
Journal of Computer Science 2 (1): 63-71, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author : Abdelkrim Zitouni, Laboratoire EµE, Faculté des Sciences de Monastir, 5019 Monastir, Tunisie
63

Communication Architecture Synthesis for Multi-bus SoC

Abdelkrim Zitouni, Sami Badrouchi and Rached Tourki

Laboratoire EµE, Faculté des Sciences de Monastir, 5019 Monastir, Tunisie

Abstract: In the systems on chip (SoC) design, the synthesis of communication architecture
constitutes the bottleneck which can affect the performances of the system. Various schemes and
protocols can be necessary, just as various topologies of interconnection. To reduce the complexity of
the communications refinement, we present in this study a model and a synthesis approach for multi-
bus communication architecture containing centralized bridge. The automation of the arbiter synthesis
step profited from a detailed attention. This stage generates a hierarchical arbiter integrating various
priority arbitration modules. The proposed approach was integrated in a toolbox based environment.

Key words: SoC, adaptation bridge, communication synthesis, arbiter synthesis

INTRODUCTION

 The systems on chip (SoC) equip more and more
systems in fields as varied as general public electronics
or communications. These systems are carried out
starting from preset blocks (IP: Intellectual Property)
that allow the reuse of the simple blocks (memory, etc)
and complexes blocks (DSP, DMA, ASIP, etc). There is
already thinking about designing reusable SoC in their
turn, comprising a reconfigurable interconnected
network and a RISC processor. The reconfiguration
technique is appropriate for a series of applications that
could be classified in the same field (image processing,
telecommunication, etc). Because of important fall of
cost realized thanks to the efforts made at the hardware
level, an additional cost is added for the software part
of these applications reaching today about 80% of the
total cost of development[1]. To reduce in a significant
way the software costs, the manufacturers of SoC
generally choose to use the hierarchical standard buses
(AMBA, STbus, etc). The objective is to be able to use
owner’s solutions, although IPs are not always
compatible. Another solution consists in using the
networks on chip (NoC) which are completely
reconfigurable and which are connected with
programmable circuits with a very important rate of
integration. The use of SoC is also justified by the great
availability of IPs components from a large number of
manufacturers such as ARM, Hitachi, MIPS, etc. These
companies propose RISC processors in the form of IP
with performances which vary according to the
application to realize. ARM preceded its principal
competitors while selling more than 400 million RISC
processors for embarked systems only for the year
2000[2].
 The establishment of a solution of communication
in a SoC is a crucial task which must take account of
the delays due to the communications. It should be
noted that these deadlines are increasingly weak taking

into account the fact that technology is more and more
accurate. The principal manufacturers of SoC propose
standard buses which are used and recognized by the
majority of the IPs. The choice of architecture of
adequate communication then poses a broad range of
problems which consist of optimizing several criteria at
the same time.
 Our objective is to develop an extensible model
and an interactive approach of synthesis of
communications architectures containing multi-bus
bridges. The basic tasks of this approach consist of the
synthesis of adapters of the communications protocols,
the synthesis of arbitration and the generation of a
parameterised multi-bus bridge.

Related works: The work undertaken by several teams,
researchers and industry, referring to the integration of
the communication within a SoC focused on the study
of the new resources for the design of the SoC. New
technologies appeared and various types of
communication are studied. These resources from now
on are among the elements influencing the
performances of the SoC. The majority of these works
concentrated on the exploration of the solutions space[3-

5] known as optimal to lead sometimes to a system
which can include more than one bus. The components
having then the most affinities at communication
regards will be placed on the same bus. The various
buses will be generally connected between them by a
set of bridges. These bridges will be given the
responsibility to make the adaptation (two by two),
according to needs for the application to realize.
 A comparison between various architectures of
SoC equipped with a guide of selection of an
architecture given according to the application to
establish was presented[6]. Liang proposes an
infrastructure of adaptive communication of a SoC
which can be reconfigured on the application level[7].
New high performance architecture for the design of the

