
Journal of Computer Sciences 1 (4): 505-509, 2005
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Manimala Puri, IT Department, D.Y.Patil, COE, Pune, India
505

Bayesian Regularization in a Neural Network Model

to Estimate Lines of Code Using Function Points

1K.K. Aggarwal, 1Yogesh Singh, 1Pravin Chandra and 2Manimala Puri
1GGS Indraprastha University, Delhi, India, 2IT Department, D.Y.Patil, COE, Pune, India

Abstract: It is a well known fact that at the beginning of any project, the software industry needs to
know, how much will it cost to develop and what would be the time required ? . This paper examines
the potential of using a neural network model for estimating the lines of code, once the functional
requirements are known. Using the International Software Benchmarking Standards Group (ISBSG)
Repository Data (release 9) for the experiment, this paper examines the performance of back
propagation feed forward neural network to estimate the Source Lines of Code. Multiple training
algorithms are used in the experiments. Results demonstrate that the neural network models trained
using Bayesian Regularization provide the best results and are suitable for this purpose.

Key words: Neural network, estimation, lines of code, function point

INTRODUCTION

 The estimation of resource expenditure (example,
effort, schedule) is an essential software project
management activity. Most projects (60-80 %).
encounter effort and schedule overrun[1-5].
 Software development involves a number of
interrelated factors which can affect development
effort and time and it is a complex dynamic process.
 It is a challenge to estimate the lines of code for the
project during the early stages of project as very little is
known about the problem. Several researchers have
suggested various techniques to predict software effort
namely model based (SLIM, COCOMO Checkpoint),
Expert based (Delphi) , Regression based etc. The
latest of these techniques are machine learning
techniques. There are a number of approaches[1,2,3] to
machine learning namely Neural Networks, Fuzzy
Logic, Case Based Reasoning and Hybrid Systems.
Many researchers[6-9] have explored the possibility of
using Neural Networks for estimating the effort. Neuro
Fuzzy models[10] have also been explored and they are
found to be useful in software estimation. This paper
focuses on using a neural network to predict the lines of
code when the function point, the FP standard used, the
language one is going to use and the maximum team
size is known. The ISBSG repository that is available
for a number of projects is used to prove that neural
networks are indeed suitable for this purpose. It also
examines which training algorithm is best suited for the
purpose.

Artificial neural networks: Artificial neural networks
can model complex non-linear relationships and
approximate any measurable function. They can be
used as an effective tool for pattern classification and

clustering[11,12]. They are particularly useful in
problems where there is a complex relationship
between an input and output. It has been established
that a one hidden layer feedforward network with
(sufficient number of) sigmoidal nodes can approximate
any continuous mapping with arbitrary precision[13-16].
The feed forward multi layer network is a network in
which no loops occur in the network path. A learning
rule is defined as a procedure for modifying the weight
and biases of a network with the objective of
minimizing the mismatch between the desired output
and the obtained output from the network for any given
input. The learning rule / network training algorithm is
used to adjust the weights and biases of the network in
order to move the network outputs close to the targets.
The classical backpropagation algorithm was the first
training algorithm developed[17]. The simplest
implementation of backpropagation learning updates
the network weights and biases in the direction in
which the performance function decreases most rapidly
- the negative of the gradient[17] though second order
optimization algorithms like the conjugate gradient, the
Levenberg-Marquardt and Baysian learning algorithms
have also been developed. In this paper, a four input
and one output network is used. The network uses only
one hidden layer. The activation functions at the hidden
layer and the output layers are the tangent - hyperbolic
(tanh) function. The network inputs are (a) The
function point count for projects, (b) the team size, (c)
the level of the language used in development and (d)
the function point standard. The block diagram of the
network used is shown in Fig. 1.
 Figure 1 shows a model whose inputs are function
points, language used, FP standard and maximum team
size. The output (target) is lines of code.
Neural Network model for estimating lines of code:

J. Computer Sci., 1 (4): 505-509, 2005

 506

Fig. 1: Neural network model

EXPERIMENT

Study area and Data used: The project data used was
that of International Software Benchmarking Standards
Group (ISBSG) repository data (release 9). Out of the
various fields available, the following fields were used
as inputs.

