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Abstract: A testable design with a universal test set for single stuck-at zero and stuck-at one faults of 
Reed-Muller canonical form of Exclusive-OR sum of product logic expressions is proposed. The test 
circuit detects almost all the single stuck-at faults and needs only simple modifications for variations in 
the circuit under test. The number of test vectors is also quite small compared with the classical 
method. The factor of un-identifiability is discussed and a new quantification parameter for the fault 
diagnosis has also been introduced. Results of Matlab simulations for a few logic functions are 
included.  
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INTRODUCTION 
 
 Any arbitrary binary logic function can be 
expressed as exclusive-or sum of product Reed-Muller 
canonical (ESOP RMC) form which results in minimal 
product terms as can be seen from Table 1[1]. The SOP 
is the conventional sum of product form while the other 
forms are variations of Reed-Muller canonical (RMC) 
expressions. The PPRM is the positive-polarity RMC 
form, which does not allow any complemented variable 
to occur in the expression. For example, x1 ⊕ x2x3 ⊕ 
x4x5x6 is a PPRM expression, while x1’ ⊕ x2x3 is not. 
The FPRM allows negation of any variable, but 
throughout the expression the variable should appear 
only in the same form, either complemented or 
uncomplemented. Thus, x1’ ⊕ x2x3 ⊕ x1’x4 is a 
FPRM expression since x1 is appearing as only 
complemented variable, whereas the expression x1 ⊕ 
x2x3 ⊕ x1’x4 is not FPRM as x1 is present in 
uncomplemented form in the first term and in 
complemented form in the third term. GRM is the 
abbreviation for Generalized Reed-Muller form. In this 
structure, a variable is free to appear as complemented 
or uncomplemented, but should should not result in 
same PPRM terms more than once. For instance, x1 ⊕ 
x2x3 ⊕ x2’x3’ is not a GRM since the term x2’x3’ 
results in x2x3 when converted into PPRM, which is 
already present as the second term. The Exclusive-Or 
Sum of Product (ESOP) form, on the other hand, does 
not impose any of the restrictions mentioned above and, 
in fact, is the most general form of RMC expressions. 
Such an expression is of the form f = a0 ⊕ a1x1* ⊕ a2x2* 

….. ⊕ anxn* ⊕ an+1x1*x2* ⊕ ….. ⊕ a2n-1x1*x2*…xn*, 
where  xn*  can  be  xn or its negation and an is either 0 
or 1. The main advantage of such a form, apart from 
minimal number of product terms, is that it enables a 
simple method of diagnosis[2-4]. They also provide a 
more efficient realization than conventional AND-OR 
functions in many applications such as linear circuits, 
arithmetic circuits and telecom networks[5]. Further, a 
more compact PLA implementation based on AND-
EXOR form is achievable compared with the AND-OR 
circuits[6]. The basic disadvantage of slow speed and 
greater chip area of exclusive-or based implementations 
has become less prominent, with the abundant 
availability of FPGA’s since the last decade[7]. A Reed-
Muller canonical form of CMOS implementation can 
be easily tested for stuck-open faults with a universal 
test set[8]. Mixed polarity Reed-Muller expressions have 
also been useful in classification of Boolean 
functions[11]. In spite of the slow speed and larger chip 
area of RMC implementations compared to other 
others, some of the RMC forms require only a lesser 
area and also have been effectively used in the FPGA 
based modules of Xilinx, Actel[9].  
 
