
Journal of Computer Sciences 2 (1): 07-12, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Abhay Kothari , ICFAI Business School, Indore
7

Qualitative Assessments of the Software Architectures

of Configuration Management Systems

1Abhay Kothari, 2A.K.Ramani and 3P.K. Chande
1ICFAI Business School, Indore, India

2 School of Computer Science, DAVV, Indore, India
3 Maulana Azad National Institute of Technology, Bhopal, India

Abstract: The Configuration Management (CM) is a very important area of concentration in software
development and maintenance processes. Quality parameters for Configuration Management Tools’
architectural designs require rigorous identification and measurement. Two methods for quantitative
assessment of quality parameters of the software architectures are proposed. These methods are based
upon modularization properties, like, cohesion type, coupling type, module complexity, module size
and others. Looking at the problems with the studied tools, like, low flexibility, interoperability, etc.,
and recent requirements for the CM tools, a new architectural model has been proposed[1]. All the three
models are assessed on quality parameters applying both the methods with an objective to validate the
superiority of the proposed model.

Key words: Quality parameters, configuration management tools, architectural designs

INTRODUCTION

 Software Configuration Management (SCM) is the
supportive activities, which go along the whole
software development and maintenance cycles. SCM
takes care of making the changes in a managed way.
Some of the fundamental activities of software
configuration management are configuration
identification, version control, change control, status
accounting and reporting, and configuration audits.
Firstly, configuration identification and version control
deals with storing software process artifacts with proper
version numbers in a data bank called repository.
Secondly, change control deals with making changes in
the established artifacts in a systematic way. Thirdly,
status accounting and reporting works regard storing
information, like, when the change was made, who
made the change, etc. Lastly, CM audits verify and
validate that the changes have been made as desired.
 Software architecture is an area, which referrers to
the architecture’s components and their
interconnectivity The software architectural design is
the first artifact of the design phase.
 Although the Quality attributes of software are
specified by different sources, like, McCall and
FURPS[2]. They address combination of product
revision, transition, and operational aspects of the
software. Out of the available quality attributes, it
requires filtering to decide the quality attributes
(parameters), which are relevant to the architectural
design of the SCM tools. Under the present research,
the quality parameters relevant to software architectural
designs of SCM tools are identified, they are flexibility,

interoperability, availability (ease of repair), testability,
traceability, portability, and simplicity.
 Most of the existing CM systems have three
layered architecture[3]. The layers from top to bottom
are policy support, basic CM services, and repository.
This is referred as the architectural design of the 2nd
generation tools. This suffers from lack of flexibility
and interoperability due to large module sizes, as
modules here, implement numerous functionalities and
mixed features[4]. A better architecture from Software
Engineering Institute, CMU, USA is the ‘CM Services
Model,’ it offers number of atomic CM services
(reducing the module sizes), out of which users can
choose the relevant ones. It is a client/server system.
It has a problem of over modularization (very
small module sizes), which leads to large integration
testing efforts. Also, it does not have any specific
provision to interoperate with other CM tools to take
advantage of their stronger features.

METHODS FOR QUALITATIVE ASSESSMENTS
OF ARCHITECTURES (SCM TOOLS)

Here, method # 1 and method # 2 are proposed, for
evaluating the quality attributes of architecture.

Method No. 1: Here, we try to define some quality
metrics. A metrics should be measurable and be able to
quantitatively reveal the differentiation in the values of
attributes of the entities for which metrics are defined.
Note: Pre-requisites for these methods are that the
requirements should be well defined and software
architectures of the various tools must be understood
well by the person applying these methods.

J. Computer Sci., 2 (1): 07-12, 2006

 8

 The methods proposed are collective form of
metrics. with basis derived from basic modularization
properties, like, cohesion, coupling, etc. The steps for
this method are as follows:

1. For constructing Table 1 we use following

abbreviations:
A is Type of Cohesion (Degree of functional
independence); M1 is rating given between 0 to 10;
M2 and M3 are ratings from 0 to 1 ; B is Types of
Coupling ;C is Application type: Scientific is CS,
Business Analysis is CB and Transaction
processing is CT ; FO is fan-out of the module; D
is module complexity Factor#1 (MF1); E is module
size; F is module complexity Factor #2 (MF2)

Application Type: They are decided based on how
simple the module is in terms of type of
functionality it is representing. The types are
discussed as follows:

Scientific: This category includes embedded
systems, involving complex algorithms, pertaining
to systems programming, numerical analysis (
integration or differentiation algorithms);
embedded software development, etc.