Project ID: This was used for identifying projects

Functions points: The function points count for that
particular project.

F.P. standard: This field specifies which function
point standard was used e.x. CPM 4.0 IFPUG 4,
IFPUF4.1 etc.

Language: This defines the language type used
for the project e.g. 3GL, 4GL, Application
Generator etc.

Lines of code: The number of the source line of code
(SLOC) produced by the project. This is not available
for all projects.
 Since SLOC is not available for all projects , only
those projects were considered for the experiment
where SLOC data was available . This lead to a data
set of 88 projects.

MATERIALS AND METHODS

 The function point count, function point
standard, language used a nd maximum team size
were used as inputs. Outliers were removed from
all data sets. The function point data was
normalized by linear scaling between -1 and 1. The FP
standard was coded as shown in table I and the
language used, was coded as shown in Table 2.
Since there was only one data POINT pertaining to 5
GL that was dropped. All data variables are scaled in
the range -1 to 1.

Table 1: Input codes for FP Std
FP Std. Code
CPM 4.0 0.5
IFPUG 4 0.25
IFPUG 4.1 -0.25
Backfired -0.5

Table 2: Input codes for language used
Language used Code
3 GL 0.25
4 GL 0.5

 The neural network used a sigmoid feed forward
network with a single hidden layer using the neural
network tool for of MATLAB. Seventy one exemplars
were used for training with SLOC as the target. The
neurons in the hidden layer were varied from five to
sixteen. It was found that the ensemble with fifteen
neurons in the hidden layer yielded best results.
 Thus there are four nodes in the input layer, fifteen
neurons in the hidden layer and one node in the output
layer. The MATLAB adaptation learning function
selected for this experiment was ‘learngdm, the
performance function used was mean square error
(MSE). Transfer functions used were, tangent -
hyperbolic in both the hidden and the output layers.
The goal was kept as 0.00(though it was never
achieved, but a goal of 10 –16 was reached which is as
good as 0.)The no. of epochs was kept as 1000. After
training, testing was done on the network from the data
set of seventeen projects. Random partioning was done
to form three sets of training and test data. After
training, testing was done and the output obtained were
compared with the target values. In this case we
obtained seventy one training cases and seventeen test
cases in every set. The objectives of the experiments
were twofold:

* To verify if neural networks can be used for

prediction of SLOC counts on the basis of Function
Points, team size, function point standard and
language type used in development.

* To empirically evaluate the training algorithms and
to find which training algorithm is suitable for the
estimation purpose.

* The experiment was conducted using the same
neural network but using different algorithms as
shown in Table

 After performing the same experiment with
different algorithms, the results are compared in the
next section.

Error measurements: Different error measurements
have been used by various researchers. We have chosen
the mean absolute Percentage Error(MAPE) MAPE is
calculated as follows[7]

J. Computer Sci., 1 (4): 505-509, 2005

 507

Table 3: Different training algorithms
trg. Fnc. Description
trainb trains a network with weight and bias learning rules with batch updates. The weights and biases are

updated at the end of an entire pass through the input data.
Trainbfg updates weight and bias values according to the BFGS quasi-Newton method.
Trainbr updates the weight and bias values according to Levenberg-Marquardt optimization. It minimizes a

combination of squared errors and weights and then determines the correct combination so as to
produce a network that generalizes well. The process is called Bayesian regularization.