Table 1: Number of product terms of some arithmetic functions in 

different forms 
Function SOP PPRM FPRM GRM ESOP 
adr4 75 34 34 34 31 
log8 123 253 193 105 96 
nrm4 120 216 185 96 69 
ndm8 76 56 56 31 31 
rot8 57 225 118 51 35 
sym9 84 210 173 126 51 
wgt8 255 107 107 107 58 
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Literature survey: A classical method of generating 
test patterns for very large and complex logic functions 
is Linear Feedback Shift Register (LFSR) based 
pseudo-exhaustive or pseudo-random type[1]. However, 
this does not work well with ESOP form as shown by 
Drechsler et al.[10].A PPRM network for detection of 
stuck-at faults with a universal test of size n+4, n being 
the number of data inputs, was proposed by Reddy[2]. 
Though quite good for self-testing, the method is 
economical only for PPRM form, which obviously has 
more number of product terms than the other forms in 
most cases. Multiple stuck-at fault detection for ESOP 
circuits was carried out by Pradhan[11]. However since 
the cardinality is 2n+6+ �nCe, e= 0 to j, the order of 
ESOP expression, the test set is not universal and also 
is too large to be practical for large input functions. 
Stuck-at and bridging faults with a universal test set for 
PPRM has also been reported[12]. Multiple fault 
detecting GRM realizations was propounded by 
Sasao[4]. It was shown that 2n+s+3 test vectors, where s 
is the number of product terms in the logic function are 
required for single stuck-at fault detections in GRM 
circuit while 2n+s vectors are required for detection of 
and/or bridging faults in GRM/ESOP circuits[13]. Here 
too, the test set is not universal as it depends on s, the 
number of product terms of the function. Kalay et al.[1] 
described an ESOP implementation with a universal 
test set of size n+6 for single faults. A robust and 
universal sequence has been proposed for stuck-open 
type of faults in GRM/ESOP cmos transistor 
implementations[14]. Zhongliang[15] demonstrated that 
the single stuck-at fault detection can be achieved with 
only n+5 test vectors. Apart from a small modification 
in his circuit, two methods, each with minor 
modifications in his scheme, are proposed in this paper 
and results of matlab simulations for a few specific 
functions comparing the detectability of the faults have 
been included. Further, the concept of 
indistiguishability index has also been introduced and 
compared for the illustrative functions.  
  
Network structure: The network structure of the 
proposed scheme is similar to that proposed by 
Zhongliang[15] and is shown in Fig.1. It comprises 
literal-complementing xor block, an AND block, an xor 
function tree block, which implements the required 
logic function as also two additional outputs o1 and o2 
obtained through a separate AND and an OR gate. The 
actual data inputs to the system are x1, x2, …. xn. 
Additionally, the scheme requires four control inputs c0 
to c3. The literal-complementing block produces the 

complements of the literals used in the function. Only 
those literals appearing in complemented form require 
an xor gate in this block. The literals of each product 
term are combined through an AND gate and hence the 
number of AND gates required is the same as the 
number of product terms in the logic function. Further, 
each of the AND gates of this block may have an 
additional input from one of the control lines depending 
on the number of gates used in the xor tree block 
producing the final function f. For a function requiring 
seven xor gates as shown in Fig. 2, the eight AND gates 
connected to the eight input lines of the xor tree will 
receive additional control lines respectively from c3, c1, 
c1, c2, c1, c2, c2 and c3 respectively. All the product 
terms are the passed on to the function xor tree block, 
which generates the required logic function f. Finally, 
all the data and control inputs are applied to a separate 
AND gate and an OR gate, producing auxiliary outputs 
o1 and o2, to aid in the detection of faults which cannot 
be differentiated by the main function output f alone. 
 

 
 

 
Fig. 1: Generalized network structure 

 
 

 
 

Fig. 2: An ex-or tree 
 

Test vectors: Zhongliang[15] proposed a test matrix for 
the detection of single stuck-at faults. Each of its rows 
is an n+4 long vector, n being the number of data 
inputs. The first four columns of the matrix represent 
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the control inputs c0 to c3 while the remaining n 
columns that of the data inputs x1 to xn. The first test  
 

 
Fig. 3: Circuit for f = x1 ⊕ x2x3 ⊕ x2’x3’ 

 
vector is an all-zero vector. The second vector has only 
c0 and c1 as zero, while in the third vector only c0 and c2 
are zero valued. The next vector consists of all 1’s 
except for c0. The next n vectors are made up of 
‘walking zero vectors’. Finally the last vector is an all-
zero one except for the first element. The test matrix is 
the same for any logic function in Reed-Muller ESOP 
form provided that the number of data inputs is the 
same. 
 

PROPOSED MODIFICATIONS AND 
SIMULATION RESULTS 

  
 Instead of the second and third vectors with 
‘walking zero vectors’ (or ‘weezee vectors’ to be short) 
fixed in columns c1 and c2, two modifications are now 
proposed: In one, which I prefer to call as ‘AC weezee’ 
method, all the control inputs participate in the ‘zero 
walk’. The second method, which may be called as 
‘Alternative Vector Method’ suggests c2 and c3 for 
‘weezee’ instead of c1 and c2. The network structures 
and the test matrices for the reference method[15] as well 
as the now proposed modifications were simulated in 
matlab. The single stuck-at faults of type s-a-0 and s-a-
1, at each of the data and control inputs, the literal-
complementing xor gate outputs, the AND block 
outputs as also the function xor tree gate outputs were 
simulated by redefining the corresponding variable to 
zero or one. The test vectors were applied as the values 
of the simulated logic variables and the resulting 
outputs f, o1 and o2, each as a vector of n+5 elements 
(for the reference method and Alternative Vector 
method) or n+6 elements (for AC weezee method) were 
then converted to the equivalent decimal values and 
tabulated for convenience and easy comparison. The 
simulation results are as follows: 
 
