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Abstract: This research presents an overview to the issue of fault diagnosis in distributed systems and 
an evaluation study to some of the algorithms proposed in literature for performing distributed fault 
diagnosis. One algorithm was chosen and adopted for implementation in a simulator for investigation. 
A strategy for improving the performance of this algorithm and preventing deadlock was proposed in 
this research. A measure of the improvement in performance was also presented.  
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INTRODUCTION 
 
 The general increase in the use of computing has 
led to demands for more sophisticated facilities in terms 
of speed, reliability, availability, etc... Such demands 
are often supported by a general desire to decentralize. 
Fault tolerance and reliability are among the design 
issues that steadily gaining in importance as distributed 
systems are become progressively commercialized. The 
implementation of fault tolerance is vital in a number of 
applications; such as safety critical applications, highly 
available systems and applications in relatively 
inaccessible areas. Fault tolerance, refers to the ability 
of computers to withstand failures of some of their 
elements and continue to operate correctly. It includes a 
number of basic steps[1, 2]; fault detection, fault location 
(diagnosis and identifying the faulty elements) and 
repair and/or system reconfiguration. 
 The theory of fault diagnosis in distributed systems 
has received considerable attention over the years. The 
Fundamental model[3], which referred to as the PMC 
model, assumes that the system is partitioned into units 
(nodes), each of which can perform tests on a subset of 
remaining units. The system also includes a facility for 
gathering test results and performing the diagnosis. 
Such facility is referred to as global observer and is not 
subject to fault. 
 Later research has concentrated on more elaborate 
and more general models, where it was found that 
additional extensions and modifications are necessary 
to make the PMC model applicable to actual systems[4]. 
Some of the proposed models have recognized that the 
use of global observer contradicts the principle of 
distributed systems and it is unrealistic to assume that 
such an element is capable of observing all test results 
without being itself subject to faults. In the PMC 
model, it was assumed that faults are equiprobable. A 

generalized model[5] took into account the probabilistic 
nature of fault occurrence in the nodes of the system. 
Dahbura and Masson[6] proposed a diagnosis algorithm 
for a general case of t-fault diagnosable systems. In[7], a 
diagnosis algorithm was proposed for locating faulty 
and fault-free nodes in system comprising a number of 
processors that are being allocated similar 
computational tasks. The algorithm is based on a 
comparison approach.  
 Another series of diagnosis algorithms were 
presented, which basically depend on the following 
definition: 
 
Definition: A distributed system with communication 
graph C and testing graph Ts is said to be t-fault 
diagnosable for a set of t or fewer faulty nodes, if and 
only if, each node in the system is capable of reliably 
diagnosing the condition of all other nodes in the 
system, by means of test results being conducted 
through Ts and by analyzing information contained in 
diagnostic messages received from neighbors. 
 Although these algorithms differ in detail, they are 
all based on the ability of a node to perform tests on 
some of its neighboring nodes and sending results back. 
In[8], two algorithms, SELF and SELF2 were proposed 
and in[9], algorithm SELF3 was proposed. Depending 
on the assumptions of these algorithms (i.e. SELF, 
SELF2 and SELF3), Hosseini et al.[10] have proposed 
algorithm NEW-SELF. Later it was found that it is 
possible for a temporary misdiagnosis of some fault-
free nodes as faulty, if failures in communication links 
occur. For this reason, therefore a modified version of 
algorithm SELF3, referred to as modified SELF3, was 
proposed[11]. Theoretical proofs are usually difficult to 
be given a for algorithms like these, therefore 
algorithms SELF2 and NEW-SELF were implemented 
in a simulated distributed system [12]and[13] and the 



J. Computer Sci., 3 (2): 107-112, 2007 

 108

simulation showed a temporary misdiagnosis of some 
fault-free nodes due to failures in communication links.  
 In this research, the modified SELF3 algorithm 
will be adopted for further investigation, as we have 
noticed that it is the most mature among the proposed 
algorithms. For easy reference to the details of this 
algorithm, section 3 will present a description of these 
details. 
 
