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Abstract: A large variety of problems in digital system design, combinational optimization and 
verification can be formulated in terms of operations performed on Boolean functions. The time 
complexity of Binary Decision Diagram (BDD) representing a Boolean function is directly related to 
the path length of that BDD. In this paper we present a method to generate a BDD with minimum path 
length. The Average Path Length (APL) and Longest Path Length (LPL) of the BDD are evaluated 
and discussed. The proposed method analyses the essentiality of a given variable order based on the 
complexity of sub functions derived from variable substitution. The variable that produces minimal 
cumulative complexity for the sub-functions is given priority over other variables. The experimental 
results and comparisons using benchmark circuits show that the proposed method is an encouraging 
approach towards minimizing the evaluation time of Boolean functions, consequently minimizing the 
time complexity of BDDs. 
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INTRODUCTION 

 
 For the last two decades, BDD have gained great 
popularity in representing discrete functions.  BDD in 
general is a direct acyclic graph representation of 
Boolean functions proposed by Bryant and Akers[1,2]. 
The success of this technique has attracted many 
researchers in the area of synthesis and verification of 
digital VLSI circuits. Because of its efficiency in 
representing a variety of practical functions[3,4], BDDs 
became very popular data structures. The efficiency of 
BDDs depends mainly on its size, which is the size of 
their graph representations. This size depends 
dramatically on the variable ordering adopted to build 
the BDD[5-7]. Finding an optimal variable order is often 
worth spending considerable computational efforts 
because this implies savings for further operations on 
the constructed BDD[8]. Some functions such as adders 
and depending on the variable ordering adopted, may 
lead to an exponential BDD sizes in terms of the 
number of input variables. Finding an optimal variable 
ordering is an NP-hard problem[9]. Another critical 
parameter during the construction of BDDs is the 
maximum memory requirement, which is directly 
proportional to the number of nodes. A good variable 
ordering can lead to a smaller BDD and faster runtime, 
whereas a bad ordering can lead to an exponential 
growth in the size of the BDD and hence can exceed 
the available memory[10]. Consequently, much attention 
has been devoted to techniques dedicated to finding 
good variable ordering. In general, variable ordering 

techniques fall into two categories: Static Variable 
Ordering (SVO) algorithms[11,12] and Dynamic Variable 
Ordering (DVO) algorithms[6,13]. 
 The evaluation time is also another important 
parameter, which uses BDDs to evaluate logic 
functions. The evaluation time is proportional to the 
path length in the BDD. Therefore, minimization of the 
path length can improve the performance of the circuit 
implementing a Boolean function, which will 
eventually enhance   the performance of the final 
implementation. In general the minimization of the path 
length in Decision Diagrams (DD) is important in 
database structures, pattern recognition, logic 
simulation and software synthesis[14]. The methods 
proposed for the minimization of APL[14-16] reduces the 
average evaluation time of logic functions. Most of 
these methods are based on either heuristic variable 
ordering or dynamic variable ordering techniques. The 
minimization of APLs leads to circuits with smaller 
depth of paths from the Root to the Terminal nodes of 
the BDD. The resulting circuit will be optimized for 
speed on one hand and on the other hand the number of 
very long paths in the BDD will be reduced[17]. The 
minimization of APLs is of great importance in real 
time operating system applications[18-20]. The 
minimization of the LPL of a BDD can reduce the 
longest evaluation time, which is very important for 
Pass Transistor Logic (PTL)[21-23]. One of the main 
problems with pass transistor networks is the presence 
of long paths: the delay of a chain of n pass transistors 
is proportional to n2. Inserting buffers can reduce the 
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probability 1.00. Since all assignments to values of 
variables are equally likely, we can use the following 
equation to calculate the )( iVP  for the rest of the 
nodes: 
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Definition 7: The Longest Path Length (LPL) of a 
BDD denoted by LPL (BDD), is the Length of the 
Longest Path. 
Example: Consider the BDD graph shown in Fig. 2. In 
this example we will compute the APL and the LPL: 
The root node )( 0VP is always equal to 1.00.  
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Definition 8: In the DD of a logic function f , the 
memory size of the DD, denoted by Mem (DD), is the 
number of words needed to represent the DD in 
memory[18]. 
In a memory, each non-terminal node requires an index 
and pointers to the succeeding nodes. Since each non-
terminal node in a BDD has two pointers, the memory 
size needed to represent a BDD is given by: 
 

)()12()( BDDnodesBDDMem ×+=  (4) 
 