Example1: (n=3) f = x1 ⊕ x2x3 ⊕ x2’x3’  

f=    Output of the function xor tree block  
o1= Output of the separate AND gate 
o2= Output of the separate OR gate 
 
Reference method[15]  
 
No fault => { f, o1, o2 }= { 118, 112, 127 }  
 
Single stuck-at fault at one of control inputs c0 to c3, or 
data inputs x1 to x3:  
Total number of possible faults: 7 x2= 14 
 
 
Table 2: Decimal equivalents of the outputs for s-a-0 fault at each 

of input and control inputs for the reference method 
 c0 c1 c2 c3 x1 x2 x3 
f 118 118 120 14 32 86 86 
o1 112 112 112 112 0 0 0 
o2 126 127 127 127 127 127 127 
 
Table 3: Decimal equivalents of the outputs for s-a-1 fault at each 

of input and control inputs for the reference method 
 c0 c1 c2 c3 x1 x2 x3 
f 46 118 119 118 126 118 118 
O1 0 112 112 112 20 116 114 
o2 255 127 127 127 255 255 255 

 
Single stuck-at fault at one of intermediate gate outputs: 
 
zl1, zl2: Outputs of literal-complementing xor 

gates; zl1 equivalent to the complement x2’ 
and zl2 for x3’ given in the function. 

za1, za2, za3: Outputs of the AND block gates; za1 for 
the first product term x1c2, za2 for the 
second term x2x3c3 and za3 for the last 
term x2’x3’c2 

zx1, zx2: Outputs of the function xor tree gates; zx1 

with za1 and za2 as inputs, while zx2 (=f) 
with zx1 and za3 as inputs producing the 
final output. 

Total number of possible faults: (2+3+2) x 2 = 14 
 
Table 4: Decimal equivalents of the outputs for s-a-0 fault at each 

of gate outputs for the reference method 
 zl1  zl2  za1  za2  za3  zx1  zx2 (=f) 
f 46 46 32 14 46 88 0 
o1 0 0 112 112 112 112 112 
o2 127 127 127 127 127 127 127 

 
Table 5: Decimal equivalents of the outputs for s-a-1 fault at each 

of gate outputs for the reference method 
 zl1  zl2  za1  za2  za3  zx1  zx2 (=f) 
f 114 116 223 241 209 167 255 
o1 112 112 112 112 112 112 112 
o2 255 255 127 127 127 127 127 

 
Comments: 
* Gross Total of possible single s-a-0 / s-a-1 faults:  
 14 + 14 = 28. 
* Identical outputs for 'No fault' , sa0 / sa1 @ c1and  
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  sa1 @ c3     { f= 118, o1= 112 and o2= 127}  
� 3 / 28 = 10.71% completely unidentifiable  
* Same outputs for the following faults:  
  sa0 @ x2 / x3  {f, o1, o2}= {86, 0, 127 }  
  sa0 @ zl1 / zl2  {f, o1, o2}= {46, 0, 127 } 
  sa0 @ c3 / za2  {f, o1, o2}= {14, 112, 127 } 
� 6 / 28 = 21.43 % indistinguishable 
 
Proposed method: (Alternative vector method)  
 
No fault => { f, o1, o2 }= { 86, 0, 127 }  
 
Single stuck-at fault at one of control inputs c0 to c3, or data 
inputs x1 to x3: Total number of faults: 7 x2= 14 
 
 

Table 6: Decimal equivalents of the outputs for s-a-0 fault at each 

of input and control inputs for the proposed method 
 c0 c1 c2 c3 x1 x2 x3 
f 86 86 88 14 96 54 54 
o1 0 0 0 0 0 0 0 
o2 126 127 127 127 127 127 127 
 
 
Table 7: Decimal equivalents of the outputs for s-a-1 fault at each 

of input and control inputs for the proposed method 
 
 c0 c1 c2 c3 x1 x2 x3 
f 110 86 87 118 94 86 86 
o1 16 0 0 0 0 0 0 
o2 255 255 255 255 255 255 255 
 