Business analysis: This category includes large
inventory management software, operation
research methods’ programming implementing
decision making, string manipulation, etc.

Transaction process: This category used simple
and small programs of transaction processing or
batch processing, which does not involve much of
decision making, but they are composed of simple
data representation and access. Programs here do
not have much decision making criterion.

M1: Assessment of cohesion and example: Let us
consider an example of low cohesion, a module
that performs error processing for an engineering
analysis package. The module is invoked when
some input validity check is violated. Then, it
performs following functions: Generate
supplementary data form original, Generate error
reports for user, perform calculations as requested
by user, update data in database and displays main
menu for further processing request. All these
preceding tasks are loosely connected, because
they are different in nature. Here, we can say that
each is a different and functionality independent
and will perform best in individual mode. In-case
we combine these into one module, then chances of
error propagation are high, if one of them is
modified. This makes the collective cohesion to be
of low magnitude. For such cases cohesion type

could be assumed to be procedural or a bit less than
that.

2. We derive two formulas, here, multiplication is
used instead of average, since in most of the cases
individual cost drives are multiplied to achieve the
final values:
Modularity (MOD) = M1*M2*M3; MOD is a
metrics trying to represent how well consolidated
and functionally independent the modules is. Best
MOD situation is: high cohesion, low coupling and
low fan out of modules. Complexity (CMPX)=
MF1*MF2.

3. Here, an attempt is made to understand following
quality parameters of CM tools[2]: Simplicity
(SMP) it depends on the complexity of the module,
which could be calculated by formula for CMPX =
MF1*MF2, so we will use the same rating of
CMPX to rate simplicity in a reciprocated way (10-
CMPX). Traceability for correctness and
communicativeness, it will depend on the
modularity, MOD = M1*M2*M3, so we will use
the same rating of MOD to rate traceability.

4. The other quality parameters, which are considered
for the purpose of the assessing the quality of any
CM tools are also based on “modularity” quality
metrics as mentioned in the relationship of
McCall’s software quality factors and quality
metrics[2]. They are reliability, maintainability,
flexibility, testability, portability, reusability, and
interoperability. They are all dependent on
modularity quality metrics. We will primarily use
MOD as their full or partial rating basis. At the
moment we will be including flexibility, testability,
portability and interoperability only for assessing
the CM tools, as others are not the implicit or
explicit requirements of CM tools.

5. As per the relationship between McCall’s software
quality factors and quality metrics[2], we find that
flexibility and testability are dependent on the
complexity also, this is in addition to their
primary dependency on modularity, so for their
ratings CMPX and MOD both are incorporated.
Now we introduce another metrics COM, which
will indicate logical simplicity and strength of
modularization of a module:
Rating (COM) = sqrt ((10-CMPX)*MOD), if
module coupling and/or fan-out information is not
available at architectural design level, then we will
use M1 instead of MOD. So, Rating (COM) = sqrt
(M1*(10-CMPX))

6. For interoperability we will use MOD and data
commonality and communication commonality,
but since at architectural design can not do much to
incorporate the later two parameters, we shall be
confined to MOD only; if module coupling/fan-out
information is not available at architectural design
level we will use M1 instead of the whole formula.

J. Computer Sci., 2 (1): 07-12, 2006

 9

Table 1 Modular Properties
A M1 B M2 FO M3 C D E F
Functional 10 No direct coupling 1.00 1-2 1 CS 10 Large 1.0
Sequential 8.5 Data 0.85 3-4 .75 CB 7 Above average 0.8
Communicational 7 Stamp 0.7 5-6 .5 CT 4 Average 0.6
Procedural 5.5 Control 0.55 Above 6 .25 Small 0.4
Temporal 4 External 0.4 Very small 0.2
Logical 2.5 Common 0.25
Coincidental 1 Content 0.1

On the same lines portability is to be assessed,
since other parameters apart from modularity are
not incorporable at architectural design stage.