PROPOSED METHOD 
 
 The proposed method is a static variable ordering 
technique[26,27], which uses the input Boolean 
expression to find the variable ordering used to 
minimize the APL and LPL. This is based on a single 
level Boolean function; hence, if a Boolean function is 
multilevel, then it is converted to a single level function 
prior to applying the proposed method. MVSIS (Multi 
Valued Logic Synthesis Tool) Version 1.0 is used for 
the conversion of Boolean functions from multilevel to 
single level. The proposed method consists of selecting 
the variable based on the complexity of sub-functions 
derived by assigning logic 1 and logic 0 to that 
variable. The variable that produces sub-functions with 
minimum complexity is given priority over other 
variables. The complexity of  the  sub-functions  is  
evaluated based on  

the number of variables (NV), number of product terms 
(NPT) and the number of variable occurrences (NVO). 
Using this method we can produce the BDD graph with 
the shortest possible paths among all nodes including 
the terminal nodes, which will eventually reduce the 
path length. The complete steps of the proposed method 
are explained in the following algorithm: 
 
Step 1: Note the number of inputs (N) of the Boolean 

function with input variables nxxxx ,,,, 321  
Step 2: Set the variable counter (M) to 1 
Step 3: Substitute logic 0 for variable XM in the input 

function 
Step 4: Simplify the resulting function using 

McCluskey’s simplification method 
Step 5: Note the number of variables (NV), the 

number of product terms (NPT) and the 
number of variable occurrences (NVO) 

Step 6: Substitute logic 1 for variable XM in the input 
function and repeat steps 4 and 5 

Step 7: Note the total of NV, NPT and NVO obtained 
in steps 5 and 6 

Step 8: Repeat steps 3 to 7 for M = 2 to n 
Step 9: The variable that produces the least NV is 

selected as next variable in the order 
Step 10: If two or more variables have the same NV, 

then selection is based on the least NPT 
Step 11: If two or more variables have the same NPT, 

then selection is based on the least NVO 
Step 12: If there are still two or more variables that 

have equal NV, NPT and NVO, then the first of 
these variables is selected 

Step 13: The selected variable is then substituted for 0 
and 1 in the input function and two sub-
expressions are obtained 

Step 14: Steps 1 to 12 are repeated for the two new 
sub-expressions till we get the second variable 
of the order 

Step 15: The above steps are repeated for 2, 4, 8 ….., 
sub-expressions until we find all the variables 
of the order 

 
 For each of the iterations described above, we note 
that the number of expressions increases but the 
complexity of the expressions decreases. This decrease 
in complexity reduces the procedure to find the 
variables that come next in the variable order. The 
obtained variable order is used to build the BDD and 
compute the APL and LPL using Colorado University 
Decision Diagram (CUDD) package[28]. The following 
example illustrates the proposed algorithm. 
 
Example: Consider the Boolean 
function 31432421 xxxxxxxxF ⋅+⋅⋅+⋅⋅= , with 4 
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Table 1: The parameters for NV, NPT and NVO 
Variables  NV   NPT   NVO 
 Logic 0 Logic 1 Total Logic 0 Logic 1 Total Logic 0 Logic 1 Total 
X1 3 2 5 1 2 3 3 2 5 
X2 2 3 5 1 3 4 2 6 8 
X3 3 1 4 2 1 3 4 1 5 
X4 3 3 6 2 2 4 4 4 8  
 
Table 2: The NV, NPT and NVO for the twelve sub functions 
Variables   NV   NPT   NVO 
   Logic 0 Logic 1 Total Logic 0 Logic 1 Total Logic 0 Logic 1 Total 
X3=0   2 1  1 1  2 1 
  X1   3   2   3 
X3=1   0 0  0 0  0 0 
X3=0   0 2  0 2  0 2 
  X2   4   4   4 
X3=1   1 1  1 1  1 1 
X3=0   2 1  1 1  2 1 
  X4   5   4   5 
X3=1   1 1  1 1  1 1 
 

variables 321 ,, xxx  and 4x . Substituting logic 0 and 
logic 1 for the four variables 321 ,, xxx  and 4x  we get 
the following sub-functions: 
 

4321 0 xxxx ⋅⋅⇒=  (5) 

323432421 1 xxxxxxxxx +⇒+⋅⋅+⋅⇒=  (6) 

312 0 xxx ⋅⇒=  (7) 

3143412 1 xxxxxxx ⋅+⋅+⋅⇒=  (8) 

4221424213 0 xxxxxxxxxx ⋅+⋅⇒⋅+⋅⋅⇒= (9) 

114213 1 xxxxxx ⇒+⋅⋅⇒=  (10) 

31214 0 xxxxx ⋅+⋅⇒=  (11) 

