
Journal of Computer Science 2 (5): 395-400, 2006 
ISSN 1549-3636 
© 2006 Science Publications 

Corresponding Author: Turki F. Al-Somani, King Fahd University of Petroleum and Minerals, Computer Engineering 
Department, Dhahran 31261, Saudi Arabia 

395 

 
Highly Efficient Elliptic Curve Crypto-Processor with Parallel GF(2m) Field Multipliers 

 
1Turki F. Al-Somani, 2M. K. Ibrahim and 1Adnan Gutub 

1King Fahd University of Petroleum and Minerals, Computer Engineering Department 
Dhahran 31261, Saudi Arabia 

2De Montfort University, School of Engineering and Technology, Leicester LE19BH, UK 
 

Abstract: This study presents a high performance GF(2m) Elliptic Curve Crypto-processor 
architecture. The proposed architecture exploits parallelism at the projective coordinate level to 
perform parallel field multiplications. In the proposed architecture, normal basis representation is used. 
Comparisons between the Projective, Jacobian and Mixed coordinate systems using sequential and 
parallel designs are presented. Results show that parallel designs using normal basis gives better area-
time complexity (AT2) than sequential designs by 33-252% which leads to a wide range of design 
tradeoffs. The results also show that mixed coordinate system is the best in both sequential and parallel 
designs and gives the least number of multiplications levels when using 3 multipliers and the best AT2 
when using only 2 multipliers. 
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INTRODUCTION 

 
 Recently, Elliptic Curves Cryptosystems (ECC)[1,2] 
has attracted many researchers and has been included in 
many standards[3-8]. ECC is evolving as an attractive 
alternative to other public-key schemes such as RSA by 
offering the smallest key size and the highest strength 
per bit. Extensive research has been done on the 
underlying math, security strength and efficient 
implementations. Among the different fields that can 
underlie elliptic curves, prime fields GF(p) and binary 
polynomial fields GF(2m) have shown to be best suited 
for cryptographic applications. In particular, binary 
fields allow for fast computation in software as well as 
in hardware. Small key sizes and computational 
efficiency make ECC not only applicable to hosts 
processing security protocols over wired networks, but 
also to small wireless devices such as cell phones, 
PDAs and Smartcards.  
 Inversion operations, which are needed in point 
addition over Elliptic Curves are the most expensive 
operation over Finite Fields[9-12]. The approach adopted 
in the literature is to represent Elliptic Curve points in 
projective coordinate in order to replace the inversion 
operations with repetitive multiplications[9-15]. Recently, 
several ECC processors have been proposed in the 
literature[10-12,14,15] based on projective coordinate 
representation. There are many projective coordinate 
systems to choose from. In exiting architectures, the 
selection of a projective coordinate is based on the 
number of arithmetic operations, mainly 
multiplications. This is to be expected due to the 
sequential nature of these architectures where a single 
multiplier is used.  

 For high performance servers, such sequential 
architectures are too slow to meet the demand of 
increasing number of users. For such servers, high-
speed crypto processors are becoming crucial. One 
solution for meeting this requirement is to exploit the 
inherent parallelism within Elliptic curve point 
operations in projective coordinate. Recently, ECC 
processor architectures have been proposed where the 
choice of the projective coordinate system used also 
depends on its inherent parallelism[11,12]. Since 
multiplication is the most dominant operation and most 
time consuming when computing point operations in 
projective coordinate, three multipliers that can work in 
parallel are used in the architectures in[11,12]. These 
architectures give better area-time complexity (AT2) 
than the architectures that are based in a single 
multiplier. In this study we are proposing an alternative 
parallel design using normal basis representation which 
is more suitable for hardware implementations. In 
addition, the complexity and parallelism in several 
homogenous and heterogeneous projective coordinate 
are given.  
 
