
Journal of Computer Science 1 (3): 376-380, 2005

ISSN 1549-3636

© Science Publications, 2005

376

Automatic Discovery of Association Paths in Relational Databases

Using Software Visualization

Haider Ali Ramadhan

Department of Computer Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman

Abstract: We introduce a visual framework for facilitating tasks associated with database maintenance

and re-use. The prototype system embodying the framework is presented. The system utilizes various

techniques and features of software visualization. The system supports visual displays of the database

structure along with various implicit relationships found in it such as associations and path views.

Information visualized is automatically extracted from the database schema. To assess the usefulness of

the proposed framework in helping the programmers to quickly recognize path views among relations,

an empirical evaluation was conducted. Results collected from the evaluation seem to support our

hypothesis that the time required to manually recognize path views from the database schema is

considerable and tends to increase as the depth between the relations increases. The evaluation also

showed that by using our visual framework such time is negligible and tends to be static.

Keywords: Software Re-Engineering, Databases, Software Visualization, Visual Interfaces, Empirical

Evaluation

BACKGROUND

Large relational databases are inherently complex. Their

evolution over time may increase the difficulty of

understanding them even more. Due to this evolution,

their structures may degrade over time to an extent that

the tasks involved in maintaining and re-engineering

these databases could become very costly. Therefore,

techniques that may aid the designers and engineers in

the analysis of these information systems deserve

special attention and research focus. The task of

understanding the structure and design of a relational

database system is a complex one. There are many

dimensions of complexity, three important among

which are:

* The overall structure of the database. This includes

the set of relations, their attributes and the types of

data from which the attributes may take values.

* Various links between relations. This includes the

number of associations between relations and their

implicit nature.

* Various direct and indirect paths among relations in

the database.

To help the developers get clear understanding about

the above three dimensions, we have developed a

prototype system using software visualization

framework [3, 6]. The system is able to visually display

the structure, i.e. relations and attributes, of a relational

database in a limited space. In addition, the system

visually shows the implicit relationships among

relations in terms of associations and path views. The

visualization is organized in separate views, each

dealing with one of the dimensions mentioned above.

These views include the overall view, association view,

detailed view and path view. All these views are

automatically visualized from the specifications of the

database and hence provide a general tool for

visualizing any relational database. In summary, our

aim is to use software visualization [2, 4, 8] features to

facilitate re-engineering, maintenance and analysis of

the structure and relationships found in existing

relational databases.

Software Visualization [6, 8, 9, 10, 11] refers to the task

of applying visual and graphical techniques to exhibit

the static structure and the dynamic behavior of

software systems. The main purpose of software

visualization is to provide designers, engineers,

programmers and users with visual aids to help them in

understanding and analyzing the structure and behavior

of a software. This task is achieved through abstracting

low-level textual structures, i.e. code and data, into

high-level visual representations, hence reducing the

mapping and interpretation load.

Figure 1 shows the database composition of a small firm

with 19 relations. The relations are drawn as colored

dots, where the color gives the range of the attributes in

a relation as per the criteria: relations with green color

have attributes ranging from 1 to 5, those with blue

color have attributes ranging from 6 to 10 and those

with red color have attributes greater than 11. It is worth

noting that these dots are randomly displayed in the

view. To accommodate databases with hundreds of

relations, the size of the dots is automatically reduced

and the scroll bars are introduced. Generally speaking,

J. Computer Sci., 1 (3): 376-380, 2005

 377

regardless of the size, any database can be visualized in

this manner. When a relation is pointed by the mouse in

the overall view, its description is displayed in the

relational information view, shown in the lower left

corner of Fig. 1.

This view provides the textual information of a relation

as it is described in the database specification. By

having the relations in one view and their description in

another, we can squeeze hundreds of relations to be

visualized in the overall view. This information changes

as the mouse moves to another relation in the overall

view.

The association view (shown in the upper left corner of

Fig. 1) displays the associations which exist between

relations. When a relation dot is clicked by the mouse in

the overall view, the associations for that relation are

displayed in this view.

Fig. 1: Visual Representation of a Database

Fig. 2: The Path View

Figure 1 shows that the relation EMPLOYEES is

associated to 11 other relations shown surrounding it.

The relation selected is enlarged and placed in the

center of the view. Relations associated to the selected

relation can also be expanded to show their attributes

and how these attributes are linked to attributes of the

selected relation. Figure 2 shows the path view from the

EMPLOYEE relation to all other relations in the

database. A more improved approach would be to show

paths between any two relations. However, to make the

view clear only shortest paths in this case should be

shown. It is hoped that the current implementation

would still help in recognizing how relations are linked

either directly or indirectly to form the association tree.