J. Computer Sci., 2 (1) : 63-71, 2006

 64

SoC (LottryBus) was presented[8]. This architecture is
equipped with an arbiter (Lottry Manager) which
allows the assignment of the priorities to the askers
while basing itself on a law of probability which takes
account of the history of communication for each
requester performance of this technique was compared
with a set of traditional techniques of arbitration (Fixed,
TDMA, etc) for various classes of applications. The
weak point of this technique is that it does not consider
the problem of arbitration for a multi-bus system. The
Sonics Company[9] proposed a new generation of bus
Silicon Backplane using micro-networks. This
technology consists in connecting several components
through modules of interface to the micro-network. The
limit of this new generation of bus is that surface used
is more important than that used by a bus. As the
performances of micro-networks although they are
better as those of a bus are not always enough to meet
the needs for certain applications.
 The presented approaches do not allow the
exploration of the arbitration space. They generally
choose a given mechanism of arbitration or in extreme
cases leave the choice with the designer to fix the mode
of priority which adapts best to its application.
Moreover, the approaches suggested are not addressed
to the automation of the phase of generation and
synthesis of a single bridge in the case of a multi-bus
architecture. They use a structure of distributed bridges
by affecting a bridge for each couple of buses. In this
study we focused on architecture of centralized bridge.
The selection of the modules to be used for the
adaptation and the arbitration is done starting from a
parameterised communication library. This library
makes it possible to mask the communications
protocols details from the user. The bus arbiter present
inside the bridge allows to manage the communications
between two components belonging to the same bus
(internal communication) and even allow exchanges
between components belonging to different buses while
passing by the bridge (external communication). In
order to minimize the latency time, we propose a
hierarchical arbiter by associating a level of arbitration
each level of communication (internal or external). In
the other approaches, the external communication is
done in two stages. The initiator of the communication
or master takes the control of its bus and reaches the
bridge behaving then like a slave. The bridge then
formulates a request to obtain the access to the bus
connected to the slave and thus acts as a master on this
bus. The priority assignment in our approach is based
on a cost function to be minimized and can lead to a
mixed arbitration using various priority modes.

Synthesis of communication architecture for SOC:
The use of the bridges in a SoC is necessary when the
adaptation between several sub-networks
communication must be operated. This established fact

arises when the architecture of communication is
treated on a hierarchical basis in order[10]:

* To offer the necessary performances locally;
* To accentuate parallelism by using concurrent

resources of transport;
* To make defer the problems of incompatibility of

protocols of the various sets of processor/bus, on
single composing and allow as much as possible
the use of the native protocols.

 In this work we assume that we have a set of buses
and that the processors of same affinities in terms of
communication were allocated on the same buses. This
phase can be made by an approach of architectural
exploration such as[3]. The problem of synthesis can be
formulated as a problem of generation of a centralized
bridge containing structures of adaptation and levels of
arbitration. This bridge will make it possible to adapt
two resources of communication belonging to the same
bus or different buses but guaranteeing a given
bandwidth.

Bridge model: The model of the bridge proposed can
be regarded as an application specific of the adapters to
the connection of several buses supporting each one
several masters. It allows two essential tasks which are
arbitration and adaptation. To ensure a communication,
the initiator sends a request and addresses to the
component with which it wants to communicate. By a
mechanism of address decoding and priority
management inside the bridge, the target components
will be identified. If the target belongs to the same bus
with the master it will be managed by an internal level
of arbitration associated with the bus itself. If it belongs
to a bus other than that of master it will be managed by
a level of external arbitration associated with the
various buses of architecture. The data exchanged by a
master on its bus follow a protocol of exchange which
can not be supported by the bus connected to the
targeted slave. The bridge then allows the adaptation of
these two protocols.
 To uncouple the synchrony from the various buses
we call upon mechanisms of buffer memory (FIFO).
The costs and the performances relating to these
components rise from the implementations of the finite
states machines carrying out the various protocols and
managing these memories. These components must
support the bandwidths suitable for each bus adapted in
order to optimize the use of these shared resources of
communication. FIFOs being dimensioned to deal with
a small number of packets are small. As for the
adapters, when the protocols to be adapted are not more
usual, it is necessary to develop specific models to the
considered pairs of bus. These components answer a
quite precise specification: to adapt two resources of
communication supporting a given bandwidth.