Trainc trains a network with weight and bias learning rules with incremental updates after each presentation
of an input. Inputs are presented in cyclic order.

train cgb updates weight and bias values according to the conjugate gradient backpropagation with Powell-Beale
restarts.

train cgf updates weight and bias values according to the conjugate gradient backpropagation with Fletcher-
Reeves updates.

train cgp updates weight and bias values according to the conjugate gradient backpropagation with Polak-
Ribiere updates.

train gd updates weight and bias values according to gradient descent.
train gda updates weight and bias values according to gradient descent with adaptive learning rate.
train gdm updates weight and bias values according to gradient descent with momentum.
train gdx updates weight and bias values according to gradient descent momentum and an adaptive learning rate.
train lm updates weight and bias values according to Levenberg-Marquardt optimization.
train oss updates weight and bias values according to the one step secant method.
train rp updates weight and bias values according to the resilient backpropagation algorithm (RPROP).
train scg updates weight and bias values according to the scaled conjugate gradient method.

Table 4: Results using various training algorithms

At Run 1 Run 2 Run 3

A
lg

or
ith

m

M
A

PE

C
o-

re
la

tio
n

St
d

Si
gn

ifi
ca

nc
e

M
A

PE

C
o-

re
la

tio
n

St
d

Si
gn

ifi
ca

nc
e

M
A

PE

C
o-

re
la

tio
n

St
d

Si
gn

ifi
ca

nc
e

Train gd 17.35 0.33 0.28 0.81 13.18 0.48 0.17 0.95 18.57 0.03 0.23 0.10

Train gdm 20.50 0.20 0.18 0.57 14.76 0.42 0.16 0.92 22.04 -0.32 0.21 0.81

Train gda 17.97 0.33 0.35 0.80 15.76 0.41 0.14 0.94 19.89 0.09 0.32 0.28

Train gdx 24.32 0.56 0.31 0.98 16.44 0.41 0.15 0.91 22.95 0.37 0.31 0.87

Train rp 18.42 0.46 .21 0.94 16.83 0.34 0.15 0.84 15.44 0.67 0.19 0.99

Train oss 34.59 0.35 0.56 0.83 17.02 0.50 0.16 0.96 34.05 0.61 0.38 0.99

Train scg 39.20 0.27 0.63 0.71 25.63 0.31 0.31 0.79 56.14 0.63 0.63 0.99

Train cgp 19.42 0.39 0.25 0.88 17.12 0.54 0.16 0.98 63.72 0.52 0.72 0.97

Train cgf 24.91 0.69 0.32 0.99 23.09 0.44 0.27 0.93 39.17 0.60 0.48 0.99

Train cgb 25.75 0.39 0.36 0.87 23.97 0.75 0.24 0.99 72.80 0.36 0.80 0.86

Train b 20.63 0.20 0.18 0.56 12.85 0.49 0.15 0.96 23.37 -0.09 0.31 0.28

Train bfg 30.84 0.08 0.53 0.26 33.79 0.64 0.41 0.99 50.61 0.73 0.63 0.99

Train lm
37.50

-0.22

0.46

0.62

89.16

0.24

0.93

0.67

63.59

0.55

0.75

0.98

Train br 13.93 0.71 0.14 0.99 12.94 0.60 0.13 0.99 17.08

0.70

0.19 0.99

J. Computer Sci., 1 (4): 505-509, 2005

 508

 −

= ∑
=

=

nj

j Actual
ActualEstimateMAPE

1

÷n×100 (1)

If MAPE is small, the better is the model and the
predictions are a good set of predictions.
 The Correlation Coefficient (r). or correlation
coefficient for short is a measure of the degree of linear
relationship between two variables. The correlation
coefficient may take on any value between plus and
minus one
Significance of Correlations.(sig). The significance
level calculated for each correlation is a primary source
of information about the reliability of the correlation
 Standard Deviation.(std.). The standard deviation
(this term was first used by Pearson, 1894) is a
commonly-used measure of variation. The standard
deviation of a population of values is computed as:

= [(xi-µ)2/N]1/2 (2)

where:
µ is the population mean
N is the population size.

