
Journal of Computer Science 2 (3): 288-291, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: A. K. Rath, Department of Computer Science and Engineering, Krupajal Engineering College,
Bhubaneswar, Orissa, India

288

Non-dominated Sorting Genetic Algorithms for Heterogeneous

Embedded System Design

1A. K. Rath and 2S. N. Dehuri
1Department of Computer Science and Engineering

Krupajal Engineering College, Bhubaneswar, Orissa, India
2Department of Information and Communication Technology,

F.M. University, Balasore, Orissa, India

Abstract: The design of complex embedded systems involves the simultaneous optimization of several
conflicting and competing objectives. Instead of a single global optimal solution, there exist a set of
Pareto optimal solutions. In this study we have used a multi-objective evolutionary optimization
algorithms called non-dominated sorting genetic algorithm (NSGA), which will suit to the
requirements of designing a complex heterogeneous embedded system. Further, the algorithm is
rigorously tested using Video Codec as a case study.

Keywords: Heterogeneous embedded system, Pareto-optimal set, genetic algorithm, NSGA

INTRODUCTION

 The general-purpose computers very often do not
meet the cost, size and speed requirement for several
applications such as control systems in automobiles and
air-craft engines, electromechanical systems like
elevators and robots, consumer electronic products and
numerous home appliances. The computational speed
of general-purpose machines is found to be quite
inadequate for some applications such as those
involving implementation of computation intensive
digital signal processing (DSP) algorithms and time-
critical reactive systems. Along with the advancement
in microelectronics to integrate several millions of
transistors, dedicated VLSI chips are developed to fit
into the temporal requirement of on-line and real-time
applications. In the recent years a dramatic change in
trend has been taking place to develop a wide variety of
systems comprised of one or more microprocessors,
digital signal processors /microcontroller along with
application specific integrated circuits (ASICs) or field
programmable gate arrays (FPGAs), analog and digital
interfaces and software components suitably tailored for
a given application, embedded within a larger system.
These kinds of systems are called as embedded
systems. Embedded systems interact with physical
world to perform a single application or a small set of
tasks e.g., control, protection and monitoring of
processes, machinery, environment and equipments. It
is a combination of hardware and software along with
necessary interfaces and connections to
electromechanical components, sensors and actuators
etc. for performing the desired function. Although an
embedded system has some software component, it is
not itself a general-purpose computer. These systems

are embedded usually in a larger system for some
specific purpose other than to provide general purpose
computing. Embedded systems are often developed
with off-the-shelf microprocessors/digital signal
processors (DSPs)/microcontrollers and ASICs/ FPGAs
for minimizing the cost and development time. In these
systems the hardware, software and associated
components are optimized for the given application or
given set of tasks under the prevailing operating
condition keeping the size, cost and performance
requirements in view. In the recent years, the design
and development of heterogeneous embedded systems
has gained tremendous importance and great challenges
for its wide and diverse areas of application ranging
from home appliances and communication to real-time
and distributed control systems in defense/ aerospace
missions[1,2].
 The design of embedded systems is particularly
driven by multiple and conflicting objectives like cost
and reliability. Here the user is never satisfied for a
trivial solution of both maximal cost and reliability. In
contrast, it is more desirable if the user got a solution of
minimal cost with high reliability. So this gives rise to a
set of optimal solutions, instead of one optimal solution.
Since for multiple conflicting objectives no single
optimal solution can fulfill the user expectation, we
need a tool for optimization. The multi-objective
evolutionary algorithms (EA) are the best choice
because of its population-based approach. More
precisely, EAs maintain a population of structures that
evolve according to rules of selection and other
operators, which are referred to as genetic operators
(such as recombination and mutation).
 The objective of this study is to optimize several
incomparable and often-competing criterions (cost,

J. Computer Sci., 2 (3):288-291, 2006

 289

power dissipation, reliability, latency etc.) involved in
the design process of complex heterogeneous embedded
system.

DESIGN OF HETEROGENEOUS
EMBEDDED SYSTEM

 The steps involved for the design of heterogeneous
embedded systems are as follows:

* System specification
* Software / hardware partitioning
* Software / hardware and interface syntheses
* Validation

 The first step of the design process is a
specification of the entire system including hardware
and software. The hardware and software is partitioned
by taking into consideration the desired speed,
complexity of the system and flexibility requirements.
The hardware, software and interface syntheses is
carried out after hardware-software partitioning is
completed. These three syntheses are closely and tightly
coupled so that if there is any change in one has an
instant effect on the other. The validation step is to be
carried out after the syntheses step is completed. Figure
1 represents various steps of designing a heterogeneous
embedded system[2-6]. Here we have addressed three
objectives such as cost, latency and power dissipation
for designing a heterogeneous embedded system.

Fig. 1: Flow of heterogeneous embedded system

PARETO OPTIMAL SOLUTIONS FOR
MULTIPLE DESIGN CRITERIONS

 Consider the design of an embedded system with
regard to the two conflicting objectives such as
reliability and cost. Both these objectives are very often
conflicting to each other and hence, difficult to
optimize simultaneously. High reliability architectures
substantially increase cost, while cheap architectures
usually provide low reliability. In order to optimize the
above conflicting objectives we have used multi-
objective algorithms. The reason for the optimality of

many solutions is that no one can be considered to be
better than other with respect to all other objective
functions. These optimal solutions have a special name
called Pareto optimal solutions following the name of
an economist Vilfredo Pareto. He stated in 1896 a
concept according to his name known as Pareto
optimality.