GF(2m) Arithmetic background: The finite GF(2m) 
field has particular importance in cryptography since it 
leads to particularly efficient hardware 
implementations. Elements of the field are represented 
in terms of a basis. Most implementations use either a 
Polynomial Basis or a Normal Basis[16]. For the 
proposed cryptoprocessor described in this study, a 
normal basis is chosen since it leads to more efficient 
hardware implementations. Normal basis is more 
suitable for hardware implementations than polynomial 
basis since operations are mainly comprised of rotation, 
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shifting and exclusive-OR operations which can be 
efficiently implemented in hardware. A normal basis of 
GF(2m) is a basis of the form  
(ß, ß2, ß4, ß8, ….. ß2^(m-1)) , where ß ∈ GF(2m) 
In a normal basis, an element A ∈ GF(2m) can be 
uniquely represented in the form 
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where ai ∈ {0, 1}.  
GF(2m) operations using normal basis are performed as 
follows: 
 
Addition and subtraction: Addition and subtraction 
are performed by a simple bit-wise exclusive-OR 
(XOR) operation. 
 
Squaring: Squaring is simply performed by a rotate left 
operation. 
 
Multiplication: ∀A, B ∈ GF(2m), where  
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the product C = A*B, is given by: 

�
−

=
== 1

0
2*

m

i i

i

cBAC β
 

then multiplication is defined in terms of a 
multiplication table �ij ∈  {0, 1} 
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 An optimal normal basis (ONB)[17] is one with the 
minimum number of terms in (2.1), or equivalently, the 
minimum possible number of nonzero �ij. This value is 
2m-1 and since it allows multiplication with minimum 
complexity, such a basis would normally lead to more 
efficient hardware implementations. 
 
Inversion: Inverse of a ∈ GF(2m), denoted as a-1, is 
defined as follows.  

1 1 mod 2maa− =  
Most inversion algorithms used are derived from 
Fermat's Little Theorem:  
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for all a � 0 in GF(2m). Itoh and Tsujii inversion 
algorithm[18], however, is one of the most efficient 
inversion algorithms that have been proposed thus far.  
 
Elliptic curves: Here we present a brief introduction to 
elliptic curves. Let GF(2m) be a finite field of 
characteristic two. A non-supersingular elliptic curve E 
over GF(2m) is defined to be the set of solutions (x, y) 
∈  GF(2m) X GF(2m) to the equation, y2 + xy = x3 + ax2 

+ b, where a and b ∈  GF(2m), b � 0, together with the 

point at infinity denoted by O. It is well known that E 
forms a commutative finite group, with O as the group 
identity, under the addition operation known as the 
tangent and chord method. Explicit rational formulas 
for the addition rule involve several arithmetic 
operations (adding, squaring, multiplication and 
inversion) in the underlying finite field. In affine 
coordinate, the elliptic group operation is given by the 
following.  
Let P = (x1, y1) ∈E; then -P = (x1, x1 + y1). For all P ∈  
E, O + P = P + O = P. If Q = (x2, y2) ∈  E and Q � -P, 
then P + Q = (x3 , y3), 
where 
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if P = Q. 
 Computing P + Q is called elliptic curve point 
addition if P � Q and is called elliptic curve point 
doubling if P = Q.  
 Scalar multiplication is the basic operation for 
ECC. Scalar multiplication in the group of points of an 
elliptic curve is the analogous of exponentiation in the 
multiplicative group of integers modulo a fixed integer 
m. Computing dP can be done with the straightforward 
double-and-add approach based on the binary 
expression of d = (dl-1,…,d0) where dl-1 is the most 
significant bit of d. However, several scalar 
multiplication methods have been proposed in the 
literature. A good survey is presented by Gordon in[19].  
 
