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Abstract: The design of complex embedded systems involves the simultaneous optimization of several 
conflicting and competing objectives. Instead of a single global optimal solution, there exist a set of 
Pareto optimal solutions. In this study we have used a multi-objective evolutionary optimization 
algorithms called non-dominated sorting genetic algorithm (NSGA), which will suit to the 
requirements of designing a complex heterogeneous embedded system. Further, the algorithm is 
rigorously tested using Video Codec as a case study.  
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INTRODUCTION 

  
 The general-purpose computers very often do not 
meet the cost, size and speed requirement for several 
applications such as control systems in automobiles and 
air-craft engines, electromechanical systems like 
elevators and robots, consumer electronic products and 
numerous home appliances. The computational speed 
of general-purpose machines is found to be quite 
inadequate for some applications such as those 
involving implementation of computation intensive 
digital signal processing (DSP) algorithms and time-
critical reactive systems. Along with the advancement 
in microelectronics to integrate several millions of 
transistors, dedicated VLSI chips are developed to fit 
into the temporal requirement of on-line and real-time 
applications. In the recent years a dramatic change in 
trend has been taking place to develop a wide variety of 
systems comprised of one or more microprocessors, 
digital signal processors /microcontroller along with 
application specific integrated circuits (ASICs) or field 
programmable gate arrays (FPGAs), analog and digital 
interfaces and software components suitably tailored for 
a given application, embedded within a larger system. 
These kinds of systems are called as embedded 
systems. Embedded systems interact with physical 
world to perform a single application or a small set of 
tasks e.g., control, protection and monitoring of 
processes, machinery, environment and equipments. It 
is a combination of hardware and software along with 
necessary interfaces and connections to 
electromechanical components, sensors and actuators 
etc. for performing the desired function. Although an 
embedded system has some software component, it is 
not itself a general-purpose computer. These systems 

are embedded usually in a larger system for some 
specific purpose other than to provide general purpose 
computing. Embedded systems are often developed 
with off-the-shelf microprocessors/digital signal 
processors (DSPs)/microcontrollers and ASICs/ FPGAs 
for minimizing the cost and development time. In these 
systems the hardware, software and associated 
components are optimized for the given application or 
given set of tasks under the prevailing operating 
condition keeping the size, cost and performance 
requirements in view. In the recent years, the design 
and development of heterogeneous embedded systems 
has gained tremendous importance and great challenges 
for its wide and diverse areas of application ranging 
from home appliances and communication to real-time 
and distributed control systems in defense/ aerospace 
missions[1,2].  
 The design of embedded systems is particularly 
driven by multiple and conflicting objectives like cost 
and reliability. Here the user is never satisfied for a 
trivial solution of both maximal cost and reliability. In 
contrast, it is more desirable if the user got a solution of 
minimal cost with high reliability. So this gives rise to a 
set of optimal solutions, instead of one optimal solution. 
Since for multiple conflicting objectives no single 
optimal solution can fulfill the user expectation, we 
need a tool for optimization. The multi-objective 
evolutionary algorithms (EA) are the best choice 
because of its population-based approach. More 
precisely, EAs maintain a population of structures that 
evolve according to rules of selection and other 
operators, which are referred to as genetic operators 
(such as recombination and mutation).  
 The objective of this study is to optimize several 
incomparable and often-competing criterions (cost, 
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power dissipation, reliability, latency etc.) involved in 
the design process of complex heterogeneous embedded 
system.  
 

DESIGN OF HETEROGENEOUS 
EMBEDDED SYSTEM 

 
 The steps involved for the design of heterogeneous 
embedded systems are as follows: 
 
* System specification 
* Software / hardware partitioning 
* Software / hardware and interface syntheses 
* Validation 
 
 The first step of the design process is a 
specification of the entire system including hardware 
and software. The hardware and software is partitioned 
by taking into consideration the desired speed, 
complexity of the system and flexibility requirements. 
The hardware, software and interface syntheses is 
carried out after hardware-software partitioning is 
completed. These three syntheses are closely and tightly 
coupled so that if there is any change in one has an 
instant effect on the other. The validation step is to be 
carried out after the syntheses step is completed. Figure 
1 represents various steps of designing a heterogeneous 
embedded system[2-6]. Here we have addressed three 
objectives such as cost, latency and power dissipation 
for designing a heterogeneous embedded system. 
 