J. Computer Sci., 2 (1) : 63-71, 2006

 65

If we take a system which, after study of the space of
solutions, led to the use of two different buses only,
then it will be necessary to adopt the architecture of
Fig. 1. The exchanges are done while passing by two
FIFOs (FIFO I and FIFO O) allow the management of
the transfers between buses with different speeds.
 In addition to the units of adaptation, arbitration
levels, address decoder and FIFOs, the bridge includes
a control unit of communication and a set of
multiplexers. Figure 2 presents the model which will be
used to control the communication in the case of three
buses and to define the dataflow direction according to
whether the operation is a reading or a writing. This
task is assured by the control unit. This unit must
command at the same time the adequate modules of
adaptation for the selected operation.

Bus 1 Bus 2

C1 C2 C3 C4

M1 M2

Fifo I

Fifo O

Arbitration

Adaptation

Control

Bridge

Fig. 1: Structure of a bridge for a system with two buses

Fifo O

Fifo I

Control unit
CU[4 : 0]

Bus1

Bus2

Bus3

Mux /Dem

Mux /Dem

Mux /Dem

 Mux/Dem

Fig. 2: Control of data path in the case of three buses

Adapter’s synthesis: Our approach consists in
realizing, starting from the non-coherent interfaces,
models of adapters for each couple of bus on the level
of width, control signals and speed. The synthesis
method is based on models of interfaces for buses
which are stored in a library envisaged to this end. This
library contains various models of bus with the
necessary modes which are sometimes specific for
them.
 The design of an adaptation module starts with the
study of the temporal specifications of the protocols for

each couple of bus. These specifications contain the
main part of information which will lead to validate the
model to be conceived with knowing the relations of
causality as well as the temporal constraints between
the different signals. The next step consists in
extracting the respective finite states machines (FSM)
of these buses for the chosen mode, from the temporal
specifications. The finite states machines approach is
used for modelling sequential protocols. For a complex
protocol which can be the seat of several states which
are active simultaneously, the adapted model is the
extended finite states machines or EFSM[11]. By
amalgamation of the two FSM corresponding to the two
incompatible protocols then we generate the FSM of the
adapter. The technique of amalgamation of the FSM
was presented[12]. Finally, the FSM of the adapter will
be transformed into a VHDL description on RTL level
so that it can be synthesized by the commercial tools.
 Figure 3a shows result of simulation of the
adaptation between the PCI/AMBA adapter in read
mode. Figure 3b shows result of simulation of the PI-
BUS/AMBA adapter in write mode. The signals
master_size and master_items are combined to maintain
the signal initially called LOCK in the AMBA interface
model and this as long as the Count signal did not reach
zero value, to be compatible with the sending of the
burst type supported by these two models of bus.

(a)

(b)
Fig. 3: Simulation results of (a): PCI/AMBA buses in

read mode and (b): PI-BUS/AMBA buses in
write mode

 The addressing of the components, IP blocks or
memories present within architecture is done by an
address bus. The selection of a component present on a
bus is done while placing an address included in a quite
precise range, which was affected to it at first. Each
component will have a range of addresses by which one
will be able to address it.

FIFO dimensioning: The data path is primarily made
of FIFOs. This mechanism allows the adaptation of

J. Computer Sci., 2 (1) : 63-71, 2006

 66

buses having different periods of transfers, different
widths buses or both at the same time. For example, for
a bus of 16 bits which communicates with another of 8
bits width, the transfer will be done in two times (two
bytes).
 The buses used can produce data in burst mode.
The data storage in an intermediate buffer can appear a
better solution than to make function the whole of the
system at the frequency of the slowest bus. The data
can thus be transferred by using a FIFO with two
possibilities of protocols (blocking or non-blocking).
The blocking protocol uses the signals Full and Empty
for synchronization. The non-blocking protocol does
not use any signal to announce the current state of the
FIFO. Such a protocol is used when the specifications
of the consumer and the producer guarantee that none
of both can overload the other.
 The width in bits and the depth in words of the
FIFO must be dimensioned for a minimal loss of
data[13]. In order to reduce the number of transfers for a
communication between the two buses, the width of the
queue bwQ is given by: bwQ = max [bwbus1, bwbus2]
with bwbus1 and bwbus2 respectively represent the
width of bus1 and bus2. The depth of the queue Qn
must be given in a manner to minimize its size by the
formula: Qn = max (0, Qn-1 + (Pn – Cn)) where Pn and
Cn represent the quantity of data respectively produced
and consumed at moment n.