Projective coordinate in GF(2m): The projective 
coordinate are used to eliminate the need for 
performing inversion. For elliptic curve defined over 
GF(2m), many different forms of formulas are 
found[9,20,22] for point addition and doubling. The 
projective coordinate system (Pr), so called 
homogeneous coordinate system, have the form 
(x,y)=(X/Z,Y/Z)[20], while the Jacobian coordinate 
system have the form (x,y)=(X/Z2,Y/Z3)[9]. From the 
Jacobian coordinate system, two other coordinate 
systems where proposed. These are: the Chudnovsky 
Jacobian coordinate system (Jc) representing the point 
with the quintuple (X, Y, Z, Z2, Z3) and the Modified 
Jacobian coordinate system (Jm) representing the point 
with the quadruple (X, Y, Z, aZ4). Mixed coordinate 
was proposed in[22] leading to better performance. Table 
1 demonstrates only the multiplications needed in the  
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Fig. 1: The proposed architecture 
 
 
Table 1: Multiplications within different coordinate systems 
Projective Coordinate (Pr) Jacobian Coordinate (J) 
------------------------------------------------------------------------------- --------------------------------------------------------------------------------------- 
Addition Doubling Addition Doubling  
A = X1Z2 1M A=X1Z1

 1M A = X1Z2
2 1M Z3=X1Z1

2 1M 
B = X2Z1 1M B= bZ1

4+X1
4 1M B = X2Z1

2 1M A = bZ1
2 1M 

C = A+B  C= AX1
4 1M C = A+B  B = X1+A  

D = Y1Z2 1M D=Y1Z1 1M D = Y1Z2
3 2M X3 = B4  

E = Y2Z1 1M E=X1
2+D+A  E = Y2Z1

3 2M C = Z1Y1 1M 
F = D+E  Z3=A3 1M F = D+E  D=Z3+X1

2+C  
G= C+F  X3=AB 1M G = Z1C 1M E = DX3 1M 
H= Z1Z2 1M Y3= C+BE 1M H = FX2+GY2 2M Y3 = X1

4Z3+E 1M 
I=C3+aHC2+HFG 5M   Z3 = GZ2 1M   
X3 = CI 1M   I =F+Z3    
Z3 = HC3 1M   X3= aZ3

2+IF+C3 3M   
Y3=GI+C2[FX1+CY1] 4M   Y3= IX3+HG2 2M   
Total 16M  7M  15M  5M 

 
 
Table 2: Multiplication cycles for the coordinate systems 
 Critical Path Average No. of Multiplication cycles 
 ---------------------------------------- ---------------------------------------------------------------------------------------------- 
Coordinate System Addition Doubling 1 Multiplier 2 Multipliers 3 Multipliers 4 Multipliers 
Projective Coordinate 4 2 15 8 6 4 
Jacobian Coordinate 5 2 12.5 7 5 4.5 
Mixed Coordinate 3 2 7 4 3.5 3.5 

 
 
Table 3: Multiplication cycles within mixed coordinate system 
Addition No. of Multipliers Doubling No. of Multipliers 
 --------------------------------------------  ---------------------------------------------------- 
 1 2 3 4  1 2 3 4 
t(Jm+ Jm) 16M 8M 6M 5M t(2Pr) 7M 4M 3M 2M 
t(Jm+ Jc= Jm) 15M 8M 5M 5M t(2Jc) 5M 3M 2M 2M 
t(J+ Jc= Jm) 15M 8M 6M 5M t(2J) 5M 3M 2M 2M 
t(J+ J) 15M 8M 6M 5M t(2Jm= Jc) 6M 3M 2M 2M 
t(Pr+ Pr) 16M 8M 6M 5M t(2Jm) 6M 3M 2M 2M 
t(Jc+ Jc= Jm) 15M 8M 5M 5M t(2A= Jc) 4M 2M 2M 2M 
t(Jc+ Jc) 15M 8M 6M 5M t(2Jm= J) 5M 3M 2M 2M 
t(Jc+ J= J) 14M 7M 6M 5M t(2A= Jm) 4M 2M 2M 2M 
t(Jc+ Jc= J) 14M 7M 6M 5M t(2A= J) 3M 2M 2M 2M 
t(J+ A= Jm) 12M 6M 4M 4M      
t(Jm+ A= Jm) 12M 6M 4M 4M      
t(Jc+ A= Jm) 12M 6M 4M 4M      
t(Jc+ A= Jc) 12M 6M 4M 4M      
t(J+ A= J) 11M 6M 4M 4M      
t(Jm+ A= J) 11M 6M 4M 4M      
t(A+ A= Jm) 8M 4M 3M 3M      
t(A+ A= Jc) 8M 4M 3M 3M      
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Projective and Jacobian coordinate systems since other 
field arithmetic operations requires negligible time as 
compared to multiplication. This is because of the 
nature of normal basis over GF(2m) which performs 
addition and subtraction simply by an XOR operation 
and performs squaring by a single rotation as pointed 
earlier.  
 
