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Abstract: It is a well known fact that at the beginning of any project, the  software industry needs to 
know, how much will it cost to develop and what would be the time required ? . This paper examines 
the potential of using a neural network model for estimating the lines of code, once the functional 
requirements are known.  Using the International Software Benchmarking Standards Group (ISBSG) 
Repository Data (release 9)  for the experiment, this paper examines the performance of back 
propagation feed forward neural network to estimate the Source Lines of Code. Multiple training 
algorithms are used in the experiments.  Results demonstrate that the neural network models trained 
using Bayesian Regularization provide  the best results and are suitable for this purpose. 
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INTRODUCTION 

  
 The estimation of resource expenditure (example, 
effort, schedule ) is an essential software project 
management activity.  Most projects (60-80 %). 
encounter effort and schedule overrun[1-5]. 
 Software development involves a number of 
interrelated factors  which can affect development 
effort and time and it is a complex dynamic process.     
 It is a challenge to estimate the lines of code for the 
project during the early stages of project as very little is 
known about the problem. Several researchers have 
suggested various techniques to predict software effort 
namely model based (SLIM, COCOMO Checkpoint), 
Expert based ( Delphi) , Regression based etc. The 
latest of these techniques are machine learning 
techniques.  There are a number of approaches[1,2,3] to 
machine learning namely Neural Networks, Fuzzy 
Logic, Case Based Reasoning and Hybrid Systems. 
Many researchers[6-9] have explored the possibility of 
using Neural Networks for  estimating the effort. Neuro 
Fuzzy models[10] have also been explored and they are 
found to be useful in software estimation. This paper 
focuses on using a neural network to predict the lines of 
code when the function point, the FP standard used, the 
language one is going to use and the maximum team 
size is known. The ISBSG repository that is available 
for a number of projects is used to prove that neural 
networks are indeed suitable for this purpose. It also 
examines which training algorithm is best suited for the 
purpose. 
 
Artificial neural networks: Artificial neural networks 
can model complex non-linear relationships and 
approximate any measurable function.  They can be 
used as an effective tool for pattern classification  and  
 

clustering[11,12].  They  are particularly useful in 
problems  where there is a complex relationship 
between an input and output. It has been established 
that a one hidden layer feedforward network with 
(sufficient number of) sigmoidal nodes can approximate 
any continuous mapping with arbitrary precision[13-16]. 
The feed forward multi layer network is a network in 
which no loops occur in the network path. A learning 
rule is defined as a procedure for modifying the weight 
and biases of a network with the objective of 
minimizing the mismatch between the desired output 
and the obtained output from the network for any given 
input. The learning rule / network training algorithm is 
used to adjust the weights and biases of the network in 
order to move the network outputs close to the targets. 
The classical backpropagation algorithm was the first 
training algorithm developed[17].  The simplest 
implementation of backpropagation learning updates 
the network weights and biases in the direction in 
which the performance function decreases most rapidly 
- the negative of the gradient[17]  though second order 
optimization algorithms like the conjugate gradient, the 
Levenberg-Marquardt and Baysian learning algorithms 
have also been developed.  In this paper, a four input 
and one output network is used. The network uses only 
one hidden layer. The activation functions at the hidden 
layer and the output layers are the tangent - hyperbolic 
(tanh) function. The network inputs are (a) The 
function point count for projects, (b) the team size, (c) 
the level of the language used in development and (d) 
the function point standard. The block diagram of the 
network used is shown in Fig. 1. 
 Figure 1 shows a model whose inputs are function 
points, language used, FP standard and maximum team 
size.  The output (target) is lines of code. 
Neural Network model for estimating lines of code: 
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Fig. 1: Neural network model 
 

EXPERIMENT 
 
Study area and Data used: The project data used was 
that of International Software Benchmarking Standards 
Group (ISBSG) repository data (release 9). Out of the 
various fields available, the following fields were used 
as inputs. 
 
Project ID: This was used for identifying projects 
 
Functions points: The function points count for that 
particular project. 
 
F.P. standard: This field specifies which function 
point standard was used e.x. CPM 4.0 IFPUG 4, 
IFPUF4.1 etc. 
 
Language: This  defines   the   language   type   used 
for   the   project  e.g.  3GL,  4GL, Application 
Generator etc. 
 