31324 1 xxxxx ⋅+⋅⇒=  (12) 
 
 The parameters NV, NPT and NVO for the above 
six sub-functions are shown in Table 1.  
 From Table 1, variable X3 is selected as first 
variable in the order since it has the least total of NV 
compared to other variables. Two new sub-expressions 
(9) and (10) are obtained from substituting 03 =x  and 

13 =x  respectively. From expressions (9) and (10) we 
re-start the procedure to find the second variable of the 
order. Substituting logic 0 and logic 1 for the three 
variables 21, xx  and 4x  in expressions (9) and (10) 
we obtain the following sub-functions: 
 4213 0,0 xxxx ⇒==      213 1,0 xxx ⇒==  

00,1 13 ⇒== xx         11,1 13 ⇒== xx  

00,0 23 ⇒== xx        4123 1,0 xxxx +⇒==  

123 0,1 xxx ⇒==          123 1,1 xxx ⇒==  

2143 0,0 xxxx ⋅⋅⇒==   243 1,0 xxx ⇒==  

143 0,1 xxx ⇒==      143 1,1 xxx ⇒==  
 
 Table 2 indicates the values of NV, NPT and NVO 
for the twelve sub functions. From Table 2 the variable 
x1 is selected as next variable since it has the least 
number of total NV. It should be noted here that, so far 
in this example there was no need to check the 
parameters NPT and NVO, since NV was always the 
least. The first two variables are selected, hence, four 
sub-expressions are obtained from the substitution set 
(x3, x1) = (0,0), (0,1), (1,0) and (1,1). The 4 sub-
functions can be used to find the third variable of the 
order. Performing the same procedure described above 
one can find all the variables in the order. In our 
example, after going through all required steps we 
obtain the variables order 4213 ,,, xxxx . This variable 
order is used to build the BDD and find the APL and 
LPL. 
 

RESULTS 
 
 Here we present two sets of results using the 
Colorado University Decision Diagram (CUDD) 
package[28], on a Pentium 4 machine with 512 MB 
RAMs. The first set represents the results derived from 
three of the best CUDD variable ordering techniques 
(Symmetric Sifting, Swapping and Window 
Permutation) and the proposed method. The second set 
of results is a comparison between the proposed 
method and two available APL methods. All 
experiments were performed using selected ISCAS 
benchmark circuits[29,30]. In Table 3, 5 and 6, a 
comparison with CUDD methods was performed for 
the parameters APL, Mem (BDD) and LPL 
respectively. Table 4 illustrates the results of the 
comparison   with   the  latest available methods for the 
minimization of APL. In each of the Table 3-6 the first 
column shows a list of selected ISCAS benchmark 
circuits we have used to demonstrate the performance 
of the proposed method.  
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Average path length: In Table 3, columns 2, 4 and 6 
illustrate the results obtained for three CUDD variable 
reordering methods, namely the swapping, symmetric 
sifting and window permutation in terms of number of 
nodes. Columns 3, 5 and 7 show the results in terms of 
APL. The results shown in columns 8 and 9 are from 
the   implementation   of   our   proposed   method in 
terms   of   number   of   nodes   and   APL 
respectively. The minimum number of Nodes, the 
minimum APL and the number of nodes for the 
minimum APL are illustrated in columns 10, 11 and 12 
respectively. The gain factors of each method against 
the minimum APL are given in columns 13, 14, 15 and 
16. 
 The results obtained indicate the efficiency of the  
proposed method compared to other CUDD methods in 
term of APL and number of nodes. In general, the 

results obtained in column 16 indicate the effectiveness 
of the proposed method, where a minimum APL gain is 
obtained for 97% of the circuits, compared to 26, 18 
and 24% achieved by the Random Swapping method, 
the Symmetric Sift method and the Window 
Permutation method respectively. 
 Even though all the circuits equally benefit from 
the proposed algorithm, in some cases like i6, i7, X4, 
X2, alu2, pm1, 5xp1, sao2, mux, cm150a, cm162a, 
cm163a and cm151a, the reduction is such as to make a 
dramatic difference in the processing of the circuits. 
The results indicate the potential of the proposed 
method, where it managed to minimize both the APL 
and the number of nodes for 52% of ISCAS 
benchmarks, i.e. i1, X2, apex4, b9, cm42a, decod, 
misex1, misex2, pm1, 9sym, z4ml, clip, majority, 
cm138a, mux, cm150a and cm163a.  

