, they may

J. Computer Sci., 3 (2): 107-112, 2007

 110

Pq

Ps

Pi

Pm

Pv

Pr

Pt

……

Pn

m q s m v t t m i

n q s m n i t t n v

t m t n t n t m

T {P ,P ,P ,P ,P } FT(P) T {P }.

T {P ,P ,P ,P ,P ,P } FT(P) T {P }.

FT(P) T FT(P) T(a) FT(P) T FT(P) T and

= ⇒ ∩ =

= ⇒ ∩ =

∩ ⊄ ∩∩ ⊄ ∩

Pm

……

m q s m i v t t m

n q s m n i v t t n

t m t n

T {P ,P ,P ,P ,P ,P } FT(P) T .

T {P ,P ,P ,P ,P ,P ,P } FT(P) T .

(b) FT(P) T and FT(P) T

= ⇒ ∩ = φ

= ⇒ ∩ = φ

∩ = φ ∩ = φ

Ps

Pn

Pt

Pi

Pv

PrPq

Pq

Ps

Pn
Pi

Pm

Pv

Pr

Pt

……

m q s m i t t m v

n q s m n i t t n v

t m t n

T {P ,P ,P ,P ,P } FT(P) T {P }.
T {P ,P ,P ,P ,P ,P } FT(P) T {P }.
(c) FT(P) T FT(P) T

= ⇒ ∩ =
= ⇒ ∩ =

∩ = ∩

Pq

Ps

Pn
Pi

Pm

Pv

Pr

Pt

……

m q s m t t m i v

n q s m n i t t n v

t m t n

T {P ,P ,P ,P } FT(P) T {P ,P }.

T {P ,P ,P ,P ,P ,P } FT(P) T {P }.

(d) FT(P) T FT(P) T

= ⇒ ∩ =

= ⇒ ∩ =

∩ ⊃ ∩

Pq

Ps Pn Pi

Pm

Pv

Pr

Pt

……

m q s m i t t m v

n q s m n t t n i v

t m t n

T {P ,P ,P ,P ,P } FT(P) T {P }.

T {P ,P ,P ,P ,P } FT(P) T {P ,P }.

(e) FT(P) T FT(P) T

= ⇒ ∩ =

= ⇒ ∩ =

∩ ⊂ ∩
Fig. 1: Different possibilities of FT(Pt) with respect to Tm and Tn

J. Computer Sci., 3 (2): 107-112, 2007

 111

incur additional delay in performing the diagnosis
process. We consider that their prevention is of
potential advantage and therefore assume that it is
important for a node not to interrogate another node
more than once for the same reason, when these two
conditions hold:
* The first interrogation message, that has been sent

is still waiting for a reply and
* The difference between the value of the time stamp

of the first message, whose reply has not been
received yet and the current clock value is within a
specific timeout period.

 The value of the timeout period may vary
according to the size of the system and hence the
expected length of the interrogation path. According to
this assumption and the two conditions included in it,
the situation at node Pt will be reassessed and this
assessment, we will assume that conditions (1) and (2)
above are always holding. Thus, for case (c), if the
message from Pm is assumed to be executed first then
all the testees in t mFT(P) T∩ will be interrogated. At
a later instance, however, when node Pt executes the
message from Pn then none of the nodes in

t nFT(P) T∩ need to be interrogated because they have
already been interrogated. In contrast, if node Pt has
executed the message from Pn first, all the nodes in

t nFT(P) T∩ will be interrogated, while none of the

nodes in t mFT(P) T∩ need to be interrogated when
executing the message from Pm. This is not the case for
(d) and (e), however, where the precedence of
executing the two messages makes a difference in the
actions that node Pt has to take. Consider case (d) and
assume that the message from Pn has been executed
first, then all the testees t nFT(P) T∩ will be
interrogated by Pt. consequently, when the message
from Pm is to be executed, only part of t mFT(P) T∩
will be interrogated. This part includes the nodes which
do not exist in t nFT(P) T∩ and hence have not been
interrogated. For the same case (i.e. case (d)), if the
message from Pm, is executed first it will result in
interrogating the testees t mFT(P) T∩ by node Pt and

because this set includes t nFT(P) T∩ , none of its
nodes need to be interrogated, when executing the
message from node Pn at a later instance. After
describing the situations for case (d), it can be shown
how node Pt will behave towards the messages from Pm
and Pn in case (e) in a rather similar way.
 The number of extra interrogation messages and
hence redundant replicated paths, which have been
eliminated at node Pt due to the later assumption, is
equal to t mFT(P) T∩ or t nFT(P) T∩ , for case (c)

and to t m t nFT(P) T FT(P) T∩ − ∩ , for cases (d)

and (e). These two measures represent a considerable
reduction in the number of diagnosis messages and
diagnosis time and hence leading to an improved
performance of the algorithm.