Bridge operating mode: The activation of the various
modules present in the adapter is controlled by the
couple arbiter/decoder of addresses. When the adapter
is not requested, it is in the Idle state (Free), it does not
activate any of the modules. It waits then for Reset
signal or a request for exchange coming from one of the
applicants, the target of the communication is identified
by the address variable Dest and the state passes then in
a state where the applicant and the target are both
activated. The control unit of the bridge communicates
with the modules of the adapter via two lines of
acknowledge at 4-phases (Req, Ack). Once selected, a
module awaits an event on the Req line and carries out
the control of communication. Data are transferred via
FIFOs. These FIFOs are controlled, at the wished
moment, by the control signals. After having finished
the control of communication, the selected module
activates the Ack line. As long as they are not selected,
the other modules put the Ack line in high impedance in
order to protect this line from a possible conflict.
Having received the response via the Ack line, the
control unit de-asserts the Req line and waits until the
Ack line is de-asserted, so that it de-asserts the function
in course of operation. Finally, the control unit waits
until the Grant lines are de-asserted. Indeed, the control
unit will be activated only when it sees an event on one
of the Grant lines generated by the arbiter indicating
that a master gained the access to system bus. The
decision to select a block or another is done by the

C1

C5

Bus1

Example of h(i,j) calculation:

C11 ���� Bus1
of transactions n(11,1) = 10
T(11,1) = 4
D(11,1) = 8
Protdelay(11,1) = 4
K1(11) = K2(11)
h(11,1) = 0.275

C2

C3

C4

Bus2

C7

C12

C6

C8

C9

C10

C11 0.275

C8 C3 C6 C10 C4 C1 C2 C5 C7 C9 C11

Bus1 Bus2

Bridge

C12

(a)

(b)

Fig. 4: (b) CG associated to the hypothetic system

presented in (a)

function of control following the address transmitted to
the bus by the Master who gained the access. When an
address is not defined in the model of the decoder of
addresses, an Illegal_Address signal is positioned and
could be used for a treatment of error. For any other
value of address there is positioning CS to 1
corresponding to the specific range of the addressed
module.
 During the activation of the Read burst block or
Write burst block, a signal Mask-Reqs is sent by the
Master of bus to the module of arbitration so that it can
answer no applicant of bus during all the duration of the
transfer. This signal will be de-asserted as soon as the
transfer in progress is finished and the bus was put in
high impedance.

ARBITER SYNTHESIS

 The need for an effective arbitration is one of the
most important constraints in the communication
synthesis for SoC. It is necessary to synthesize arbiters
who allow as well as possible to manage the requests
for access to the various buses in order to optimize the
latency times between two successive accesses. We
presented a technique which allows the assignment of
the priorities to the askers, in a manner which
minimizes the latency time between two successive
occupations of the bus[14]. This time represents wasted
average time so that a component gains the access to
the bus. The orders of the priorities are assigned while
being based on a cost function, combination of two
metric, to minimize.

J. Computer Sci., 2 (1) : 63-71, 2006

 67

 Algorithm Priority Assignment

{ /* Internal communication*/

For each system bus busj Do {

read user set parameters /* K1(j), K2(j) */

For each component Ci which is allocated to busj Do {

read the metrics associated with Ci /* faccess(j,i), Ftrans(j,i)*/

Internal_H_List(j,i) = K1(j)×faccess(j,i) + K2(j)×Ftrans(j,i) }

ASSIGN_PRIORITY(Internal_H_List(j), Internal_Priority_List(j))

GENERATE_ARBITER_BUSj(Internal_Priority_List(j), Internal_VHDL_Description) }

/* External communication*/

For both bus1 and bus2 Do {

read user set parameters /* K1(1), K2(1), K1(2), K2(2)*/

For each component Ci of system components Do {

If Ci is allocated to the bus1 Then {

read the metrics associated with Ci relatively to bus2 /* faccess(2,i), Ftrans(2,i)*/

External_H_List(i) = K1(2)×faccess(2,i) + K2(2)×Ftrans(2,i) }

Elsif Ci is allocated to the bus2 Then {

read the metrics associated with Ci relatively to bus1 /* faccess(1,i), Ftrans(1,i)*/

