
Journal of Computer Science 1 (3): 351-354, 2005
ISSN 1549-3636
© Science Publications, 2005

351

A New Semantic Cache Management Method in Mobile Databases

Shengfei Shi, Jianzhong Li and Chaokun Wang
School of Computer Science and Technology, Harbin Institute of Technology

Harbin 150001,People’s Republic of China
__
Abstract: In mobile database systems, caching is a crucial way to improve the performance because a
new query can be partially answered locally when the client is continuously moving around. Semantic
caching has been paid much attention in traditional database systems. However, the methods of
semantic cache management proposed in those systems are not suitable for mobile computing
environment. Moreover, although many improved semantic caching strategies for mobile computing
application have been proposed in recent years, few papers discussed semantic cache coherence
control, which is very important in mobile computing environment. In this paper, we propose some
new semantic cache model and management algorithms, which can significantly reduce the
unnecessary uplink requests and downlink broadcasts compared to previous schemes. Simulation
experiments are carried out to evaluate the proposed strategy.

Key words: Semantic cache, coherence management, mobile databases

INTRODUCTION

Semantic caching has been paid much attention in
traditional database systems. In [3], a semantic model
for client-side caching and replacement is proposed.
Compared with the traditional caching strategies, such
as page caching and tuple caching, semantic caching
maintains a semantic description of the data in cache.
And a distance function called Manhattan distance is
proposed to determine which cache item to be discarded.
In [4], two issues are discussed. One is called cache
completeness, which determines whether a new query
can be satisfied in its local cache or not, and another
one is called cache currency, which deals with the effect
on client caches of updates committed at the database
server. In [11], heterogeneous systems are discussed for
semantic cache management.
In [1], a semantic caching scheme is used to access
location dependent data in mobile computing. The
emphases of the paper are put on modeling the mobility
of the mobile client and the LDQ, and the method of
cache replacement is proposed. The contribution of the
paper is its FAR algorithm of cache replacement, which
takes the mobility of the client into consideration.
In [5], a cluster-based approach is proposed to manage
semantic cache. Queries are divided semantically into
related or adjacent groups, which are called clusters.
The cache replacement method, which deals with the
semantic information of clusters, is more efficient than
traditional cache replacement methods such as LRU etc.
And many works such as in [12] also proposed
approach to deal with the problem.
But up to now, few papers have discussed semantic
cache coherence control, which is very important in
mobile computing environment. Although many cache
invalidation strategies for mobile environments have
been proposed such as in [6,7,8,9,13,14,15], they have

nothing to do with semantic caching. In [10], a novel
cache invalidation report method is proposed and it
turns out to be a semantic-based cache management
strategy.
In this paper, we will address the problems associated
with the IR-based semantic cache invalidation strategies.
Firstly, we propose some new semantic cache model,
PR-tree and TS-Cache. Secondly, some cache
management algorithms which are based on these
model are proposed. Finally, simulation experiments are
carried out to evaluate the proposed strategy.

System Model
Hybrid Predicate Model: Suppose a relation which
consists of n attributes: A1, A2, … An. We divide these
attributes into two classes [1]. One is called LDA
(Location Dependent Attribute), which can be used to
identify the rectangle scope of the result of a LDQ
(Location Dependent Query). Another class is called
NLDA (Non Location Dependent Attribute), which is
often used to specify the filter conditions of a query in a
rectangle area restricted by LDAs.
In our proposed method we use the hybrid predicate
representation. We use multi-attribute hashing function
on the LDAs to represent the predicate scope. Suppose
the LDAs are AX and AY representing the latitude and
longitude coordinates respectively. Other NLDAs are
denoted by A3, A4, … , An. Each LDA is hashed into
string ax and ay by hash function Hx and Hy separately.
Different from previously proposed method [10] we use
additional string a′ to indicate the exact range value of a
LDA in a predicate representation. For NLDA, we don’t
hash them into a string but keep their original value ai
instead. Then, the predicate for a record or a LDQ is
denoted by “ax| ay, ax′, ay′, a3, … , an”, where ‘|’ is the
string concatenation operator. In a predicate, if an
attribute is not included, we use character ‘*’ to denote

J. Computer Sci., 1 (3): 351-354, 2005

 352

“don’t care” condition just like in [10].