 
    
 
 
  
  
  
  
  
 
 
 
 
Fig. 1: Flow of heterogeneous embedded system 
 

PARETO OPTIMAL SOLUTIONS FOR 
MULTIPLE DESIGN CRITERIONS 

 
 Consider the design of an embedded system with 
regard to the two conflicting objectives such as 
reliability and cost. Both these objectives are very often 
conflicting to each other and hence, difficult to 
optimize simultaneously. High reliability architectures 
substantially increase cost, while cheap architectures 
usually provide low reliability. In order to optimize the 
above conflicting objectives we have used multi-
objective algorithms. The reason for the optimality of 

many solutions is that no one can be considered to be 
better than other with respect to all other objective 
functions. These optimal solutions have a special name 
called Pareto optimal solutions following the name of 
an economist Vilfredo Pareto. He stated in 1896 a 
concept according to his name known as Pareto 
optimality.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Pareto optimal solutions 
 
 The concept is that the solution to a multiobjective 
optimization problem is normally not a single value but 
instead a set of values also called the Pareto set. Let us 
illustrate the Pareto optimal solution with the cost and 
reliability of heterogeneous embedded system 
architecture. 

In Fig. 2 the point ‘P’ represents a solution, which 
has both a minimal cost and reliability. On the other 
hand, the point ‘R’ represents a solution with high cost 
and high reliability. Considering both objectives, no 
solution is optimal. So in this case we cannot say that 
solution ‘P’ is better than ‘R’. Hence a solution of this 
type is named as Pareto optimal solution. One cannot 
sort the solutions, which are belonging to Pareto 
optimal set according to the performance matrices 
considering both objectives. 
 

OPTIMIZATION THROUGH GENETIC 
ALGORITHM 

 
 Evolutionary algorithm[7] such as GAs are 
especially suited to this type of problem as they are 
capable of sampling large and complex search spaces 
for multiple Pareto optimal solution in parallel. Let us 
see the working principle of GA. 
 Since this is a multi-objective optimization 
problem the simple GA will not work, so in order to 
avoid that we have used a multi-objective evolutionary 
algorithms (i.e. called NSGA) proposed by Srinivas and 
Deb[8]. Non–dominated GAs vary from simple GAs 
only in the way the selection operator is used. 
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The crossover and mutation operators remain as usual. 
For selection, two steps are needed. First, the 
population is ranked on the basis of an individual’s 
non-domination level and then sharing is used to assign 
fitness to each individual[9].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Structure of GA 
 
Ranking individuals based on non-domination level: 
Consider a population of size ‘n’, each having ‘m’ (> 1) 
objectives function values. The following algorithm can 
be used to find the non-dominated set of solutions: 
 
Algorithm 
 for i = 1 to n do 
 for j = 1 to n do  
   if ( j != i) then 

Compare solutions x(i) and x(j) for domination using two  
  conditions for all ‘m’ objectives. 
if for any j, x(i) is dominated by x(j), mark x(i) as dominated. 
  endif 
 endfor 
 endfor 
 Solutions, which are not marked dominated, are 
non-dominated solution. All these non-dominated 
solutions are assumed to constitute the first non-
dominated front in the population. In order to find the 
solutions belonging to the second level of non-
domination, we temporarily disregard the solutions of 
the first level of non-domination and follow the above 
procedure. The resulting non-dominated solutions are 
the solutions of the second level of non-domination. 
This procedure is continued till all solutions are 
classified into a level of non-domination. It is important 
to realize that the number of different non-domination 
levels could vary between 1 to n. 
 
Fitness assignment: The fitness assignment is 
performed in two stages. 

* Assigning same dummy fitness to all the solutions 
of a particular non-domination level. 

* Apply the sharing strategy. 
 