Fig. 2: Pareto optimal solutions

 The concept is that the solution to a multiobjective
optimization problem is normally not a single value but
instead a set of values also called the Pareto set. Let us
illustrate the Pareto optimal solution with the cost and
reliability of heterogeneous embedded system
architecture.

In Fig. 2 the point ‘P’ represents a solution, which
has both a minimal cost and reliability. On the other
hand, the point ‘R’ represents a solution with high cost
and high reliability. Considering both objectives, no
solution is optimal. So in this case we cannot say that
solution ‘P’ is better than ‘R’. Hence a solution of this
type is named as Pareto optimal solution. One cannot
sort the solutions, which are belonging to Pareto
optimal set according to the performance matrices
considering both objectives.

OPTIMIZATION THROUGH GENETIC
ALGORITHM

 Evolutionary algorithm[7] such as GAs are
especially suited to this type of problem as they are
capable of sampling large and complex search spaces
for multiple Pareto optimal solution in parallel. Let us
see the working principle of GA.
 Since this is a multi-objective optimization
problem the simple GA will not work, so in order to
avoid that we have used a multi-objective evolutionary
algorithms (i.e. called NSGA) proposed by Srinivas and
Deb[8]. Non–dominated GAs vary from simple GAs
only in the way the selection operator is used.

System specification

S/W / H/W partitioning

Syntheses

Validation

Cost

Reliability

P

Q

R

J. Computer Sci., 2 (3):288-291, 2006

 290

The crossover and mutation operators remain as usual.
For selection, two steps are needed. First, the
population is ranked on the basis of an individual’s
non-domination level and then sharing is used to assign
fitness to each individual[9].

Fig. 3: Structure of GA

Ranking individuals based on non-domination level:
Consider a population of size ‘n’, each having ‘m’ (> 1)
objectives function values. The following algorithm can
be used to find the non-dominated set of solutions:

Algorithm
 for i = 1 to n do
 for j = 1 to n do
 if (j != i) then

Compare solutions x(i) and x(j) for domination using two
 conditions for all ‘m’ objectives.
if for any j, x(i) is dominated by x(j), mark x(i) as dominated.
 endif
 endfor
 endfor
 Solutions, which are not marked dominated, are
non-dominated solution. All these non-dominated
solutions are assumed to constitute the first non-
dominated front in the population. In order to find the
solutions belonging to the second level of non-
domination, we temporarily disregard the solutions of
the first level of non-domination and follow the above
procedure. The resulting non-dominated solutions are
the solutions of the second level of non-domination.
This procedure is continued till all solutions are
classified into a level of non-domination. It is important
to realize that the number of different non-domination
levels could vary between 1 to n.

Fitness assignment: The fitness assignment is
performed in two stages.

* Assigning same dummy fitness to all the solutions
of a particular non-domination level.

* Apply the sharing strategy.

 Now we discuss the details of these two stages:
 First of all, solutions in the first non-dominated
front are assigned a fitness equal to the population size.
This becomes the maximum fitness that any solution
can have in any population. Based on the sharing
strategy, if a solution has many neighboring solutions in
the same front, its dummy fitness is reduced by a factor
and a shared fitness is computed. The factor depends on
the number and proximity of neighboring solutions.
Once all solutions in the first front are assigned their
fitness values, the smallest shared fitness value is
determined.
 Thereafter, the individuals in the second non-
domination level are all assigned a dummy fitness equal
to number smaller than the smallest shared fitness of
the previous front. This makes sure that no solution in
the second front has a shared fitness better than that of
any solution in the first front. This maintains a pressure
for the solutions to lead towards the Pareto-optimal
region. The sharing method is again used among the
individuals of second front and shared fitness of each
individual is found. This procedure is continued till all
individuals are assigned a shared fitness. After the
fitness assignment method, use a stochastic remainder
roulette-wheel selection for selecting ‘N’ individuals.
Thereafter apply the crossover and mutation. Shared
fitness is calculated as follows:
 Given a set of nk solutions in the kth non-dominated
front each having a dummy fitness value fk, the sharing
procedure described in[8] is performed in the following
way for each solution i = 1,2,3, .. , nk:

1 Compute a normalized Euclidean distance measure

with another solution ‘j’ in the kth non-dominated
front, as follows:

2() ()

() ()
1=

� �−
= � �� �−� �
�

i jP
p p

ij u l
p p p

x x
d

x x

 Where P is the number of variables in the problem.
The parameters xp

(u) and xp
(l) are the upper and lower

bounds of variable xp.
2. This distance dij is compared with a pre-specified

parameter �share and the following sharing function
value is computed:

21 (/) , ,
()

0, .