External_H_List(i) = K1(1)×faccess(1,i) + K2(1)×Ftrans(1,i) }}

ASSIGN_PRIORITY(External_H_List, External_Priority_List)

GENERATE_ARBITER_BUS_1_2(External_Priority_List, External_VHDL_Description) }

GENERATE_MULTIBUS_ARBITER(INTERNAL_VHDL_Description, External_VHDL_Description, Multibus__VHDL_Description)}

Fig. 5: Algorithm of arbitration synthesis

 The first metric is based on the shared frequency of
access of the requester to the bus. The second
metric is based on the size of the data to transfer by a
requester through the bus during all the lifetime of
the system. The limitation of this technique lies
in the fact that we treated the case of only one bus
by supposing that the Masters allocated with this last
have different sets of priorities. This assumption
enabled us to generate only an arbiter in fixed priority
mode.
 In this work we propose the extension of this
technique in the case of a SoC by taking account of the
internal communications within the same bus as well as
of the external communications between two
components belonging to different buses. Another
extension relates to the generalization of the modes of
the priorities is also made. Indeed, a requester can have
more priority to reach a bus than another and at the
same time less priority to reach another bus. A set of
askers can have as the same set of priorities to reach a
bus or another, but to profit from a priority different for
another group of askers, etc. The arbiter to be
developed must be hierarchical, integrating various
modes of arbitration which are configurable according
to each bus.

Algorithm of arbitration synthesis: The proposed
algorithm (Fig. 5) in the case of two buses starts while
having a library of arbitration which gathers the most
used mechanisms (Fixed, Round-Robin, Daisy-Chain,
TDMA, First Came First Granted, etc). The second
parameter is a Communication Graph (CG) which
brings various information’s necessary for the
communication of each component with each bus.
 The basic task of this algorithm consists in the
generation of an RTL description of a hierarchical
arbiter to be integrated in the bridge. The assignment of
the sets of priorities is based on a generalized
performance index. The richness of the library also
makes it possible to the user to choose a mode of well
defined priority without taking account of the cost
function.
 A CG is a direct graph made of nodes and arcs. A
node is associated with each component and an arc (Ci,
Busj) is directed from the component to the bus. This
arc utilizes the parameters of communication between
component Ci and the busj. These parameters are used
to calculate the cost function H(I, J) = K1(J) ×
faccess(I, J) + K2(J) × Ftrans(I, J). The metric faccess(I,
J) = 1/T(I, J) represents the access frequency of
component Ci to the busj. (T(I, J) represents the interval

J. Computer Sci., 2 (1) : 63-71, 2006

 68

of time which separates two successive accesses).
Metric Ftrans(I, J) = (1/N(I, J)) × ftrans(I, J) takes
account of the size of the data to transfer. In this
expression, N(I, J) and ftrans(I, J) respectively represent
the number of transfers of the data D(I, J) by
component Ci through the busj and the frequency of a
transfer (ftrans (I, J) = 1/TempProt (I, J)). TempProt (I,
J) represents the total time employed during only one
transfer. The two parameters K1(J) and K2(J)
representing the weights of the function are fixed by the
designer in order to privilege one of the two metric ones
for the busj. For each bus, the highest priority is
assigned with the component which have the greatest
value of the function H(I, J). The components which
have the same value of the function H(I, J) have the
same set of priorities. The Fig. 4b, shows an example of
a communication graph for the hypothetical architecture
of the Fig. 4a.
 In the case of the internal communication, the
algorithm carries out the stage of assignment of priority
for each busj and arranges the values in a list
(Internal_H_List(j)). The ASSIGN_PRIORITY
procedure schedules this list in an order ascending and
generates a list of priority (Internal_Priority_List(j)).
After having fixed the sets of priorities, another
procedure GENERATE_ARBITER_BUSj) will be
activated in order to generate a synthesisable VHDL
description of the arbiter for each bus
(INTERNAL_VHDL_Description).
 In the case of the external communication, the
algorithm carries out the stage of assignment of priority
for the various buses and arranges the values in a list
(External_H_List). Assignment of the sets of priorities
and the generation of VHDL description
(External_VHDL_Description) are realized by the same
procedures used in the internal communication.
 The instantiation of the various modules of
arbitration is carried out by the
GENERATE_MULTIBUS_ARBITER procedure. The
output of this procedure is a VHDL description
Multibus_VHDL_Description which will be integrated
in the communication bridge. The details of VHDL
descriptions of different sub-modules from arbitration
as well as the technique of RTL synthesis are
presented[12]. The method of instantiation in the case of
system of Fig. 4a is presented as follows.