ECC Crypto-processor architecture: This section 
defines the basic idea and the proposed generic 
architecture of the ECC crypto-processor. Also, the 
methodology used to find the number of multipliers in 
each parallel design will be discussed.  
 
Generic ECC Crypto-processor architecture with 
multi-multipliers: The basic idea is based on the 
parallelism of projective coordinate multiplications 
proposed in[11,12]. Three multipliers were employed to 
provide parallelism to provide better AT2. 
 The work reported in[11,12] was represented in 
polynomial basis and squaring was considered to be a 
multiplication, which can be negligible in normal basis 
or when using irreducible trinomial[21]. This makes a 
big difference in the number of multiplication cycles as 
is discussed in the next section. The proposed generic 
crypto-processor architecture is based on normal basis 
and uses 2-4 multipliers, a cyclic shift register to 
perform squaring, an XOR unit for field addition and a 
register file. Only one cyclic shift register and XOR 
unit is used since both squaring and filed addition 
requires only one clock cycle and hence it can be reused 
several times while a single multiplication operation is 
computed. Each of these arithmetic units can get 
operands from the register file and store the result in the 
register file. The controller generates control signals for 
all the arithmetic units and the register file (Fig. 1). 
 
Methodology used to find the number of multipliers: 
Since multiplication is the dominant operation in 
elliptic curve point operations in projective coordinate 
and since the computation time of multiplication is 
much higher than field squaring and addition, the 
emphasis in this study is to speed up the computations 
of point operations in projective by performing more 
than one multiplication operation at any one time.  
The approach adopted in this study is: 
1. Analyzing the dataflow of point operations for each 

projective coordinate system in the following 
manner: 
� Find the critical path which has the lowest 

number of the multiplication operations. 
� Find the maximum number of multipliers that 

are needed to meet this critical path. 
2. Varying the number of multipliers from one to the 

number of multipliers specified by the critical path 
to find the following: 
� Find the best schedule of each dataflow using 

the specified number of multipliers. 
� Find the AT2 .  

The critical paths of the Projective and Jacobian 
coordinate systems are listed in Table 2 for both the 
point addition and doubling. Mixed coordinate system's 
critical path is chosen as the best critical path than can 
be reached among all other mixed coordinate systems. 
The critical path of the Projective coordinate system is 
4 and 3 for point addition and doubling respectively. 
From Table 1, we can see that the total number of 
multiplications needed with the projective coordinate 
system is 16 and 7 for point addition and doubling 
respectively. This means that using one multiplier gives 
an average of (16/2) + 7 = 15 multiplications cycles 
since, on average, we perform doubling for all the bits 
in the key and perform point addition only for half of 
the key bits.  
 Table 2 summarizes the average number of 
multiplications cycles required for point operations 
using 1, 2, 3 and 4 multipliers and Table 3 shows 
clearly the advantage of using parallel designs reducing 
the average number of multiplications cycles when 
using Mixed coordinate system. It is worth noting that 
unlike the work reported in[11,12] where polynomial 
basis is used and squaring was considered to be a 
multiplication, which can be negligible when using 
normal basis or when using irreducible trinomial[21]. 
This makes a big difference in the number of 
multiplication cycles as can be seen from Table 2 and 3 
and also has a significant impact on the utilization of 
multipliers.  