PR-tree Based Global Predicate Caching
Management Model at the Server
Definition 1: PR-tree (Predicate R-tree): PR-tree is a
R-tree based index structure used by the server to index
the predicate of LDQ committed by the client.
Leaf Node of PR-tree is:

LN={(R_LDA, fµ , fq , updatelastt _ , querylastt _),

where R_LDA is the rectangle section specified by the
scope values of LDA in a LDQ, fµ and

fq respectively refer to the update frequency and query
frequency of area which R_LDA covers, and

updatelastt _ and querylastt _ are the latest update and
query time of hashing area covered by R_LDA.
Suppose the number of hashing sections covered by
R_LDA is k, then

(())
1

1

k
n ui i

i
f k

ni
i

µ
⋅∑

==
∑
=

,

(())
1

1

k
n qi i

iq f k
ni

i

⋅∑
==

∑
=

where ni is the number of data items in the hashing
section i, and ui and qi are the update and query
frequency of hashing section i respectively.

Definition 2: PU (Point Update Operation); In the
PU operation, the server only updates one record.

Definition 3: RU (Range Update Operation); The
server updates a set of records according to a range
predicate.

Definition 4: HP-IR (Hybrid Predicate Invalid
Report) is defined as a tuple (HPR,

Update Operation, TS, [Rid]), where HPR is the
hybrid predicate representation. Update_Operation is
PU or RU, TS is the timestamp of update operation, and
Rid is the record id which is updated by PU and it is
only used when Update_Operation is PU.

Predicate Caching Management Model at the Client
Definition 5: HPCD (Hybrid Predicate Cache
Description) is defined as a set of tuple (id, HPR,
p-content, UQ, Ts, Count_Update), where id is the
identifier of the PCD item, HPR is hybrid predicate
representation of the data records received from the
server before, p-content is the pointer point to the real
data buffer, UQ is a queue of some records to be
retrieved from the server later; Ts is the timestamp of
this PCD; Count_Update is the updating times of the
cache content.

TS-Cache Model
Definition 6: The probability model of data is defined
as PModel ::= (Attr, Location, TS-M, CR, Tstamp). Where Attr
is the attribute of data, Location identifies the location of

data, TS-M is time-series model of data such as AR or
ARMA; CR is confidence region of error bound
between actual value of data and predicted value from
TS-M with specific probability, and Tstamp is time stamp
in which the TS-M is established.

Definition 7: The TS-cache model is defined as
TS-Cache::= (Query, PModel). Where Query is the query
which gets results from servers. PModel has been defined
above and is used to answer the Query.

Definition 8: Time-Series based Cache Invalid Report
Model (TS-IR) is defined as TS-IR::= (Attr, Location,
TS-M|RawData, ∆error, Host| Broadcast, Tstamp). TS-IR is
used to inform the clients to change the parameters of
PModel when the error of predicted value exceeds the
error bound predefined. Attr , Location and TS-M are the
same as defined in PModel. RawData is raw datao of data
source. ∆error shows the difference between the data
values which are calculated by old parameters and new
parameters separately.

Algorithm of Coherence of Semantic Caching
Management

Insertion Algorithm of PR-tree: After executing a
LDQ, the server inserts the predicate of the LDQ into
the PR-tree, in order to reduce the workload of the
server, we only insert the LDA predicate, which limits
the rectangle scope R in two dimensions geographic
plane.
(I1) Compute the set of hashing sections covered by

rectangle R and let it be S;
(I2) For each hashing section Ssi ∈ , modify its

query frequency and the last time of being
queried;

(I3) For each rectangle Oi of leaf node, which is
overlapped by R, modify the query frequency and
its last time of being queried of the leaf node;

(I4) If R is covered by union of Oi, R will not be
inserted into the PR-tree, and the server will return
the result of the query and will attach the code
“n_Covered” to indicate that the predicate of the
LDQ is not inserted into the PR-tree but can be
cached by the client;

(I5) Compute the fµ and fq of R. If fµ >1/L or

fq <min_q, R will not be inserted into the PR-tree,
and the server will return the result of the query and
will attach the code “n_discarded” to indicate that
the result of the query can not be cached by the
client; The parameter L is the length of
broadcasting window of the server, and min_q is
the threshold defining the query frequency of a
rectangle section composed of some hashing
sections;

(I6) Insert R into the PR-tree, and return the code
“n_cached” to indicate that the result of the
query can be cached in the client.