RESULTS AND DISCUSSION

 The results using various training algorithms are as
shown in Table 4.
Results demonstrate that train br algorithm can be
rated as the best. average MAPE in this case is 14.65,
average co-relation is 0.64 and average
significance is 0.99 . train gd algorithm can be rated as
the next best one with average mape as 16.36, average
co-relation as 0.28 and average significance as
0.62.these are followed by train rp algorithm with
average values of MAPE, co-relation and significance
being 16.89, 0.49 and 0.90 respectively. The plots of
actual SLOC and predicted SLOC for various test
projects using the train br algorithm for three runs are
as shown in Fig. 2- 4.

Fig. 2: SLOC (actual and predicted) Vs. Projects for

RUN 1

Fig. 3: SLOC (actual and predicted) Vs. Projects for

RUN 2

Fig. 4: SLOC (actual and predicted) Vs. Projects for

RUN 3

Future scope: The neural network model used here
could further be extended to a neural fuzzy model being
trained and tested for the same ISBSG data (Release
9). There is a possibility that this model could be a
better model.

CONCLUSION

 In the present work, the possibility of use of neural
networks for estimating lines of code for software
project was explored. The ISBSG Data(Realease 9) ,
was used to train and test the neural network.
 It is concluded from experimental work the neural
networks can be very well used for estimating the lines
of code once the function point count is known. Also it
is concluded that the train br algorithm yields the best
results.

REFERENCES

1. Aggarwal, K.K. and Yogesh Singh, 2001. Software

Engineering Programs, Documentation Operating
Procedure, New Age International Publishers.

J. Computer Sci., 1 (4): 505-509, 2005

 509

2. Pressman, 1997. Software Engineering. A
Practitioners Approach. McGraw Hill.

3. Sommerville, R., 1996. Software Engineering.
Addison Wesley.

4. Kjetil Molekkan and Magne Jergense, 2003. A
review of surveys on software effort estimation.
Proc. 2003 Intl. Symp. Empirical Software
Engineering.

5. Putnam, L.H., 1978. A general empirical solution
to the macro software sizing and estimation
problem. IEEE Trans. Software Engineering, 4:
345-361.

6. Dawson, C.W., 1996. A neural network approach
to software projects effort estimation. Trans.
Information and Commun. Technol.

7. Finnie, G. and G. Wittig, 1996. AI tools for
software development effort estimation. IEEE
Trans. Software Engineering, pp: 346-353.

8. Ali Idri Tagi, M. Khoshgoftaar and Alin Abran,
2002. Can neural networks be easily interpreted in
software cost estimation. IEEE Trans. Software
Engineering, pp: 1162-1167.

9. Fuzzy systems and neural networks in software
engineering project management. J. Applied Intell.,
4: 31-42.

10. Hodgkinson, A. and P. Garatt, 1999. A neuro fuzzy
cost estimator. Proc. Intl. Conf. Software Eng.
Application, pp: 401-406.

11. Haykyn, S., 2003. Neural Networks, A
Comprehensive Foundation. Prentice Hall, India.

12. Agarwal, K., Y. Singh and M. Puri, 2005.
Measurement of software understandability using
neural networks. Proc. Intl. Conf.
Multidimensional Aspects of Engineering, IEEE,
WEI Group.

13. Cybenko, G., 1989. Approximation by
superposition of a sigmoidal function. Math,
Control, Signal and Syst., 5: 233-243.

14. Funahashi, K., 1989. On the approximate
realization of continuous mappings by neural
networks. Neural Networks, 2: 183-192.

15. Barron, A.R., 1993. Universal approximation
bounds for superposition of a sigmoid function.
IEEE Trans. Inform. Theory, 39: 930-945.

16. Hornik, 1989. Stinchcombe and white, multilayer
feedforward networks are universal approximators.
Neural Networks, 2: 359-366.

17. Rumelhart et al., 1986. Learning
representations by back –propagating errors.
Nature, 323: 533-6.