RESULTS 
 
 In Table 4, comparisons between the different 
coordinate system are shown. Four cases are covered in 
these comparisons:  
Single multiplier (Sequential), Two, multipliers 
(Parallel), Three multipliers (Parallel) as in[11,12] and 
Four multipliers (Parallel). 
 The results in Table 4 show that the parallel 
designs are always giving better AT2 than the sequential 
design by 33-252% (Table 5). This wide range of 
enhancements provides the designers with large range 
of trade-offs.  
 It is clear from Table 4 that with the Projective 
coordinate system, the enhancement in the AT2 
increases by employing more multipliers. The 
maximum number of multipliers that can be reached 
that satisfies the critical path was found to be 4 
multipliers. The enhancements using parallel designs 
with the Projective coordinate system, as shown in 
Table 5, was found to be 76%, 108% and 252% when 
using 2, 3 and 4 multipliers respectively. However, the 
Projective coordinate system was giving better AT2 
than Jacobian coordinate system when employing 4 
multipliers, while it was giving worse results by using 
less number of multipliers.  
 Only the Jacobian projective coordinate system can 
benefit from using 5 multipliers and requires an average 
of 4 multiplication cycles which is the same as what the  
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Table 4: Comparison between the different designs 
Coordinate System No. of multipliers (A) No. of Cycles for multiplications Time, nsec (T) AT2 
Projective  1 15 15.00 225.00 
 2 8 8.00 128.00 
 3 6 6.00 108.00 
 4 4 4.00 64.00 
Jacobian  1 12.5 12.50 156.25 
 2 7 7.00 98.00 
 3 5 5.00 75.00 
 4 4.5 4.50 81.00 
Mixed  1 7 7.00 49.00 
 2 4 4.00 32.00 
 3 3.5 3.50 36.75 
 4 3.5 3.50 49.00 

 
Table 5: Comparison between the different designs based on Table 4 
    Enhancement Percentage % 
   --------------------------------------------------------------------------------- 
   Number of Multipliers 
   --------------------------------------------------------------------------------- 
Coordinate System Number of Multipliers AT2 1 2 3 4 
Projective  1 4257.56 - - - - 
 2 2422.08 0.76 - - - 
 3 2043.63 1.08 0.19 - - 
 4 1211.04 2.52 1.00 0.69 - 
Jacobian  1 2956.64 - - - - 
 2 1854.41 0.59 - - - 
 3 1419.19 1.08 0.31 - 0.08 
 4 1532.72 0.93 0.21 - - 
Mixed  1 927.2 - - - - 
 2 605.52 0.53 - 0.15 0.53 
 3 695.4 0.33 - - 0.33 
 4 927.2 - - - - 

 
Projective coordinate gives with only 4 multipliers. 
Also, we can notice that using 3 multipliers, as in[11,12], 
is giving better result than using 4 multipliers with the 
Jacobian coordinate system (Table 4). This shows 
clearly that adding more multipliers does not 
necessarily increase performance as depicted in Fig. 2.  
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Fig. 2: Comparison between the different designs 
 
 However, the best results reported in Table 4 were 
found to be when using the Mixed coordinate system. It 
is clearly obvious that Mixed coordinate is giving 
always the best AT2 as compared to others. It also can 
be easily seen from Table 2 that using 4 multipliers will 
give the same multiplications cycles as when using only 
3 multipliers. From Table 4 and 5, we can see that 2 
multipliers give absolutely the best AT2 in comparison 
to all other implementations including the use of a 

single multiplier. What is a more significant 
observation from Table 4 and 5 is that using the 
proposed architecture with Mixed coordinate system is 
not only faster for parallel implementation but it also 
leads to a better AT2 (cost) than other alternatives. 
 

CONCLUSION 
 
 In this study we presented a high performance 
GF(2m) Elliptic Curve Crypto processor. Parallelism 
was exploited at the projective coordinate level using 2, 
3 and 4 multipliers to perform parallel field 
multiplications represented in optimal normal basis. 
Comparisons between the Projective, Jacobian and 
Mixed coordinate systems using sequential and parallel 
designs was also presented. The results show that using 
parallel designs in optimal normal basis gives better 
AT2 than sequential designs by almost 33-252% which 
gives the designers a wide large of design tradeoffs. 
The results also show that mixed coordinate are the best 
in both sequential and parallel designs and gives the 
least multiplications cycles using 3 multipliers and the 
best AT2 with only 2 multipliers.  
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