σ σ� − ≤	=

	�

ij share ij share
ij

d if d
Sh d

otherwise

3. Increment j. If j � nk, go to step 1 and calculate
Sh(dij). If j > nk, calculate niche count for ith
solution as follows:

mi = Sh(dij)
4. Degrade the dummy fitness fk of ith solution in the

kth non-domination front to calculate the shared
fitness, fi’ as follows:

fi’ = fk / mi.

No Yes

Start

Generate
initial

population

Evaluate on
objective
function

Are
optimization
criteria met?

Selectio
n

Cross
over

Mutation

Best

J. Computer Sci., 2 (3):288-291, 2006

 291

 This procedure is continued for all i= 1,2,.. , nk and
corresponding fi’ is found. Thereafter, the smallest
value fk

min of all fi’ in the kth non-dominated front is
found for further processing. The dummy fitness of the
next non-dominated front is assigned to be fk+1 = fk

min –
�k , �k is a small positive number.
 The above sharing procedure requires a pre-
specified parameter share, which can be calculated as
follows[9,10, 11]:
�share = 0.5 / p� q,
 Where q is the desired number of distinct Pareto-
optimal solutions.

NSGA FOR VIDEO CODEC

 Zitzler and Thiele’s[12] applied strength Pareto
evolutionary algorithms to this problem proposed in
does not converge to true Pareto-optimal solutions,
because that method uses the fitness assignment
procedure, which is very sensitive to concave surface.
In order to avoid, we have used NSGA to optimize the
conflicts between the three objectives: cost, latency and
power consumption. As a case study, we consider the
architecture synthesis of a video codec, based on the
H.261 standard. The specification of the system
including task graph, architecture graph, binding space,
communication specifications, etc. can be found in[13].
Figure 4 demonstrates the simulation result. In this
study we have used a population size of 100
individuals. The probability of 0.56 and 0.002 is used
for recombination and mutation operators. The
parameters are optimized after a 50 independent runs. A
good compromise solution could be the one represented
by the point (350, 40, 154): low power dissipation and
good performance at medium cost.

Fig. 4: Simulation result

CONCLUSION AND FUTURE RESEARCH
DIRECTION

 There are several open questions closely related to
the major issues involved in heterogeneous embedded
system design. Classically the decisions about the
importance of the involved design criteria are made
prior to the optimization. In this study, we have done
optimization first then design space exploration and
finally performed the decision. Even though the number
of different Pareto-optimal solutions can be
overwhelming in the presence of complex design

spaces, the solutions obtained from our simulation
results ensure a better distribution of individuals and
allows multiple equivalent solutions.
 In order to design a complex heterogeneous
embedded system the best proposed solution is to take
the advantage of a hierarchical approach. For instance,
at first the sub-components can be designed and then
combine all the sub-components to form the complete
design. It would be of major interest to know whether
these hierarchical approaches must be reconsidered in
the presence of multiple conflicting optimization
criterions.

REFERENCES

1. Koopman, P., 1996. Embedded system design

issues-The rest of the story. Proc. of the 1996 Intl.
Conf. on Computer Design, Austin.

2. Rath, A.K. and P.K. Meher, 2001. Embedded
system design: Current issues and perspectives.
Computer Sci. and Inform., 31: 8-18.

3. Rath, A.K., 2004. Core-based design of embedded
DSP system. Ph. D. Thesis, Utkal University,
Bhubaneswar.

4. Balarin, F. et al., 1997. Hardware-Software Co-
design of Embedded Systems: The Polis Approach.
Kluwer Academic Press, Boston.

5. Kalavade, A. and E.A. Lee, 1993. A hardware-
software co-design methodology for DSP
applications. IEEE Design & Test of Computers,
10: 16-28.

6. Gupta, R.K., 1995. Co-synthesis of Hardware and
Software for Digital Embedded Systems. Vol. 329,
Kluwer Academic Publishers, Boston.

7. Ghosh, A. and S.N. Dehuri, 2004. Evolutionary
algorithms for multicriterion optimization: A
survey. Intl. J. Computing and Information Sci.,
2: 1.

8. Deb, K., 1999. Multi-objective genetic algorithms:
problem difficulties and construction of test
problems. Evolutionary Computation J., 7: 205-
230.

9. Deb, K. and D.E. Goldberg, 1998. An investigation
of niche and species formation in genetic function
optimization. Proc. of the Third Intl. Conf. on
Genetic Algorithms, pp: 42-50.

10. Goldberg, D.E., 1998. Genetic algorithms for
search, optimization and machine learning.
Reading, MA: Addision-Wesley.

11. Deb, K., 2002. Multi-objective Optimization using
Evolutionary Algorithms. John Wiely & Sons, Ltd.

12. Eisenring, M., L. Thiele and E. Zitzler, 2000.
Conflicting criteria in embedded system design.
Computer Engineering and Network Laboratory,
Swiss Federal Institute of Technology Zurich,
Gloriastrasse 35, 8092 Zurich, Switzerland.

13. Blickle, T., J. Teich and L. Thiele, 1998. System-
level synthesis using evolutionary algorithms.
Design Automation for Embedded Systems, 3:
23-58.

100

0

200
300
400
500
600

1 2 3 4 5 6

Cost Latency

Power consumption

