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ABSTRACT 

During a treatment period of a cancer patient, the medical team ponders over a question: Is patient’s cancer 

recurrence significantly postponed by the medication, even if the illness is not completely cured? This 

question could be answered with data evidence if the data are analyzed with an appropriate model and a 

suitable methodology. A scanning of the literature reveals that no suitable technique now exists. Hence, 

there is a need to develop a new probability model and to formulate a statistical methodology. Both tasks 

are accomplished in this article to answer the above question. The Exponential Distribution (ED) is 

traditionally employed to portray the chance for a patient to survive beyond a given time, t>0. Because of its 

memory less property, the exponential distribution lacks an ability to answer whether the medication has 

significantly postponed the cancer recurrence for a patient. In essence, this memory less property assumes 

that a patient’s body functions with no memory. This notion of memory less is quite unreal with respect to 

cancer recurrence as it is contradictory to the medical belief of medicating a patient with an intention to stop 

or at least postpone cancer recurrence in a disease management. This article takes an approach by adding a 

prolonging parameter, ρ≥0 to the exponential distribution to represent the medication’s effect on the 

survival chance for a patient without a cancer recurrence. Because of the prolonging parameter, the 

probability structure of the exponential distribution gets altered and it is explicitly explained in the article. 

The altered exponential distribution is named Prolonged Survival Exponential Distribution (PSED). The 

properties of PSED are derived and then utilized to analyze patients’ cancer recurrence data. Also, 

likelihood ratio based statistical methodology based on PSED is derived and illustrated to address whether 

the medication has significantly postponed the cancer’s recurrence time in a particular patient. An analysis 

of recurrence times of three groups of sixteen bladder cancer patients was done. The first is the placebo 

group with seven patients. The second and third group consist respectively three and six patients receiving 

thiotepa and pyridoxine medication. The probability plots of their recurrence times confirm that the data do 

not follow an exponential distribution. The data analyses results reveal interesting statistical information 

about how effective the medication had been on each individual patient. Without the new model, PSED and 

the likelihood ratio testing methodology of this article, a patient specific interpretation is not possible. The 

medication worked in some but not all patients. The medication is thought to have not worked in a patient, 

when his/her estimate, ρ is closer to zero. However, on the average, the 2nd bladder cancer recurrence time 

is quicker in place group, next in pyridoxine group and much later in tholepin group. The new model, PSED 

and the likelihood ratio test of this article would be useful to analyze and interpret the probability pattern of 

recurrence times and whether the medication has significantly prolonged the next recurrence time of other 

cancers like melanoma, ulcer, ovarian. Also, the contents of this article have established a foundation to 

build a generalized regression methodology to identify predictors for increasing the survival time of cancer 

patients with more patients’ data. 

 

Keywords: Likelihood Ratio, Exponential Distribution, Power, P-Value, Memory Less Property, 

Survival Function 
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1. INTRODUCTION 

Does cancerincidence data reveal that a medication to 
the patient has prolonged at least the recurrence time, 
even if the medication has not completely cured the 
illness? To be specific, let Y be a cancer recurrence time. 
How should one configure Y to confirm the medication’s 
effectiveness? No suitable technique now exists in the 
literature to answer this question. A data analytic approach 
is necessary. A development of such a comprehensive 
approach is the aim of this article and it requires selection of 
an appropriate model for Y. Could exponential distribution 
(Stuart and Ord, 1994) with the survival function: 
 

y /

expS [y ] Pr[Y y ] e , 0, y 0− ττ = > τ = τ > ≥  (1) 

 
plays a role for Y, with τ>0 denoting the expected time 
for next recurrence? Panjer (2006) for details on how 
model in (1) and others are used to capture uncertainty. 
The survival function, Sexp [y|τ] The model (1) lacks 
ability to predict the next cancer recurrence. Why is it 
so? Reasonsare explored and stated below in details. 