Deadlock in distributed algorithms: All the above 
mentioned algorithms and infact any other distributed 
algorithm, are considered to be composed of processes, 
which are executed at system nodes and exchange 
information with each other by message passing. Once 
these algorithms are applied, special attention need to 
be focused on the problem of deadlock. Deadlock refers 
to the case in which there exists a group of waiting 
processes, such that no process in this group can send 
message (release resource) until it receives the required 
message (resource) from other processes in the group. 
When this occurs, all these will wait permanently and 
the progress of their execution is halted. Hence, the 
execution of processes can turn out to be completely 
useless unless proper and careful control is executed. 
To handle deadlocks in distributed systems, one can try 
to adopt approaches known from centralized systems; 
i.e. prevention, avoidance and detection with 
recovery[14,15] and[16]. The necessary and sufficient 
conditions for deadlock are (mutual exclusion, no 
preemption, hold and wait and circular wait). Deadlock 
prevention is based on violating these conditions[17]. 
 Modified SELF3 algorithm took into consideration 
deadlock avoidance, where “interrogation messages” 
are designed such that they traverse the testing graph 
only through acyclic paths. This is assumed by 
appending a set of nodes referred to as set T , where a 
node that is contained in T should not be re-interrogated 
by another node, receiving a message comprising this 
set, about the condition of an accused node. The 
handling of deadlock is a complex process due to the 
nature of a distributed system, where no node has 
accurate knowledge of the system state[18]. The stability 
of a deadlock handling approach greatly depends on the 
application and environment. 
 This fact has become apparent when implementing 
the modified SELF3 algorithm for investigation with 
different topologies of distributed systems. Different 
topologies has led to different formulations of the set T 
with some of them causing a violation to the guarantee 
that no node will be re-interrogated about the condition 
of an accused node. Such re-interrogations mean 
replicated actions leading to extra messages and may 
force messages to traverse cyclic paths. The possible 
variants of the formulations of the set T and the 
diagnosis scenarios are also presented. A strategy for 
avoiding replicated actions and a measure of the extra 
messages saved are discussed in them.  

Description of the modified SELF3 algorithm: The 
modified algorithm SELF3[11] assumes that every node 
Pi in the system has two sets ND-FLURi and LNK-
FLURi. The elements of ND-FLURi are faulty nodes in 
the system, while the elements of LNK-FLURi are 
faulty communication links between Pi and the nodes 
with which it has direct communication links. When a 
node Pq is assigned to test another node Pr, they are 
called tester and testee respectively. The algorithm 
employees the following forms of messages.  
1. [Pr by Pq node], this message is referred to as 

‘broadcasting message’ and it means that node Pq 
has determined that node Pr is faulty. 

2. [Pq – Pr link], this is also a ‘broadcasting message’ 
and it means that the direct communication link 
between Pq and Pr is faulty. 

3. [?,T,Pq,Pr,Pq], this is called ,’interrogation 
message’. Whenever a node Pq testes a node Pr and 
Pr fails the test, then Pq will interrogate all its fault-
free testees Ps’s (i.e the nodes that have passed the 
test performed on them by Pq) about the condition 
of Pr, by sending an interrogation message, of the 
form shown, to Ps. As it has been mentioned in the 
previous section, the set T is used in this type of 
messages to ensure that they traverse the testing 
graph only through acyclic paths. The initial 
content of this set is; 

)]([ qsq PBYTESTEDPPT −∈∪= .  
4. [YES,Pq, Pr,Ps], this message is for ‘transmitting 

test result’. When node Ps receives an interrogation 
message, it will conduct a test on Pr if it is a tester 
for this node and if Pr passes the test then this 
message will be sent. 

5. [NO, Pq,Pr, Ps], this message is also for 
‘transmitting a test result’. It is to be sent back in 
two cases, first if node Ps, which has received an 
interrogation message regarding the condition of Pr 
is a tester and Pr fails the test by Ps, second, if Ps is 
not a tester of Pr and it has no fault-free testees 

t sP TESTED BY(P )∈ −  such that tP T.∉  
Alternatively, if Ps is not a tester of Pr but it has 
some fault-free nodes t sP TESTED BY(P )∈ −  and 

tP T,∉  then Ps will set tT  T  [P ], = ∪ and then 
interrogate each node Pt regarding the condition of 
Pr by sending a message [?,T,Pq,Pr,Ps] to Pi.  