RELATED WORK

Traditionally, software visualization has been related to

areas such as algorithm animation [7], program

visualization [8] and computation visualization [5, 6].

In the area of program visualization, for example, visual

techniques have been reported to reduce the complexity

of low-level views of the source code and provide

higher-level models of both static and dynamic

behaviors as well as of the structural architecture of

programs. By using different visual views such as call

graphs, control flow graphs, data flow information,

program slices and memory spaces, a software engineer

can gain much clearer understanding of the program

behavior and its functionality [7]. Some recent efforts

have also managed to incorporate visualization features

in the design and development of knowledge based

systems [10].

However, when considering the importance of relational

databases, work done in relation to database

visualization does not seem to meet expectations. Here

our task is to visually represent the complex structure of

a relational database along with its behavior and various

relationships, which are normally implicit and hence

more difficult to manually detect. In other words, the

challenge involved in visualizing the structure of a

relational database is attributed to the fact that entities

to be visualized are abstract, i.e. they have no physical

form. Lack of enough visualization systems for

relational databases may be attributed to this inherent

difficulty. Recently, some work has been accomplished

on visualizing the data stored in the database but not the

structure [14]. In this type of work, graphical functions

are provided to manipulate the data and accomplish

what is normally done using SQL statements. Work on

automated graphical presentation tool, APT, which

provided static visual designs of relational information

is regarded a seminal effort in this direction [12]. The

focus of this system is on the visualization of formal

characterization of semantic relational information. Like

APT, our system works with minimal user input and

supports a perspective mechanism for designing

graphical representations.

Other systems were designed to visualize the logical

model of the database through graphical presentation of

the network view of the database schema [13].

Basically, here the focus is to visually represent E-R

diagrams. Two main shortcomings of this approach can

be outlined. First, E-R diagrams represent the logical

model of the database using node and link graphs.

Though being a novel technique for making explicit the

logical design which is only implicit in the

specifications of the database, the mapping between the

E-R diagram and the relations in the database is not a

trivial task even with visual E-R diagrams. In addition,

visual E-R diagrams would not provide the software

engineers with enough understanding of the overall

J. Computer Sci., 1 (3): 376-380, 2005

 378

structure of the database nor with detail information at

the attributes and associations level. Second, large

relational databases with many relations would result in

visual graphs which are bushy and cluttered, hence

making the task of clearly understanding the structure

and relationships not so easy. Therefore, visual

E-R diagrams would be useful for small databases only.

Visualization of relational information in commercial

database packages may be considered an improvement.

However, issues related to scale and information

coordination are two apparent pitfalls. For example,

Oracle through graphical schema builder does support

visual representation of associations among relations.

However, visual displays of the associations and path

views among relations tend to become bushy and

difficult to understand for even a medium size database.

Besides, finding out all associations to a single relation

is not supported. We strongly believe that more efficient

visual models are needed to provide better visualization

of relations than the one provided by Oracle. We also

believe that visual metaphors supported by our design

provide more coherent representations and cater for

simple views of larger databases. It would be interesting

to formally support our claims through future empirical

evaluations. Of course it would be worth noting that

through the use of CASE based tools, most of the

problems facing the designers of the legacy database

systems could be overcome. Unfortunately, not all the

institutions in this part of the world utilize such tools.

EVALUATION

We have planned several experimental evaluations to

get some insights into the usefulness of our visual

framework. These experiments involved 50

programmers and analysts who were asked to discover

the implicit relationships in a medium-size database

using both manual and automatic approaches. The

manual approach involved recognizing the relationships

using the database schema, while the automatic

approach involved using our visual system. Both

performances were critically compared to figure out the

usefulness of our system. The first experiment focused

on direct associations among relations. Results

compiled from the evaluation strongly suggested the

superiority of using our visual framework in quickly

recognizing the associations [1]. The second

experiment, reported in this study, focused on the

discovery of indirect associations, namely the path

views, among relations of the database. The purpose of

this experiment was to find out how much manual effort

in terms of time is put by a group of relatively

experienced programmers to find various path views

found in the structure of a relational database.

A total of 50 users took part in this investigation. The

users were junior programmers drawn from IT

departments of private and public institutions.

Programmers selected had a job experience of 12 to 18

months and all were involved in tasks related to

analysis, development and maintenance of applications

programs which also included database applications.