7. For coupling or any other parameter if multiple
answers are received we take the average of the
ratings.

8. We can take another parameter in consideration
termed as “availability” is the probability that
system will be available in operational state. Here,
we mean to take availability directly in terms of
ease of repairing or in general maintainability. It is
proportional to reliability so, again as per the
relationship between McCall’s quality factors and
metrics[2] the metrics for maintainability are taken
for the same purpose for availability/ease of
repairing, again as it is seen that maintainability
depends on modularity and complexity
(simplicity). Good cohesion helps to reduce mean
time to repair (MTTR) by helping fault diagnosis.
This makes the system available for operations. So,
availability will be treated the same way flexibility
is, Rating = sqrt(MOD*(10-CMPX) or Rating =
sqrt(M1*(10-CMPX)); if required information to
calculate MOD is not available at architecture
design stage.

9. So, the final list of quality parameters for CM tool
architectural design comparison is: Flexibility,
testability, portability, availability, simplicity,
traceability for correctness and communication,
and interoperability

10. Based on Table 1, entries for every architecture, for
each of their components, an assessment of the five
parameters degree of cohesion, coupling, fan-out,
complexity and module size is done, and
corresponding ratings, like, M1, M2, M3, MF1 and
MF2 are determined with the help of Table 1.
Number of components = n; For each component
compute following:
CMPX_n = MF1*MF2 ; SMP_n =1-CMPX_n;
MOD_n = M1*M2*M3 ; COM_n =
Sqrt(MOD_n*(10-CMPX_n) ;
Here, M1,M2,M3, MF1 and MF2 referrers to a
particular component. An after calculating the
CMPX, SMP, MOD, and COM for all individual
components of any architecture, their averages can
be taken.

11. The quality parameters can be computed as per the
following formulas:

 Flexibility=Testability=Availability=Average(COM)
Traceability=Interoperability= Portability = Average(MOD)
Simplicity = Average(SMP)

Method No. 2: This method remains same as method 1.
Only the difference is in processing the results for any
special purpose component present in any of the
architectures for that three options are suggested below.
The final results of method 1 can be used directly for
any architecture if no special purpose component is
available for any of the quality attribute support.

Option 1
1. The COM_n and/or MOD_n rating of the relevant

special purposed component (Cn) is to be
incremented by 1 and then do the computations.

2. In case there are more than one special
components for a single quality parameter, COM
or MOD for both the components will be increased
by 1. Along with this if one special purpose
component supports more than one quality
parameter then its rating should be increase for
both the parameters in terms of MOD and/or COM
as the case may be.

Option 2
1. If there is a component which is dedicated for any

one quality parameter. It will receive weight-age of
80%, rest of the COMs or MODs related to rest of
the components will collectively get a weight-age
of 20% (Parato principle: 80% of output are caused
by 20% of components, and rest 80% of
components cause 20% of the output).

2. If there are two components C3 and C5,
contributing towards one quality parameter, the
weight-age of 80% shall be divided between the
two preferably equal. Unless there is a strong
reason given.

3. If one component supports more than one quality
parameter then in both the cases and will get a
weight-age of 80% in both the cases.

Option 3: Now, we can specify any special adjustment
to be done on the rating for a particular component
DEDICATED FOR SOME specific quality parameter,
after it has been populated as per the formulas given.
This special adjustment could be increasing the existing
rating by 25% or any other amount, due to the presence
of a special component for a particular quality

J. Computer Sci., 2 (1): 07-12, 2006

 10

Table 2: Quality Parameters for Architectures

Quality Parameter 2nd
Generation
CM tool
(either of the
methods)

CM services
Model
(either of the
methods)

Proposed
architecture
(method#1)

Proposed
architecture
(Method#2,
option 1)

Proposed
architecture
(Method#2,
option 2)

Proposed
Architecture
 (Method#2, option 3)

Flexibility 5.77 6.32 7.3 7.44 8.66 10
Testability 5.77 6.32 7.3 7.3 7.3 7.3
Portability 6.24 4.65 7.8 7.8 7.8 7.8
Availability/
Ease of repair

5.77 6.32 7.3 7.3 7.3 7.3

Simplicity 5.34 8.6 6.88 6.88 6.88 6.88
Traceability 6.24 4.65 7.8 7.8 7.8 7.8
Interoperability 6.24 4.65 7.8 7.98 8.04 10

parameter. Also, you need to give this component
weight-age of 80% and spread rest 20% to rest of the
components just the way option 2 has been processed.