Instantiation method of the arbitration modules: In
the case of a multi-bus system, two possibilities of
communication are possible for a given initiator. Either
that the target is on the same bus with the initiator, or
on a different bus. In the first case (internal
communication), it is the module of arbitration
associated with the bus in question which is given the
responsibility to manage the priorities of the various
components on this same bus. What improves the
performances of the system since some of the transfers
will be done concurrently. The arbiter who includes the

modules of arbitration associated with each bus is
called internal level of arbitration. As for the second
case (external communication), it is the external level
of arbitration which will manage the communication by
checking the site of the component emplacement. In the
suggested example (SoC with two buses), we suppose
that the assignments cost functions are ordered by the
arbitration synthesis algorithm like presented in Fig. 6.

C8 C3 C6 C10 C4 C1 C2 C5 C7 C9 C11

Bus1 Bus2

Bridge

h7
1

h7
2

h 1
1

h1
2

h2
1

h 2
2

h5
1

h5
2

h12
1

h12
2 h8

1

h8
2

h3
1

h 3
2

h6
1

h6
2

h10
1

h10
2

h4
1

h4
2

h 9
1

h9
2

h11
1

h11
2

C12

Fig. 6: Scheduling of the sets of priorities in the case of

an example of SoC with two buses

R (3) F(2)

R 7
1 R 2

1 R 1
1 R 12

1 R 5
1

G 12
1 G 5

1 G 7
1 G 2

1 G 1
1

F_int(2)

A R B _1

Fig. 7: Arbitration modules for internal communication

with bus1

 For the components allocated with the bus1, let us

suppose that (h7
1 = h1

1 = h2
1) > h5

1 > h12
1 ; where hi

1
represents the cost function associated with component
Ci. From this assignment we notice that the applicants
(1, 2, 7) have the same set of priorities to access bus1.
A module of arbitration (R(3) in Fig. 7) in round-robin
priority mode or TDMA mode with identical temporal
window must be designed. Indeed these modes are
generally reserved to the applicants of equal priorities.
Each applicant associated with this module must have a
set of priorities higher than the component 5 which has
a priority higher than component 12. Therefore,

J. Computer Sci., 2 (1) : 63-71, 2006

 69

applicants 5 and 12 are grouped together and will be
used in fixed priority mode for two applicants (F(2) in
Fig. 7). Indeed, this mode is generally reserved to the
applicants of different priorities. As long as applicants
1, 2 and 7 have a set of priorities which is higher than
that of applicants 5 and 12, each applicant of the
module F(2) is only served if there is no request
deposited with the module R(3). This is assured by the
fixed priority arbiter with two requesters (F_int(2) in
Fig. 7). In this figure, Ri

1 and Gi
1 respectively represent

the signal of request for bus deposited by component Ci
to the arbiter and the signal of acknowledge sent by this
arbiter to component Ci.
 For the components allocated with the bus2, we

have h10
2 > (h3

2 = h6
2) > (h4

2 = h9
2 = h11

2) > h8
2 . The

same procedure as in the case of the communication
through the bus1 is to be followed for the development
of the module of arbitration. We notice that we cannot
group the applicants which have different sets of
priorities but non consecutive in the same module at
fixed priority (e.g. applicants 10 and 8). The two
modules of arbitration corresponding to bus 1 and 2
constitute the internal level of arbitration and can be
activated simultaneously in the case of an internal
communication.
 In the case of an external communication, the
transfer of the data and control is ensured through the
bridge. To communicate with an external bus, a given
component must gain the access to its local bus and the
external bus. Indeed, we can encounter the case where a
component allocated with the bus1 wants to
communicate with a component allocated with the bus2
and at the same time another component allocated to
the bus2 wants to communicate with another
component allocated to bus1. What we call cross
communication. Thus the components allocated with
the bus1 and the bus2 must be managed by the same
level of arbitration like it was envisaged by the
algorithm of arbitration. In the suggested example, let