CONCLUSION

 Fault diagnosis forms an important tool in the
maintenance strategy of distributed computer systems.
The theory of fault diagnosis in distributed systems has
received a considerable attention over the years and
numbers of diagnosis algorithms were proposed in
literature. Modified SELF3 algorithm is among these
algorithms and it has been considered as a starting point
in this study. Using a simulated distributed system, this
algorithm is implemented, where all actions that were
specified in the algorithm has been introduced to the
simulator in a unified message format. A time stamp is
appended to each message, which represents the local
clock of the node from which the message is issued.
 Various system topologies are used to investigate
the algorithm. Originally, the algorithm includes a
precaution to guard against replicating actions and
assuring that messages traverse only acyclic paths. The
simulation process, however, discovered that for certain
cases, this precaution is violated and replicated actions
may occur, which may even cause deadlock.
Constraints are assumed in the study to handle this
negative behavior and assure no replication in actions.
These constraints have led to prevent the production of
unnecessary messages and hence gaining an
improvement in the performance of the algorithm. A
measure of the improvement is given in the study.

REFERENCES

1. Kim, K., 1979. Error detection, reconfiguration and

testing in distributed systems. Proc. 1st Intl. Conf.
on Distributed Systems, pp: 284-295.

2. Randell, B. and P. Treleavan, 1978. Reliability
issues in computing system design. Computing
Surveys, 10(6): 123-165.

3. Preparata, F.P., G. Metze and R.T. Chien, 1967. On
the connection assignment problem of diagnostic
systems. IEEE Trans. on Electro. Comput.,12: 848-
854.

4. Friedman, A.D. and L. Simoncini, 1980. System
level fault diagnosis. Computer, 3: 47-53.

5. Maheshwari, S.N. and S.L. Hakmi, 1976. On
modules for diagnosable systems and probabilistic
fault diagnosis. IEEE Trans. on Computers, 3: 228-
236.

6. Dahbura, A. and G.M. Masson, 1984. An O(n2.5)
fault identification algorithm for diagnosable
systems. IEEE Trans. on Computers, 6: 486-492.

J. Computer Sci., 3 (2): 107-112, 2007

 112

7. Rangarajan, S. and D. Fussell, 1988. A
probabilistic method for fault diagnosis of
multiprocessor systems. 18th Intl. Symp. on Fault
Tolerant Computing. Tokyo, 6: 278-283.

8. Kuhl, J.G., 1980. Fault Diagnosis in Computing
Networks. PhD Thesis, University of Iowa.

9. Kuhl, J.G. and S.M. Reddy, 1981. Fault diagnosis
in fully distributed systems. IEEE Symp. on Fault
Tolerant Computing, pp: 100-105.

10. Hossieni, S.H, J.G. Kuhl and S.M. Reddy, 1984. A
distributed algorithm for distributed computing
systems with dynamic failure and repair. IEEE
Trans. on Computers, 3: 223-233.

11. Hossieni, S.H, J.G. Kuhl and S.M. Reddy, 1988.
On self-fault diagnosis on distributed systems.
IEEE Trans. on Computers, 2: 248-251.

12. Griffith, G.W., 1986. A fault-tolerant distributed
computer system for automotive applications. M.
Sc. Thesis, Cranfield Institute of Technology, UK.

13. Bianchini, R., K. Goodwin and D.S. Nydick, 1990.
Practical application and implementation of
distributed system-level diagnosis theory. Proc.
20th Symp. on Fault Tolerant Computing, pp: 332-
338.

14. Holt, R.C., 1972. Some deadlock properties of
computer systems. ACM Computing Surveys, 4:
179-196.

15. Chandy, K.M., J. Misra, and L.M. Hass, 1983.
Distributed deadlock detection. ACM Trans.
Computer Systems, 1: 144-156.

16. Wu, H., W.N. Chen and J. Jaffer, 2002. An
efficient distributed deadlock avoidance algorithm
for the AND model. IEEE Trans. Software Engg.,
1: 18 - 29.

17. Barbosa, V.C., 1990. Strategies for the prevention
of communication deadlocks in distributed parallel
programs. IEEE Trans. Software Engg., 11: 1311-
1316.

18. Singhal, M., 1989. Deadlock detection in
distributed systems. IEEE Computer, 22: 37-48.

19. Mohammed, T.S., 1992. Fault diagnosis of
distributed systems: Analysis, simulation and
performance measurement. Ph. D. Thesis,
Cranfield Institute of Technology. UK.