Single stuck-at fault at one of intermediate gate outputs: Total 
number of possible faults: (2+3+2) x 2 = 14 
 
Table 8: Decimal equivalents of the outputs for s-a-0 fault at each 

of gate outputs for the proposed method 
 
 zl1  zl2  za1  za2  za3  zx1  zx2 =f 
f 110 110 96 14 110 56 0 
o1 0 0 0 0 0 0 0 
o2 127 127 127 127 127 127 127 
 

Table 9: Decimal equivalents of the outputs for s-a-1 fault at each 

of gate outputs for the proposed method 
 zl1 zl2 za1 za2 za3 zx1 zx2 (=f) 
f 82 84 159 241 145 199 255 
o1 0 0 0 0 0 0 0 
o2 127 127 127 127 127 127 127 

 
Comments: 
* Gross total of possible single s-a-0 / s-a-1 faults:  
  14 + 14 = 28. 
* Identical outputs for 'no fault', sa0 @ c1  
   { f, o1, o2} = { 86, 0, 127 }  
 � 1 / 28 = 3.57 % completely unidentifiable fault 
* Same outputs for   
  sa0 @ c4/za2  (14,0,127) 
    sa0 @ x1/za1  (96,0,127) 
    sa0 @ x2/x3  (54,0,127) 
    sa1 @ c2/x2/x3  (86,0,255) 
    sa0 @ zl1/zl2/za3 (110,0,127) 
 � 12 / 28 = 42.86 % indistinguishable 

 
 
 
Table 10: Comparison of simulation results for a few logic functions 
Example No. of Data Total  Reference Proposed Methods 
No. inputs faults Method[15] --------------------------------------------------------------------------------------- 
    Reference AC weezee Alternative 
    Method Vector Vector Vector 
    %U %I %U %I %U %I %U %I 
1 3 28 10.71 21.43 3.57 46.43 3.57 42.86 3.57 42.86 
2 3 28 10.71 21.43 3.57 50 3.57 46.43 3.57 46.43 
3 3 30 7.14 20 7.14 50 7.14 42.86 7.14 42.86 
4 4 32 9.38 21.88 3.13 43.75 3.13 40.63 3.13 40.63 
5 5 38 2.63 23.68 NIL 55.26 NIL 44.74 NIL 44.74 
6 6 38 10.53 28.95 2.63 52.63 2.63 50 2.63 50 
7 7 40 7.5 35 2.5 47.5 2.5 42.5 2.5 45 
8 8 54 NIL 35.19 NIL 44.44 NIL 44.44 NIL 44.44 
9 9 52 1.92 34.62 NIL 46.15 Nil 46.15 NIL 48.08 
 
U -- Unidentifiable  I -- Indistinguishable 
Example No. 1: f= x1 ⊕ x2x3 ⊕ x2’x3’  
Example No. 2: f= x1 ⊕ x1x2x3 ⊕ x2’x3’ 
Example No. 3: f= x1’ ⊕ x1’x2’ ⊕ x2x3’ 
Example No. 4: f= x1x2x3 ⊕ x2x3x4 ⊕ x2'x3'x4' 
Example No. 5: f= x1x5 ⊕ x1x2x3 ⊕ x2x3x4 ⊕ x2'x3'x4' 
Example No. 6: f= x1x2x6’ ⊕ x2x3x4 ⊕ x3’x4’x5’ 
Example No. 7: f= x1x2x7’ ⊕ x3x4x5 ⊕ x4’x5’x6’  
Example No. 8: f= x1x2x8’ ⊕ x3x7’x6’ ⊕ x4’x5’ ⊕ x1’x2’x3’ 
Example No. 9: f= x1x2x8’ ⊕ x3x7’x6’ ⊕ x4’x5’x9 ⊕ x1’x2’x3’ 
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 A similar procedure is adopted for the reference 
method vector[15] as well as ‘AC weezee’ method, with 
proposed modified circuit. The results for the above as 
also a few additional examples are shown in Table 10. 
 

CONCLUSION 
 
 Three test set schemes for detection of single 
stuck-at faults for logic functions have been proposed 
and the simulation results show that the proposed 
schemes reduce the possibility of unidentifiable faults. 
Further an additional index, the indistiguishability of 
faults, which is different from unidentifiability has also 
been proposed and compared for the example functions. 
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