us suppose for example that (h7
2 = h4

1 = h9
1 = h11

1) >

(h1
2 = h2

2 = h5
2) > (h3

1 = h6
1 = h8

1 = h10
1 = h12

2). It would be
necessary to follow the same steps as in the case of the
internal communication to generate the modules of
arbitration corresponding at the external level of
arbitration.
 For the instantiation of the various levels of
arbitration, we suppose that the priority to reach an
internal bus is higher than the priority giving access to
an external bus. This is obvious as long as the
applicants who frequently communicate are allocated
within same buses[4]. For this reason, the external level
of arbitration will not be activated that if there is no
request deposited at the internal level of arbitration.
This is done by the same principle as in the case of
instantiation of sub-modules of a given module of the
internal level of arbitration. The modules of the internal

level of arbitration are not instantiated as long as they
can function in a concurrent way.
 The generated arbiter is hierarchical. The modules
of arbitration (internal and external) constitute the state
machines and represent the first level of hierarchy. Sub-
modules of arbitration of each machine constitute the
macro states and represent the second level of
hierarchy. The states of each macro-state constitute the
states on RTL level and represent the lowest level of the
hierarchy.

AUTOMATION OF THE BRIDGE
GENERATION TASK

 The proposed approach consists of the use of
primitives making it possible successively to generate
the elements of a bridge of communication, to arrive at
a realization. This approach was integrated in a toolbox
based environment[14]. Being given that the elementary
units are modelled on RTL level, the environment
allows the generation of a synthesisable description by
the existing tools. This environment can be used with
other tools for performance analysis, partitioning,
allocation, architectural synthesis, etc. For a designer,
the availability of an environment of the toolbox type
with a set of primitives of communication synthesis
enables him to concentrate only on fixing the
parameters related to its application.
 The extension which one brought to the
environment interests in the management of the library
and the synthesis of the bridge of adaptation. The
management of the library is based on graphic
concepts. The synthesis of the bridge is done by
successive stages allowing the generation and the
instantiation of the various modules until obtaining a
synthesisable description. Each module of the library is
independent and has in addition to its specification,
other information such as the types of data, the generic
parameters, its name, its interface, etc. The types of
data are those of the internal elements to description,
including the inputs and outputs of the component. The
generic parameters are those quoted in the interface.
This last includes the list of the generic internal
parameters, the inputs/outputs of the component and
their nature (in, out, in/out). The generation of a module
of adaptation is carried out according to criteria such as
the sizes of bus, the nature of the modes of
communication, etc. These parameters also constitute
an essential part of the library. The parameters related
to each protocol are put in a file which will be
accessible only by the manager in order to generate the
required module of adaptation. The Fig. 8b presents the
interface which allows the fixing of the choice of the
selected bus like these parameters. The use of the chart
of a protocol in the developed environment allows the
re-use of the protocols for several projects and
improves the manner of exploitation of a module of
adaptation in a new project. This makes it possible to

J. Computer Sci., 2 (1) : 63-71, 2006

 70

Fig. 8: User interfaces: (a) synthesis of bridge and (b)

management of the library

the designer to handle graphic symbols to carry out the
bridge of communication. The selected component
appears with its symbol, which makes it possible to
position it on the sheet of edition. Once the component
placed, it can be adapted and connected to the other
components. The types of relations and generic
parameters (width of a bus, depth of a FIFO, etc) are
read and integrated in the description of the bridge.
Each element being a repertory and management is
carried out by handling of files. The Fig. 8a presents the
user interface which makes it possible to choose the
buses to be adapted and the mode of transfer to create
the adapter. The right-hand side zone will accommodate
the various components in their graphic form, of
architecture and thus will be able to connect them the
ones to the others until drawing up the final diagram.

CONCLUSION

 In the proposed approach we studied and
developed a model and a toolbox based environment of
communication bridge synthesis. This bridge includes a
set of elementary modules of adaptations, a hierarchical
arbiter, an addresses decoder and a data path consisting
of FIFOs and of multiplexers/demultiplexers.