The conditional survival probability for a patient to 
experience arecurrence in the next m months given that 
s/he did not experience a cancer in t months is same the 
unconditional survival probability of not experiencing 
one in any time period (including in the beginning) of 
same length of m months. Rephrasing it in probability 
terms, it means:  
 

m/

Pr[Y t m Y t]

Pr[Y t m]

Pr[Y t]

e

Pr[Y m]

− τ

> + >

> +
=

>

=

= >

 (2) 

 
This feature in Equation (2) is referred memory-less 

property. Would a cancer cell function with no memory, 
especially when a patient receives a medication? If the 
answer is “yes”, the medication is obviously 
meaningless. None in medical community might agree 
with no-memory operation style of a cancerous cell. The 
answer ought to be “no” intuitively, since it is real and 
medically meaningful. Furthermore, the survival 
probability in Equation (1) diminishes as time, t 
progresses. Shouldn’t a medication elevate the survival 
probability? The exponential distributionis, therefore, not 
in harmony with medical expectations as it does not have 
a feature to explain the role of medication’s effect on the 
survival chance. Hence, the model (1) needs an 
alteration. Also, the exponential distribution indicates a 
constant expected recurrence time: 

exp
0

E[Y] yd(1 S [y ])
∞

= − τ = τ∫  

 
Is the above stated constant expected cancer 

recurrence time realistic? Wouldn’t a medication prolong 
the expected recurrence time, at the least?  The 
exponential distribution is not realistic enough to 
illustrate the prolonging aspect of next cancer recurrence 
due to medication’s effect. A new model to portray the 
prolonging of recurrence time due to the medication’s 
effect is necessary and it is derived in this article by 
altering the exponential distribution. 

Before proceeding further to make alteration, why not 
look at real data sets in Table 1 of bladder cancer 
recurrence times to check whether the data support for a 
need to alter? The data sets are from Lindsey (1997) the 
entry in Table 1 is Y, the number of months waited to 

experience a recurrence in three groups of n1 = 7 n2 =3 
and n3 = 6 bladder cancer patients (Fig. 1). The groups 
received respectively: placebo, thiotepa and pyridoxine. 
The placebo commonly refers to ineffectual medication’s 
effect to deceive the recipient. Beecher (1955) argues 
that placebo does not work in every clinical trial. The 

drug “Tiotepa” was first developed by the American 
Cyanamid Company in year 1950 and it is an alkylating 
substance given to cancer patients with or without body 
irradiation. See www.cancer.org for clinical details about 
thiotepa drug. The drug “Pyridoxine” (an extract from 
grains, nuts and dragon fruit) helps the body to balance 

sodium and potassium to increase red blood cell 
production and stabilize hormonal changes. Kashanian et al. 
(2007) for details on medicinal use of pyridoxine. The 
exponential probability plots of the data sets in Table 1 
are displayed in Fig. 2a through 2h below. For the data 
to have come from an exponential distribution, the data 

points should be closer to the diagonal line. Did that 
happen? Clearly, that is not the case. Hence, it is 
reasonable to infer that the bladder cancer recurrence 
times of the sixteen patients have not come from an 
exponential distribution. The clue exists in the data sets 
that the medication might have worked in the patients. 

Consequently, their survival chance without a 
recurrence might have been elevated because of the 
medication’s effect.  

An altered probability model is introduced before 

with its properties. The new model is named 

Prolonged Survival Exponential Distribution (PSED). 

The Maximum Likelihood Estimators (MLE) of PSED 

and a likelihood ratio based hypothesis testing 

procedure are developed to assess the significance of 

the medication’s effect to prolong the recurrence time 

in Fig. 3. (a) through (d). 
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Table 1. Bladder cancer recurrence times in months for placebo, thiotepa and pyridoxine groups 