The users were randomly divided into two groups, each

consisting of 25 users. These groups were named Visual

and Manual. The Visual group used our prototype

visual system while the Manual group used the textual

print out of the database schema. We used the database

of a small firm shown in Fig. 1. Both groups were asked

to answer a total of eight questions dealing with path

views of different depths.

Our hypothesis was that the time needed to identify path

views among two relations would considerably increase

as depth increases. In fact, results analyzed below

strongly supported our hypothesis. Only one key

performance measure was considered for evaluating and

analyzing the results, namely the total time spent on

ansewring these questions. The measure (speed of

solution) aimed at finding out the time taken to

determine these path views.

To avoid any subjective interpretation of the results, it

was decided to assign a single point to every correct

answer to a question. Responses which were not correct,

including those which were close to the correct answer,

were assigned zero. We admit that this approach is by

no means represents the best criteria to measure the

understanding of the users in regard to the questions

asked. It is possible that users who failed to identify

correct solutions for some of the questions did have a

reasonably clear conceptual understanding of the

database and its relations. We recognize this pitfall but

still feel that this point-based approach in evaluating

repsonses given by the users does give us some

objective insights into the usefuleness of the

visualization framework tested.

Figure 3 and Table 1 summarize the overall

performance of both groups in terms of the time spent

on answering these eight questions. The Visual group

spent a total of 71 minutes on these questions while the

Manual spent a total of 692 minutes. The mean for the

Visual group is 2.84 minutes and for the Manual group

is 27.68 minutes. This implies that the users in the

Visual group spent an average of 21 seconds on each

question, while the users in the Manual group spent an

average of 3.46 minutes (207.6 seconds) on each

question.

The difference in means suggests better performance of

the Visual group. Overall, the Manual group using the

textual version of the schema took 621 minutes (10.35

hrs.) longer to answer all nine questions than the Visual

group. In terms of averages, this implies that the users

in the Manual group spent on average 88 seconds more

on each question than the users in the Visual group.

Table 1 also shows the relationship between each

question and the depth. For example, Q1 deals with

finding path view of depth 2 while Q6 deals with

finding a path view of depth 4.

J. Computer Sci., 1 (3): 376-380, 2005

 379

Fig. 3: Total Time Spent by Both Groups

Table 1: Total Time in Minutes for Both Groups

Questions Man. Group Vis. Group Depth

Q1 57 9 2

Q2 49 8 2

Q3 69 9 3

Q4 66 9 3

Q5 91 9 4

Q6 99 8 4

Q7 113 10 5

Q8 121 9 5

Time 692 71

Mean 27.68 2.84

Table 2: Performance in Relation to Path Depths

Depth 2 3 4 5

Man 106/4.24 135/5.40 190/7.60 234/9.36

Vis 16/0.64 18/0.72 17/0.68 19/0.76

Table 2 shows the performance of both groups on

questions grouped in relation to the depth of the path

views. For example, the Manual group spent a total of

106 minutes on questions dealing with path views of

depth 2 (mean = 4.24), while the Visual group spent a

total of 16 minutes (mean = 0.64). This difference

implies that the Manual group took 90 minutes longer to

answer these two questions. For questions dealing with

path views of depth 4, the Manual group spent a total of

190 minutes on them (mean = 7.60), while the Visual

group spent a total of 17 minutes (mean = 0.68). This

difference implies that the Manual group took

173 minutes longer to answer these two questions.

These results seem to support the hypothesis we stated

above which implies that the time required to recognize

path views tends to increase as the depth between the

relations increases. As shown by the table, the time to

recognize path views jumped from 106 minutes for

depth 2 to 135 minutes for depth 3, to 190 minutes for

depth 4 and finally to 234 minutes when depth was set

to 5. However, for the Visual group the time does not

seem to increase much with the depth.

To see what is involved in finding path views from the

schema, let us consider a path view of depth 2. Here the

user needs to locate the first relation and then follow the

references (associations) found in this relation one by

one until the target relation is found. For example, if the

first relation contains three references, then in the worst

case the programmer would end up looking at all three

relations referenced in the first relation. Using the

system, the user (1) clicks on the first relation in the

table list box so that the system automatically highlights

the relevant dot in the overall view, (2) double clicks on

the highlighted dot in the overall view so that the system

shows the associations for that relation in the

association view and finally (3) right clicks in the

association view to display the viual representation of

the path view. These few clicks is all what it takes to

find a complete path view. Our results show that the

users in the Visual group took on average 21 seconds to

perform this task. No major increase in time as depth

increases for the Visual group may be attributed to the

efficient visualization supported by the system. The

users seemed to have aquianted themseleves with

this simple 3-step based clicking process regardless of

the depth.