The various problems concerning the dimensioning of
FIFOs for the adaptation in width and frequency and
the minimization of the latency time while being based
on a cost function were studied. This study enabled us
to generate a hierarchical arbiter allowing various
alternatives of arbitration.
 The model of architecture preached by our work
seems to be a happy medium between multi-bus
architectures and the NOC. Indeed, thanks to a
preliminary phase of exploration, once multi-bus
architecture is defined, we adopted a step to adapt
interfaces of the buses brought into play. Those
carrying the components sharing the most affinities.
The advantage of such a step is that one benefits from
the small overall dimensions which one finds in the
architectures built around a bus and speed of the
exchanges specific to architectures containing NOC.
Another advantage of this approach is the possibility of
having simultaneous exchanges between components
present on the same bus what will be able appreciably
to improve the performances of the target system.
Owing to the fact that each bus has its level of
arbitration in the bridge, the communications between
components present on the same bus can be organized
in a completely independent way, except if resources
are awaited to continue a transaction on the other bus.
 Our work could be fully exploited in the high level
design of the communication in the SoC. It will be
necessary for that to take care of the design of other
models of adapters and interfaces which will come to
enrich those already carried out. Other work of
communication architectures synthesis containing a
higher number of buses is much more delicate to treat
with our approach. It is then necessary to have recourse
to the NOC as solution for this problem and thus to
develop the corresponding models of communication.

REFERENCES

1. Auguin, M., L. Capella, F. Cuesta and E. Gesset,

2001. CODEF: A System Level Exploration Tool.
ICASSP, Salt Lake City.

2. Auguin, M., 2004. Conception de Systèmes sur
Puce : Nécessité d’Approches Globales Face à la
Concentration des Difficultés. 8ème Symposium en
Architecture, Sympa8 Hammamet, pp : 291-298.

3. Poujet, J., 2002. Test des Systèmes sur Puce:
Ordonnancement et Exploration de l’Espace des
Solutions Architecturales. Ph.D. Thesis, Université
de Montpellier II : Sciences et Techniques du
Languedoc.

4. Lahiri, K., A. Raghunathan and S. Dey, 1999. Fast
Performance Analysis of Bus-Based System on
Chip Communication Architectures. ICCAD, pp:
566-573.

J. Computer Sci., 2 (1) : 63-71, 2006

 71

5. Lahiri, K., A. Raghunathan, S. Dey and G.
Lakshminaraya, 2000. Communication architecture
tuners: A methodology for the design of high
performance communication architectures for
system on chips. Proc. 37th Design Automation
Conference (DAC), Los Angeles.

6. Ryu, K., E. Shin and V.J. Mooney, 2001. A
comparison of five different multiprocessor SoC
bus architectures. Euromicro Symposium on
Digital Systems Designs, Poland, pp: 202-209.

7. Liang, J., S. Swaminathan and R. Tessier, 2000. A
SoC: A scalable, single-chip communication
architecture. Intl. Conf. Parallel Architecture and
Compilation Techniques, Philadelphia USA, pp:
37-46.

8. Lahiri, K., A. Raghunathan and G. Lakshminaraya,
2001. LOTTERYBUS: A New High-Performance
Communication Architecture for System on Chip
designs. Proc. DAC, Las Vegas, Nevada, USA.

9. http://www.sonicscorp.com
10. Nicolescu, E.G., 2002. Spécification et Validation

des Systèmes Hétérogènes Embarqués. Ph.D.
Thesis, INPG, Grenoble, France.

11. Harel, D. et al., 1990. Statemate: A working
environment for the development of complex
reactive systems. IEEE Trans. Software
Engineering, 16 : 403-413.

12. Zitouni, A., 2001. Synthèse de Communication
pour les Systèmes Distribués dans le Cadre du Co-
Design. Ph.D. Thesis Faculty of Sciences of
Monastir, Tunisie.

13. Shin, D. and D. Gajski, 2002. Queue Generation
Algorithm for Interface Synthesis. Tech. Rep.
CECS-02-12. University of California, Irvine,
USA.

14. Zitouni, A., M. Abid, K. Torki and R. Tourki,
2002. Communication synthesis techniques for
multiprocessor systems. Int. J. Electron., 89: 55-76.