Lines of code: The number of the source line of code 
(SLOC) produced by the project. This is not available 
for all projects.  
 Since SLOC is not available for all projects , only 
those projects were considered for the experiment 
where SLOC data was available .  This lead to a data 
set of 88 projects. 
 

MATERIALS AND METHODS 
 
 The   function   point   count,   function   point 
standard,   language   used   a  nd maximum team size 
were   used   as inputs.  Outliers   were   removed   from 
all   data sets.  The   function   point data was 
normalized by linear scaling between -1 and 1. The FP 
standard was coded as shown in table I and the 
language   used, was   coded   as  shown in Table 2. 
Since  there was only one data POINT pertaining to 5 
GL that was dropped.  All data variables are scaled in 
the range -1 to 1. 
 

Table 1: Input codes for FP Std 
FP Std. Code  
CPM 4.0  0.5 
IFPUG 4 0.25   
IFPUG 4.1 -0.25 
Backfired  -0.5 
  
Table 2: Input codes for language used 
Language used Code 
3 GL 0.25 
4 GL  0.5 
 
 The neural network used a sigmoid feed forward 
network with a single hidden layer using the neural 
network tool for of MATLAB. Seventy one exemplars 
were used for training with SLOC as the target.  The 
neurons in the hidden layer were varied from five to 
sixteen. It was found that the ensemble with fifteen 
neurons in the hidden layer yielded best results. 
 Thus there are four nodes in the input layer, fifteen  
neurons in the hidden layer and one node in the output 
layer. The MATLAB adaptation learning function 
selected for this experiment was ‘learngdm, the 
performance function used was mean square error 
(MSE). Transfer functions used were, tangent - 
hyperbolic in both the hidden and the output layers.  
The goal was kept as 0.00(though it was never 
achieved, but a goal of 10 –16 was reached which is as 
good as 0.)The no. of epochs was kept as 1000. After 
training, testing was done on the network from the data 
set of seventeen projects.  Random partioning was done 
to form three sets of training and test data. After 
training, testing was done and the output obtained were 
compared with the target values. In this case we 
obtained seventy one training cases and seventeen test 
cases in every set.  The objectives of the experiments 
were twofold: 
 
* To verify if neural networks can be used for 

prediction of SLOC counts on the basis of Function 
Points, team size, function point standard and 
language type used in development. 

* To empirically evaluate the training algorithms and 
to find which training algorithm is suitable for the 
estimation purpose. 

* The experiment was conducted using the same 
neural network but using different algorithms  as 
shown in Table  

 After performing the same experiment with 
different algorithms, the results are compared in the 
next section.   
 
Error measurements: Different error measurements 
have been used by various researchers. We have chosen 
the mean absolute Percentage Error(MAPE) MAPE is 
calculated as follows[7] 
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Table 3:  Different training algorithms 
trg. Fnc. Description 
trainb trains a network with weight and bias learning rules with batch updates. The weights and biases are 

updated at the end of an entire pass through the input data. 
Trainbfg updates weight and bias values according to the BFGS quasi-Newton method. 
Trainbr updates the weight and bias values according to Levenberg-Marquardt optimization. It minimizes a 

combination of squared errors and weights and then determines the correct combination so as to 
produce a network that generalizes well. The process is called Bayesian regularization. 

Trainc trains a network with weight and bias learning rules with incremental updates after each presentation 
of an input. Inputs are presented in cyclic order. 

train cgb  updates weight and bias values according to the conjugate gradient backpropagation with Powell-Beale 
restarts. 

train cgf  updates weight and bias values according to the conjugate gradient backpropagation with Fletcher-
Reeves updates. 

train cgp updates weight and bias values according to the conjugate gradient backpropagation with Polak-
Ribiere updates. 

train gd  updates weight and bias values according to gradient descent. 
train gda updates weight and bias values according to gradient descent with adaptive learning rate. 
train gdm   updates weight and bias values according to gradient descent with momentum. 
train gdx   updates weight and bias values according to gradient descent momentum and an adaptive learning rate. 
train lm  updates weight and bias values according to Levenberg-Marquardt optimization. 
train oss  updates weight and bias values according to the one step secant method. 
train rp   updates weight and bias values according to the resilient backpropagation algorithm (RPROP). 
train scg   updates weight and bias values according to the scaled conjugate gradient method. 
 