 Now we discuss the details of these two stages: 
 First of all, solutions in the first non-dominated 
front are assigned a fitness equal to the population size. 
This becomes the maximum fitness that any solution 
can have in any population. Based on the sharing 
strategy, if a solution has many neighboring solutions in 
the same front, its dummy fitness is reduced by a factor 
and a shared fitness is computed. The factor depends on 
the number and proximity of neighboring solutions. 
Once all solutions in the first front are assigned their 
fitness values, the smallest shared fitness value is 
determined. 
 Thereafter, the individuals in the second non-
domination level are all assigned a dummy fitness equal 
to number smaller than the smallest shared fitness of 
the previous front. This makes sure that no solution in 
the second front has a shared fitness better than that of 
any solution in the first front. This maintains a pressure 
for the solutions to lead towards the Pareto-optimal 
region. The sharing method is again used among the 
individuals of second front and shared fitness of each 
individual is found. This procedure is continued till all 
individuals are assigned a shared fitness. After the 
fitness assignment method, use a stochastic remainder 
roulette-wheel selection for selecting ‘N’ individuals. 
Thereafter apply the crossover and mutation. Shared 
fitness is calculated as follows: 
 Given a set of nk solutions in the kth non-dominated 
front each having a dummy fitness value fk, the sharing 
procedure described in[8] is performed in the following 
way for each solution i = 1,2,3, .. , nk: 
 
1 Compute a normalized Euclidean distance measure 

with another solution ‘j’ in the kth non-dominated 
front, as follows: 
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3. Increment j. If j � nk, go to step 1 and calculate 
Sh(dij). If j > nk, calculate niche count for ith 
solution as follows: 

mi = Sh(dij) 
4. Degrade the dummy fitness fk of ith solution in the 

kth non-domination front to calculate the shared 
fitness, fi’ as follows: 

fi’ = fk / mi. 
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 This procedure is continued for all i= 1,2,.. , nk and 
corresponding fi’ is found. Thereafter, the smallest 
value fk

min of all fi’ in the kth non-dominated front is 
found for further processing. The dummy fitness of the 
next non-dominated front is assigned to be fk+1 = fk

min – 
�k , �k is a small positive number. 
 The above sharing procedure requires a pre-
specified parameter share, which can be calculated as 
follows[9,10, 11]: 
�share = 0.5 / p� q, 
 Where q is the desired number of distinct Pareto-
optimal solutions.  
 

NSGA FOR VIDEO CODEC 
 
 Zitzler and Thiele’s[12] applied strength Pareto 
evolutionary algorithms to this problem proposed in 
does not converge to true Pareto-optimal solutions, 
because that method uses the fitness assignment 
procedure, which is very sensitive to concave surface. 
In order to avoid, we have used NSGA to optimize the 
conflicts between the three objectives: cost, latency and 
power consumption. As a case study, we consider the 
architecture synthesis of a video codec, based on the 
H.261 standard. The specification of the system 
including task graph, architecture graph, binding space, 
communication specifications, etc. can be found in[13]. 
Figure 4 demonstrates the simulation result. In this 
study we have used a population size of 100 
individuals. The probability of 0.56 and 0.002 is used 
for recombination and mutation operators. The 
parameters are optimized after a 50 independent runs. A 
good compromise solution could be the one represented 
by the point (350, 40, 154): low power dissipation and 
good performance at medium cost. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Simulation result 
 

CONCLUSION AND FUTURE RESEARCH 
DIRECTION 

  
 There are several open questions closely related to 
the major issues involved in heterogeneous embedded 
system design. Classically the decisions about the 
importance of the involved design criteria are made 
prior to the optimization. In this study, we have done 
optimization first then design space exploration and 
finally performed the decision. Even though the number 
of different Pareto-optimal solutions can be 
overwhelming in the presence of complex design 

spaces, the solutions obtained from our simulation 
results ensure a better distribution of individuals and 
allows multiple equivalent solutions.  
 In order to design a complex heterogeneous 
embedded system the best proposed solution is to take 
the advantage of a hierarchical approach. For instance, 
at first the sub-components can be designed and then 
combine all the sub-components to form the complete 
design. It would be of major interest to know whether 
these hierarchical approaches must be reconsidered in 
the presence of multiple conflicting optimization 
criterions. 
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