 Consider a node such as Ps, which has interrogated 
a number of nodes (say Pt). If node Ps receives a 
message of the form [YES,Pq,Pr,Pt] from at least one of 
the nodes Pt, then it will pass a similar message 
[YES,Pq,Pr,Ps] to node Pq, which is its interrogator. 
 However, if node Ps does not receive at least a 
“YES” message from any of the nodes Pt, then it has to 
wait until it receives a message [NO,Pq,Pr,Pt] from all 
of them. A similar message of the form [NO,Pq,Pr,Pt] 
will then be sent to its interrogator Pq. These actions, 
which are described at node Ps will be followed by 
every other node, that has been interrogated. 
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 At node Pq (the initial tester), a different set of 
actions are required to be taken against the receipt of a 
test result message. If at least one message of type 
“YES” has been received at node Pq from any of the 
nodes, that it has interrogated about the condition of Pr, 
then it recognizes that Pr is fault-free but the 
communication path between Pq and Pr is faulty. This 
information will be kept locally in LNK-FLURq. 
Otherwise, if Pq receives messages of type ”NO” from 
all the nodes that it has interrogated about the condition 
of Pr then it will consider node Pr faulty, hence a 
message of the form [ Pr by Pq node] will be 
broadcasted to every one of its testers.  
 Whenever a node Pv receives a message [Pr by Pq 
node] from a fault-free testee, it will consider Pr to be 
faulty and hence add Pr to its list of faulty nodes ND-
FLURv and it will send a message to every one of its 
testers. 
 
Possible variants of set T formulations: When the 
modified SELF3 algorithm is chosen to be investigated, 
we find that a simulated distributed system requires a 
number of assumptions. Among these assumptions is a 
unified message format with fields that can cover and 
control detailed actions of the system. One of these 
fields holds a time stamp, representing local clocks of 
the nodes[19].  
 Earlier we mentioned that every interrogation 
message includes a set of nodes called set T, which is 
used to ensure that interrogation message travels only 
through acyclic paths. At a node Pq, which has accused 
another node Pr, the interrogation message(s) regarding 
the condition of Pr, that is(are) sent by Pq will have a 
set T, which is defined by; T = all fault-free testees of 
Pq. Consider that one of these messages is being 
received by node Pm, which is not a tester of node Pr. 
Node Pm will interrogate its fault-free testees FT(Pm), 
provided they are included in set T of the message it 
has received. The interrogation messages, which node 
Pm will send, are provided with a set T, that is modified 
into )( mPFTTT ∪= .  
 While the interrogation paths are branching in their 
search for a tester of the accused node, it is possible for 
a single node, especially in a graph with long paths, to 
be involved with more than one interrogation path. We 
will continue with our proposed case in which Pq 
accused Pr and assume that node Pt, which is not a 
tester of node Pr, has received messages from Pm and Pn 
interrogating about the condition of Pr. Let these carry 
sets Tm and Tn respectively. If this case is to be 
simulated, various situations can arise due to the 
differences in sets Tm and Tn and to the sequencing of 
execution of the messages by node Pt.  
 Let the fault-free testees of Pt be FT(Pt) then these 
testees should be related to the sets Tm and Tn according 
to one of the following five situations: 

t m t

n t n t m

t m t n

t m t n

t m t n

t m t n

(a) FT(P ) T FT(P )
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 These five possibilities are illustrated in Fig. 1a-e. 
Each case (a-e) is assumed to represent part of an 
interrogation phase during a diagnosis procedure of 
node Pr. In this Fig. 1, we assume that node Pt 
originally has a set of fault-free testees composed of Pi 
and Pv and the nodes in this set are, for each case (i.e, a-
e), assumed to be related differently, as testers and 
testees, to nodes Pm and Pn. This difference in relation 
between nodes Pm, Pn, Pi and Pv will cause the 
differences between t mFT(P ) T∩  and t nFT(P ) T∩ .  
 
The diagnosis scenarios: When node Pt executes the 
two messages, the actions that will be taken depend 
only on the contents of the sets Tm and Tn and not on 
which message is first or last to be executed. The 
situations for cases (a) and (b) are straightforward and 
therefore they will only be defined briefly in this 
section. In case (a), node Pt will interrogate different 
sets of testees when it executes the messages from Pm 
and Pn. Node Pi will be interrogated when the message 
from Pm is executed, while node Pv is interrogated when 
the message from Pn is executed. In case (b), however, 
the execution of each one of the two messages by node 
Pt will generate a reply of type “NO”, since this node is 
neither a tester of node Pr nor has some fault-free 
testees that are not included in the sets Tm and Tn to 
interrogate. 
 Meanwhile in cases (c-e), the situation is somehow 
different. In case(c), for instance, the same set of testees 
will be interrogated whichever message is executed first 
and this set will be interrogated again, when the other 
message is executed. In (d) and (e), however, the testees 
which will be interrogated twice, after executing the 
two messages, are those which occur in both 