Table 4: Results using various training algorithms 
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Train gd 17.35 0.33 0.28 0.81 13.18 0.48 0.17 0.95 18.57 0.03 0.23 0.10 

Train gdm 20.50 0.20 0.18 0.57 14.76 0.42 0.16 0.92 22.04 -0.32 0.21 0.81 

Train  gda 17.97 0.33 0.35 0.80 15.76 0.41 0.14 0.94 19.89 0.09 0.32 0.28 

Train gdx 24.32 0.56 0.31 0.98 16.44 0.41 0.15 0.91 22.95 0.37 0.31 0.87 

Train  rp 18.42 0.46 .21 0.94 16.83 0.34 0.15 0.84 15.44 0.67 0.19 0.99 

Train  oss 34.59 0.35 0.56 0.83 17.02 0.50 0.16 0.96 34.05 0.61 0.38 0.99 

Train  scg 39.20 0.27 0.63 0.71 25.63 0.31 0.31 0.79 56.14 0.63 0.63 0.99 

Train  cgp 19.42 0.39 0.25 0.88 17.12 0.54 0.16 0.98 63.72 0.52 0.72 0.97 

Train  cgf 24.91 0.69 0.32 0.99 23.09 0.44 0.27 0.93 39.17 0.60 0.48 0.99 

Train  cgb 25.75 0.39 0.36 0.87 23.97 0.75 0.24 0.99 72.80 0.36 0.80 0.86 

Train b 20.63 0.20 0.18 0.56 12.85 0.49 0.15 0.96 23.37 -0.09 0.31 0.28 

Train bfg 30.84 0.08 0.53 0.26 33.79 0.64 0.41 0.99 50.61 0.73 0.63 0.99 

Train lm  
37.50 

 
-0.22 

 
0.46 

 
0.62 

 
89.16 

 
0.24 

 
0.93 

 
0.67 

 
63.59 

 
0.55 

 
0.75 

 
0.98 

Train br 13.93 0.71 0.14 0.99 12.94 0.60 0.13 0.99 17.08 
 
0.70 
 

0.19 0.99 
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If MAPE is small, the better is the model and the 
predictions are a good set of predictions.  
 The Correlation Coefficient (r). or correlation 
coefficient for short is a measure of the degree of linear 
relationship between two variables. The correlation 
coefficient may take on any value between plus and 
minus one 
Significance of Correlations.(sig). The significance 
level calculated for each correlation is a primary source 
of information about the reliability of the correlation 
 Standard Deviation.(std.). The standard deviation 
(this term was first used by Pearson, 1894) is a 
commonly-used measure of variation. The standard 
deviation of a population of values is computed as:  
 

= [ (xi-µ)2/N]1/2    ( 2)  
 
where: 
µ     is the population mean 
N    is the population size. 
 

RESULTS AND DISCUSSION 
 
 The results using various training algorithms are as 
shown in Table 4.    
Results demonstrate  that train br algorithm can be 
rated as the best. average  MAPE in this case is 14.65, 
average   co-relation   is   0.64   and average 
significance is 0.99 . train gd algorithm can be rated as 
the next best one with average mape as 16.36, average 
co-relation as 0.28 and average significance as 
0.62.these are followed by train rp algorithm with 
average values of MAPE, co-relation  and significance 
being 16.89, 0.49 and 0.90 respectively. The plots of 
actual SLOC and predicted SLOC for various test 
projects using the train br algorithm for three runs are 
as shown in Fig. 2- 4.  
  

 
Fig. 2: SLOC (actual and predicted ) Vs. Projects for 

RUN 1 
 

 
Fig. 3: SLOC (actual and predicted ) Vs. Projects for 

RUN 2 
 

 
Fig. 4: SLOC (actual and predicted ) Vs. Projects for 

RUN 3 
 
Future scope: The neural network model used here 
could further be extended to a neural fuzzy model being 
trained and tested for the same ISBSG data ( Release 
9). There is a possibility that this model could be a 
better model. 
 

CONCLUSION 
 
  In the present work, the possibility of use of neural 
networks for estimating lines of code for software 
project was explored.  The ISBSG Data(Realease 9) , 
was used to train and test the neural network. 
 It is concluded from experimental work the neural 
networks can be very well used for estimating the lines 
of code once the function point count is known.  Also it 
is concluded that the train br algorithm yields the best 
results. 
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