RESULTS

 On applying these methods on three different
architectures of configuration management tools
following results were obtained (Table 2). Brief
descriptions of the architectures are given here:

Architecture 1: 2nd generation CM tools’
architecture: It is a layered architecture, the bottom
layer is repository, the middle layer offers all
configuration management services and top layer offers
management of configuration management documents,
like, plan, policy and procedure. Each layer here is
treated as a separate component.

Architecture 2: CM services model: It is a client-
server model. All basic CM services, like, configuration
identification, change control, CM audits, and status
accounting and reporting are implemented in around
50-55 small functions (sub-modules), available on
server. Different users (role players) copy the required
services from the server in their workspace available
(private work area having the relevant files) on the
client machine.

Architecture 3: Proposed architecture: Although the
proposed architecture consists of 15 components, but
only 11 have been taken into consideration. This is due
to the fact that others are optional services[5]. The
components are listed below:

C1: Users/subcontractor (general) interaction and

relationship management

Discussion: This module will be of substantial size and
will have facility to interact with the users, like, project
manager, configuration manager, software engineer and
the customers. We can see that this module will be
doing some predictive analysis regarding, who can

request what, it will keep a good communication and
co-ordination, so the following ratings could be given.
Type of cohesion = functional, since this module is
independent of other modules
Types of coupling= no direct coupling and data
coupling
MF1 = 7, since the application type is business
analysis(prediction and co-ordination.)
MF2 = .8 since module size is above average. So,
Fan-out (Appx.)= 2, so M3=1
Modularity will be equal to MOD=M1*M2*M3 =
10*(1 +.85)/2= 9.25
and, Complexity CMPX = 7*.7=4.9 = 5(appx.),
C2: Change request and component traceability,

change dependency analysis, distributed
development feature (change set)[6,7].

C3: Artifact Access brokering/Access
permission/Repository access control:

C4: Dynamic Process Specification: CM process
Specification[8-10]

C5: Process Monitoring: Status reporting and
accounting

C6: Process Control: CM reviews and audits
C7: Component based development support

module[11,12]
C8: Deployment function Module[13,14]
C9: Rapid Application Development process Support

Module[15, 16]
C10: Interface based on event driven implicit

invocation to make CM system interoperable,
this would consist of a rule component to select
appropriate CM tool for its required feature.

C11: Configurable Data router to route the data to
appropriate tool.

Advantages
* Methods are based on most fundamental modular

properties of cohesion, coupling and fan-out. The
set of metrics used for complexity calculation is
size and the type of application, which have very
little component of subjectivity in them. So, there
is no need for taking multiple samples of ratings
from different people, this saves time and effort, so
methods are very efficient. Also, the use of

J. Computer Sci., 2 (1): 07-12, 2006

 11

fundamental properties to form the basis of the
methods, makes the methods direct and applied.

* The other metrics, which are derived, like, COM,
MOD, SMP, and CMPX are based on simple
mathematical operations. They do not involve
major statistical tools. Only sum and averages are
applied to them to take out the values of quality
parameters (flexibility, interoperability, and
others).

* In second method three options are pursued to
handle special purpose components, the last two
options are based on widely used 80, 20 rule given
by Pareto, and at the end to make comparisons the
average of all the three options used, which makes
the method very reasonable and statistically sound.

* While working out these methods the total time
required to apply both the methods, and come out
with quality parameter ratings for all the three
architectures was about 2 hours. This was with an
assumption that the complete idea of architectural
designs was available in advance to the person
applying the methods, which in any case is the
prerequisite..

Drawbacks: These methods can be used only by
people, who are knowledgeable in areas, like, software
architecture, modularization and its properties, types of
cohesions and coupling, and definitely the domains of
software configuration management or domain of the
architecture application (in general). This all is required
as we need to do a rating by recognizing the cohesion
and coupling types present in any component (module)
of the architecture. That’s why it is difficult to get
ratings form multiple people and observe the deviations
or do statistics on them.