 
 Table 3: APL Results for selected benchmark circuits 
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Table 4: Results Comparison with available method 

 
 
Table 5: Memory size requirement for selected benchmark circuits 
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Table 6: LPL results for selected benchmark circuits 

 
 
 Table 4 illustrates the benchmark results 
comparison with the previous work done in[14,16]. It can 
be inferred that the proposed method improves the APL 
in 100% of the benchmarks compared to [16], which 
uses three different algorithms, mainly bottom-up, top-
down and middle-way, with the initial heuristic variable 
ordering. The proposed method was able to achieve 
improvement in the APL for 70% of the benchmarks 
compared to[14], which uses dynamic variable ordering 
technique. Benchmarks 5xp1, f51m, Z4ml, cm85a, 
cm162a, cm163a, mux and cm150a proved to be 
gaining the maximum from the proposed method. In 
general the proposed method provides far better results 
than the method in[16] and gives more competitive 
results than the method based on dynamic ordering 
in[14]. 
 
Memory size of BDD: For each BDD the memory size 
is computed using the equation (4) and tabulated in 
Table 5. In this Table columns 2, 3 and 4 illustrate the 
memory size obtained for the same three CUDD 
reordering methods that were used before. The memory 
size needed for the BDD construction using the 
proposed method and the minimum memory size 
resulting from the use of all four methods are given in 

columns 5 and 6. The gain factors of each method 
against the minimum memory size are given in columns 
7, 8, 9 and 10.  
 It can be inferred that the proposed method 
managed to achieve the minimum memory size for 58% 
of the circuits against other reordering methods, which 
were mainly designed for the optimization of BDD 
size. 
 
Longest path length: In Table 6, columns 2, 4 and 6 
illustrate the results obtained for three CUDD variable 
reordering methods, namely the swapping, symmetric 
sifting and window permutation in terms of number of 
nodes and columns 3, 5 and 7 show the results for the 
same in terms of LPL. The results shown in columns 8 
and 9 are from the implementation of our proposed 
method in terms of the number of nodes and the LPL 
respectively. The minimum LPL size out of all the 
methods is given in column 10 and the gain factors of 
the proposed method against the three CUDD methods 
are given in columns 10 to 12. 
 The obtained results indicate the efficiency of the 
proposed method compared to other CUDD methods in 
terms of minimum LPL. In general, the obtained results 
indicate that the proposed method managed to minimize 
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the LPL for more than 90% of the benchmarks 
compared to the efficiency of 37, 27 and 63% of 
Swapping, Window Permutation and Symmetric Sift 
reordering methods respectively. On the other hand, 
when the limitations of BDD nodes are set, the 
proposed method can achieve a maximum reduction in 
both the number of nodes and the LPL of 53% of the 
BDDs compared to 10, 13 and 56% for Swapping, 
Window Permutation and Symmetric Sift respectively. 
Benchmark circuits i1, i6, i7, X2, Apex4, B9, Z4ml, 
clip, B12, mux and cm150a lead to a maximum gain 
with the proposed algorithm compared to all three 
CUDD methods. Benchmark circuits X4, cc, squar5, 
misex2 and cm151a achieve better gain than two of the 
CUDD methods and circuits alu2, decod, 5xp1, sao2, 
cm85a, cm162a and cm163a lead to equally good 
results compared to CUDD methods. 
 In general, the proposed method gives a higher 
probability of achieving the minimum path length for 
most of the medium scale IASTED benchmark circuits. 
The minimization of the APL and the LPL leads to 
circuits with a smaller depth in the paths from Root to 
Terminal nodes. On the one hand this will lead to 
optimize the circuit for speed and on the other hand 
reduce the number of very long paths. Since the path 
length is directly related to the evaluation time of logic 
design, the above results prove that the proposed 
method minimizes the evaluation time and the space 
complexity of the circuit, which will eventually 
minimize the cost of the design. 
 

CONCLUSION 
 
 A new algorithm for minimizing the evaluation 
time in BDD has been developed. The algorithm has 
been implemented using ISCAS benchmark circuits and 
the results have been compared with the three CUDD 
reordering methods and two of the available methods 
for path length minimization. Experimental results 
indicate that this algorithm is promising, yielding better 
results than more mature reordering techniques for 
most of the benchmark circuits. Even though most of 
the minimization methods use dynamic variable 
ordering technique, the above results proved that the 
static ordering techniques, too, could lead to some 
competitive results for path length minimization. It is 
also quite clear that the minimization of the evaluation 
time of BDDs can improve the performance of the 
circuit and have a strong influence on the quality of the 
final implementation. Our future work and 
developments will concentrate on investigating the 
APL and LPL minimizations for larger scale 
benchmark circuits. 
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