Algorithm of Construction of HPIR Queue:
After an update operation is executed, the server will

J. Computer Sci., 1 (3): 351-354, 2005

 353

judge which data items have been effected and
construct the predicate invalid report to notify the
clients who have cached these items to update its cache.
Let the rectangle of the update operation be R.

(C1) Update the fµ values of hashing sections and

leaf nodes covered by R;
(C2) If update operation is a PU, find the leaf node

which covers the point of PU. If it is found, then
construct a new HPIR and insert it into the HPIR
queue;

(C3) If the operation is a RU, find the leaf node which
is overlapped by R. If find, then construct a new
HPIR and insert it into the HPIR queue.

Algorithm of Coherence Management of Semantic
Caching at the Client: When the client receives the
result from the server, it checks the return code attached
to the result to decide whether to insert the predicate of
the query into the HPCD. If the return code is not
“n_discard” the client will insert the predicate into the
HPCD and cache the result of the query.
The most important issue of semantic caching
management is the coherence of semantic cache.

Algorithm of Update of PCD
(1) Listen to the HPIR broadcasting and download the

HPIRs, which corresponding to the local HPCD;
(2) Let Si be a HPCD item, and UOi be an update

operation whose scope of LDAs is overlapped by
that of Si;
If UOi is a PU

BEGIN
If the id of the record PU updated is already in the

cache, then update the record locally;
Else if all values of attributes updated by this PU

satisfy the predicate of the PCD, then insert an
item into the update queue UQ;

END;
Else BEGIN

Let the rectangle intersection of Si and UOi specified by
the values of LDAs be A, and A is not empty. Let the
intersection of predicate specified by the values of
NLDAs of Si and UOi be B.
If B is not empty
Begin

Update all data records locally, which satisfy the
predicate A and B;

Let all the records whose values of NLDAs satisfy the
predicate: (NLDA (RU)\B) and A, be denoted by set C,
in which the records are not in the Si.

If UOi updates all the attributes in NLDAs of Si and the
modified values of NLDAs of a record in C satisfy the
predicate of Si, then

Begin
Insert a query into the UQ, the predicate of which
is: ((NLDA (RU)\B) and A) and the record id is

not in the set E. E is the set of record id of Si;
End

End
End

TS-Cache Coherence Management Algorithm
Notation:

Client-Side:
Listen to the wireless channel to receive IR in time during
connection time;

If (reconnected from disconnection mode)
Get IRs from server which overlap it now;
If (IRs received are related with its TS-Cache)
Choose the newest IR and update the parameters of the
model;
Else
If (timestamp of local TS-Cache is older than the threshold
predefined)
Iinvalidate local TS-Cache;

Performance Analysis and Simulation Results: We
evaluate the effectiveness of our method in comparison
with the approach proposed in [10] which is called PIR
by us. At first, we introduce the main parameters of
simulation model.

Number of clients 200
Database size 2000 records
Broadcast interval 10 minutes
Hot records 600 records
Hot data access prob 0.8

1. The Mean Number of PIR Broadcasted: From

Fig. 1, we can see that the number of PIR grows as
the update number increases. However, the
growing trend is different between the PIR
algorithm and our algorithm. The PIR method will
construct a PIR whenever a record is updated, no
matter whether the updated record is cached by
clients or not. However, in our method, the server
can determine whether to construct a new IR
according to the PR-tree. On the other hand, if the
updated records are not hot data, the probability of
being cached by clients is low. In our algorithm,
the server does not manage the predicate of cold
data, so many updated cold data will not be
broadcasted. As a result, the growing trend of the
PIR number of our algorithm develops more

W h i le (n ew d a ta rec e ive d)

{

' '

'
 ()

 N ;to ta l

 ()0

 {

 C o m p u te th e n e w p a ram eters o f d a ta m o d e l;

 fo r (a ll n e ig h b o u r h o s ts o f M S)

 c o m p u te

x xt t t

i f t t

i f N Nto ta l

δ

δ δ

= −

>

+ +

>

W ;i
| n e ig h b o u rs o f M S |

 W W / W ;s i i
1

 A ss ig n e ac h n e ig h b o u r h o s t th e ta sk to b ro a d ca s t th e T S -IR W s* W tim es ;IR

 }

}

= ∑

J. Computer Sci., 1 (3): 351-354, 2005

 354

slowly than that of PIR algorithm.