DISCUSSIONS AND CONCLUSIONS

 Here we compare the results of the two methods,
the results comprise of quantitative rating of various
quality parameters present in three different
architectures of CM tools: “2nd generation,” CM
Services Model” and the “Proposed Architecture
Model”. As per Table 2 the value of interoperability is
significantly high in case of proposed model, this due to
the presence of special components, C10 (Interface to
other tools) and C11 (configuration data router). Same
results could be seen for flexibility of proposed model,
due to average module sizes and special component,
C11 (configuration data router). In other parameters,
like, traceability, testability, portability, the proposed
model has also done the best. As we see “CM services
Model,” is best in case of simplicity, because it is
offering discrete atomic service for each of the
requirements (mostly representing configuration
management activities). The proposed model having
average number of modules and average module size,

thus it is free from the problems of under-
modularization and over-modularization. Whereas, the

CM services model suffers from over modularization,
due to atomic module sizes and 2nd generation model
suffers from under modularization, due to large module
sizes. Big module sizes, inherently reduces the
testability due to the presence of multiple features,
which require large and complex test cases, which are
difficult to compose and apply. In case of small module
sizes, as present in “CM Services Model”, the
integration testing overheads (stubs and driver
preparation) takes the efforts to the higher side.
Although, no special attempt has been made in terms of
introduction of special components in case of
‘availability’ in proposed model, but due to better
cohesion and limited complexity the ratings are far
better in case of the proposed model. This validates the
fact that the proposed model is superior than the other
models in majority of quality parameter of its
architectural design.

REFERENCES

1. Abhay Kothari, A.K. Ramani, 2004. Architecture

for new generation configuration management
tools and its validation. J. Systems Management,
ICFAI Press, Hydrabad, India. (status: accepted for
publication).

2. Roger S. Pressman, 1997. Software Engineering: A
Practitioner’s Approach. 4th Edn., McGraw-Hill
International.

3. Estublier, J. Software Configuration Management:
A Road Map.
www.cs.ucl.ac.uk/staff/A.Finkelstein/fose/ finalestublier.
pdf

4. Andr’e Van der Hoek, Dennis Heimbigner and
Alexander L. Wolf, 1995. Does configuration
management research have a future. Department
of Computer Science, University of Colarado,
Boulder Publication.

5. Susan Dart, 1992. Configuration Management
Services. Software Engineering Institute-Carnegie
Mellon University, USA.

6. Stephen A Mackey. Change Sets Revisited and
Configuration Management of Complex
Documents. Institute of Information Technology,
National Research Council of Canada Publication.

7. Van der Hoek, A., D. Heimbigner and A.L. Wolf,
1996. A generic peer to peer repository for
distributed configuration management. Proc. 18th
Intl. Conf. Software Engineering. IEEE Computer
Society.

8. Andr’e Van der Hoek, Carzaniga Antonio, Dennis
Heimbigner and Alexander L. Wolf, 2002. A
testbed for configuration management policy
programming. IEEE Tran. Software Engineering,
28: 1.

J. Computer Sci., 2 (1): 07-12, 2006

 12

9. Jacky Eslublier, 2001. Defining and supporting
concurrent engineering policies in SCM. Proc.
SCM-10.

10. Ronald van der Lingen and A. van der Hoek, 2003.
Dissecting configuration management policies.
Proc. Eleventh Intl. Conf. Software Configuration
Management.

11. Richards S. Hall, Dennis Heimbigner, A. van der
Hoek and A.L. Wolf, 1997. An architecture for
post-development configuration management in
wide-area network. SERL, Department of
Computer Science, University of Colorado.

12. van der Hoek, A., 2001. Integrating configuration
management and software deployment. Proc.
Working Conf. Complex and Dynamic Systems
Architecture.

13. Darcy W. Weber, 2001. Requirements for an SCM
architecture to enable component based
development. Proc. SCM-10.

14. Sundararajan Sowrirajan and A. Van der Hoek,
2003. Managing the evolution of distributed and
inter-related components. Proc. Eleventh Intl.
Workshop on Software Configuration
Management.

15. Christensa B. Henerk, 2001. Tracking changes in
rapid and extreme development: A challenge to
SCM tools. Proc. SCM-10.

16. Abhay Kothari, 2005. Research Potential in
Software Configuration Management Systems and
Software Architecture: An Investigation. The
ICFAI Journal of Systems Mangement.