Fig. 4: A Path View of Depth 3

Fig. 5: A Path Veiw of Depth 4.

These results came as no surprise to us. The task of

manually trying to find various associations among

relations from the database schema is no trivial

operation. For example, to find all associations for

relation x, the user needs to do the following:

* locate the relation x in the schema

* identify the direct associations tagged under the

references command in relation x and

* scan the entire schema to find relations that

reference relation x, i.e. indirect associations for x.

Obviously, the time needed to find assocations

following the above steps is co-related with the size of

the database structure and hence the length of its

J. Computer Sci., 1 (3): 376-380, 2005

 380

schema. With visual display, all the associations are

displayed in colored circles on the screen and the

programmer needs only to count these circles. When

finding path views, the manual process would become

even more cumbersome and errorprone.

CONCLUSION

We have introduced a visual framework to facilitate

tasks associated with database maintenance and re-use.

The prototype system embodying the framework

provides graphical views of the database structure along

with various implicit relationships found in it such as

associations and path views. Information visualized is

automatically extracted from the database schema. To

assess the usefulness of the proposed framework we

have conducted a series of experiments. The evaluation

reported in the study focused on the discovery of

indirect associations, namely path views, among

relations of the database. The goal of this experiment

was to find out how much manual effort in terms of time

is put by a group of relatively experienced programmers

to manually find various path views exist in the

structure of a relational database at different depths.

The time was compared to the one needed by the

programmers to find out the same path views using our

visual system. Results collected from the evaluation

seem to support our hypothesis that the time required to

manually recognize path views from the database

schema is considerable and tends to increase as the

depth between the relations increases. The evaluation

also showed that by using our system such time is

negligible and tends to be static.

REFERENCES

1. Ramadhan, H. and H. Al-Lawati, 2003. Design and

Evaluation of a Visual Framework for Facilitating

Re-engineering and Re-use of Relational

Databases. Intl. Conf. Automation and Information,

Spain, pp: 342-349.

2. Shneiderman, B., 1996. The Eyes Have It: A Task

by Data Type Taxonomy for Information

Visualizations, Proceedings of the IEEE

Conference on Visual Languages, pp: 336-343.

3. Card, S.K., P. Pirolli and J.D. Mackinlay. The

Cost-of-Knowledge Characteristic Function:

Display Evaluation for Direct-Walk Dynamic

Information Visualizations, in Readings.

4. Stuart Card, Jock Mackinlay and Ben Shneiderman,

1999. Information Visualization: Using Vision to

Think, Morgan Kaufmann.

5. Eick, S.G., 1998. Maintenance of Large Systems,

Chapter 21 of Software Visualization:

Programming as a Multimedia Experience by

John asko, Blaine A. Price, Marc H. Brown (Edr),

MIT Press.

6. Baker, M. and S. Eick, 1995. Space Filling

Software Visualization. J. Visual Languages and

Computing, 6: 119-133.

7. Ball, T. and S. Eick, 1996. Software Visualization

in Large, IEEE Computer, pp: 33-43.

8. Jerding, D. and J. Stasko, 1994. Using

Visualization to Foster OO Program

Understanding, Georgia Tec., TR GIT-GVU-

94-33.

9. Myers, B., 1990. Taxonomies of Visual

Programming and Program Visualization. J. Visual

Languages and Computing, 1: 97-123.

10. Price, B., R. Baecker and I. Small, 1992. A

Principled Taxonomy of Software Visualization. J.

Visual Languages and Computing, 4: 211-266.

11. Domingue, J., 1998. Visualizing KBS, Chapter 16

of Software Visualization: Programming as a

Multimedia Experience by John Stasko, Blaine A.

Price and Marc H. Brown (Edr), MIT Press.

12. Ramadhan, H., 2001. Incorporating Software

Visualization in the Design of Intelligent Diagnosis

Systems for User Programming. J. Artificial

Intelligence Review, 16: 1-22.

13. Mackinlay, J., 1986. Automating the Design of

Graphical Presentationof of Relational Informaiton.

ACM Transactions on Graphics, 5: 110-141.

14. Kuntz, M. and R. Melchert, 1990. Ergonomics

Schema Design and Browsing with more Semantics

in the Pasta-3 Interface for E-R DBMSs, F.

Lochovsky, Ed., North Holland.

15. Aiken, 1998. The Tioga-2 Database Visualization

Environment. University of California,

Berkeley, TR.