0
20
40
60
80

100
120

40 80 120 160

Fig. 3: Updated Hot Data

N
u

m
b

e
r

o
f B

ro
a

d
ca

st
in

g

AD

TS

2. Cost of Bandwidth for Downloading the New

data: The client will download some new data via
requests to the server in order to make coherence
of the cache, so some communication bandwidth
will be used to do this. The Figure 2 shows the
comparison between algorithm PIR and our
algorithm as for the number of records which have
been downloaded.

3. Mean Communication Cost of Server: From Fig.

3 above we can find that in our TS method the
number of broadcast data is much smaller than that
of AD. The reason is that the server in AD method
must broadcast hot data which are updated. But in
TS method, only the data whose error bound
exceeds the threshold will be broadcast to clients.

CONCLUSION

In this paper, we propose some semantic cache mode
and management algorithms which are based on
PR-tree and Ts-Cache method. Simulation results show
that our algorithm could save considerable bandwidth
compared to the previously proposed algorithms. In
future research, we will extend our algorithm to deal
with the problem of transaction processing with
semantic cache and we will extend our algorithm by
using TS-Cache to deal with the problem of query
optimize.

REFERENCES

1. Qun Ren, Margaret H. Dunham: Using semantic
caching to manage location dependent data in
mobile computing. MOBICOM 2000: 210-221

2. Seydim, MH.Dunham,V Kumar:Location Dependent
Query Processing.MobeDe2001 USA 47-53

3. S. Dar, et al, "Semantic Data Caching and
Replacement", Proc. VLDB Conf. 1996.

4. AM.Keller,Julie Basu :A predicate-based caching
scheme for client-server database
architectures.VLDB Journal(1996)5:35-47

5. Q Ren,MH.Dunham:Using Clustering for
Effective Management of a Semantic Cache in
Mobile Computing.MobiDe1999 WA USA,94-101

6. Guohong Cao: A Scalable Low-Latency Cache
Invalidation Strategy for Mobile Environments.ACM
MOBICOM2000 MA USA 200-209

7. D. Barbara and T.Imielinkai, Sleepers and
workaholics: Caching strategies for mobile
environments,” ACM SIGMOD,pages 1-12,1994

8. T.Imielinksi, S.Viswanathan, and B. Badrinath,
“Energy Effcient Indexing on Air”, IEEE
Transactions on Knowledge and Data Engineering,
9(3):353-372, May/June 1997

9. G. Forman and J. Zahorjan, “The Challenges of
Mobile Computing,” IEEE Computer, 27(6), April
1994

10. YD Chung et al: Predicate-based Cache
Management for Continuous Partial Match
Queries in Mobile Databases. KAIST CS
Technical Report CS/TR-2001-163

11. P. Godfrey and J. Grys. Semantic query caching in
heterogeneous databases. In Proceedings of
KRDB at VLDB, pages 6.1-6.6, Athens, Greece,
August 1997.

12. K.C.K.Lee, H.V.Leong, and A. Si. “Semantic
query caching in a mobile environment”. Mobile
Computing and Communications Review,
3(2):28-36, April 1999

13. Distributed Caching and Broadcast in a Wireless
Mobile Computing Environment

14. J. Jing, A. Elmagarmid, A. Helal, and R. Alonso,
“Bit-Sequences: An adaptive Cache Invalidation
Method in Mobile Client/Server Environments”,
Mobile Networks and applications, pages 115-127,
1997

15. Yin-Huei Loh et al: A Hybrid Method for
Concurrent Updates on Disconnected Databases in
Mobile Computing Environments. SAC (2) 2000:

0
50

100
150
200
250
300
350
400
450

50 150 250 350 450

Fig. 1: Mean Update Number
Per Interval

M
e

a
n

 n
u

m
b

e
r

o
f P

IR

PIR

HPIR

0
50

100
150
200
250

50 200 350 500

Fig. 2: Mean Update
Number Per Interval

M
e

a
n

 n
u

m
b

e
r

o
f

 d
o

w
n

lo
a

d
e

d
 r

e
co

rd
s

PIR

HPIR

J. Computer Sci., 1 (3): 351-354, 2005

 355

563-565