t mFT(P ) T∩  and t nFT(P ) T∩ . By interrogating a set 
of testees, or part of it, for the same reason more than 
once, node Pt has infact repeated similar actions. This 
has happened in cases (c), (d) and (e), where this node 
has executed all the interrogation messages it has 
received independently, considering only the contents 
of the set T and this infact complies with the algorithm 
of[11]. In this algorithm, a node like Pt is not required to 
consider its previous actions before sending an 
interrogation message to another node. Such a practice 
will result in generating more interrogation messages 
and hence the formation of a number of replicated 
paths, which can be considered as redundant. These 
extra messages have no advantage to the diagnosis 
process and even a deadlock. On the contrary, they may  
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Fig. 1: Different possibilities of FT(Pt) with respect to Tm and Tn 



J. Computer Sci., 3 (2): 107-112, 2007 

 111

 
incur additional delay in performing the diagnosis 
process. We consider that their prevention is of 
potential advantage and therefore assume that it is 
important for a node not to interrogate another node 
more than once for the same reason, when these two 
conditions hold: 
* The first interrogation message, that has been sent 

is still waiting for a reply and 
* The difference between the value of the time stamp 

of the first message, whose reply has not been 
received yet and the current clock value is within a 
specific timeout period. 

 The value of the timeout period may vary 
according to the size of the system and hence the 
expected length of the interrogation path. According to 
this assumption and the two conditions included in it, 
the situation at node Pt will be reassessed and this 
assessment, we will assume that conditions (1) and (2) 
above are always holding. Thus, for case (c), if the 
message from Pm is assumed to be executed first then 
all the testees in t mFT(P ) T∩  will be interrogated. At 
a later instance, however, when node Pt executes the 
message from Pn then none of the nodes in 

t nFT(P ) T∩  need to be interrogated because they have 
already been interrogated. In contrast, if node Pt has 
executed the message from Pn first, all the nodes in 

t nFT(P ) T∩  will be interrogated, while none of the 

nodes in t mFT(P ) T∩  need to be interrogated when 
executing the message from Pm. This is not the case for 
(d) and (e), however, where the precedence of 
executing the two messages makes a difference in the 
actions that node Pt has to take. Consider case (d) and 
assume that the message from Pn has been executed 
first, then all the testees t nFT(P ) T∩  will be 
interrogated by Pt. consequently, when the message 
from Pm is to be executed, only part of t mFT(P ) T∩  
will be interrogated. This part includes the nodes which 
do not exist in t nFT(P ) T∩ and hence have not been 
interrogated. For the same case (i.e. case (d)), if the 
message from Pm, is executed first it will result in 
interrogating the testees t mFT(P ) T∩  by node Pt and 

because this set includes t nFT(P ) T∩ , none of its 
nodes need to be interrogated, when executing the 
message from node Pn at a later instance. After 
describing the situations for case (d), it can be shown 
how node Pt will behave towards the messages from Pm 
and Pn in case (e) in a rather similar way. 
 The number of extra interrogation messages and 
hence redundant replicated paths, which have been 
eliminated at node Pt due to the later assumption, is 
equal to t mFT(P ) T∩  or t nFT(P ) T∩ , for case (c) 

and to t m t nFT(P ) T FT(P ) T∩ − ∩ , for cases (d) 

and (e). These two measures represent a considerable 
reduction in the number of diagnosis messages and 
diagnosis time and hence leading to an improved 
performance of the algorithm. 
 

CONCLUSION 
 
 Fault diagnosis forms an important tool in the 
maintenance strategy of distributed computer systems. 
The theory of fault diagnosis in distributed systems has 
received a considerable attention over the years and 
numbers of diagnosis algorithms were proposed in 
literature. Modified SELF3 algorithm is among these 
algorithms and it has been considered as a starting point 
in this study. Using a simulated distributed system, this 
algorithm is implemented, where all actions that were 
specified in the algorithm has been introduced to the 
simulator in a unified message format. A time stamp is 
appended to each message, which represents the local 
clock of the node from which the message is issued.  
 Various system topologies are used to investigate 
the algorithm. Originally, the algorithm includes a 
precaution to guard against replicating actions and 
assuring that messages traverse only acyclic paths. The 
simulation process, however, discovered that for certain 
cases, this precaution is violated and replicated actions 
may occur, which may even cause deadlock. 
Constraints are assumed in the study to handle this 
negative behavior and assure no replication in actions. 
These constraints have led to prevent the production of 
unnecessary messages and hence gaining an 
improvement in the performance of the algorithm. A 
measure of the improvement is given in the study.  
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