Patient Group 1st 2nd 3rd 4th 5th 6th 7th 8th y  2

ys  τ  ρ  

1 placebo 3 3 2 4 14    5 25.0 4.75 0.02 

2 placebo 16 3 4 6 5 6   7 22.0 3.34 74.70 

3 placebo 9 2 9 6 4    6 9.5 1.58 0.98 

4 placebo 3 12 31 5 2    11 145.0 13.70 0.01 

5 placebo 2 13 9 6 4 5 4 6 6 11.0 1.98 1.06 

6 placebo 5 9 5 8 14    8 14.0 1.67 0.80 

7 placebo 2 6 4 1 4 4 12 16 6 27.0 4.41 0.15 

1 thiotepa 1 2 2 2 3    2 0.5 0.25 4.67 

2 thiotepa 4 12 7 4 6 3 1  5 13.0 2.38 2.31 

3 thiotepa 2 18 3 4 11    8 46.0 6.09 0.05 

1 pyridoxine 3 7 12 4 8    7 13.0 1.87 0.86 

2 pyridoxine 3 6 6 4 6    5 2.0 0.40 2.74 

3 pyridoxine 3 4 5 4 3 9 6 2 4 4.5 1.04 1.41 

4 pyridoxine 2 4 4 6 7 4 9 3 5 5.0 1.07 1.33 

5 pyridoxine 8 7 3 2 2 3 13 2 5 16.0 3.20 0.40 

6 pyridoxine 8 6 6 5 4 4 15 1 6 17.0 2.77 2.09 

 

 
 

Fig. 1. Box plot of bladder cancer recurrence times in three medication’s effect groups 



Ramalingam Shanmugam / American Medical Journal 4 (1): 43-62, 2013 

 

46 Science Publications

 
AMJ 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 
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(e) 

 

 
(f) 
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(g) 

 

 
(h) 

 

Fig. 2. (a) First recurrence (b) Second recurrence (c) Third recurrence (d) Fourth recurrence (e) Fifth recurrence (f) Sixth recurrence 

(g) Seventh recurrence (h) Eighth recurrence 
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

Fig. 3. (a) Survival function in Equation (5.2) (b) Survival function with (5.1) (c) Recurrence time in terms of τ when ρ̂ =  1.2, 0.14, 

0.13, 0 (d) Expected recurrence time in terms of ρ
 
when τ̂ =  4.78, 3.75, 1.84 
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The methodology is also illustrated using recurrence 

times of three groups of bladder cancer patients in 

Andrews and Herzberg (1985). In the end, some 

conclusive comments are made. 

1.1. Prolonged Survival Exponential Distribution 

with Properties 

Lack of memory is desirable feature in discussions of 

adversarial events. In other situations of favorable 

outcomes, especially in health mechanism such as 

prolonging bladder/cancer recurrence time, possessing 

memory may be adesirable feature. To be specific, 

suppose that the expected bladder cancerrecurrencetime 

increases from τ byan amount [1 ]
1

ρτ
+

+ ρτ
due to an 

effective medication, where the prolonging parameter 

ρ≥0 signifies the medication’s effect. That means the 

conditional survival probability becomes:  

 

m/

Pr[Y t m Y t]

Pr[Y t m]

Pr[Y t]

m
[1 ]e

1 ( t)

− τ

> + >

> +
=

>

ρ
= +

+ ρ τ +

 (3) 

 

In other words, the conditional survivability in 

Equation (3) is prolonged by an amount 

( t ,m)

m
prolong [ ]

1 ( t)

ρ
=

+ ρ τ +
at a time t≥0 because of the 

medication’s effect. The memory boost is a unique 

characteristic of prolonged exponential distribution in 

Equation (5a). 

The unconditional Survival Function (SF) could be 

captured by a change of variables t = 0 and m = y in 

Equation (3). The unconditional SF is: 

 

prolExp

y /

S (y , ) Pr[Y y , ]

y
[1 ]e ,

1

y 0, 0, 0

− τ

ρ τ = > ρ τ

ρ
= +

+ ρτ

> τ > ρ ≥

 (4) 

 

The survival probability, Spro|Exp (y|ρ,τ) in Equation 

(4) of a cancer patient without a recurrence under a 

stronger (that is, ρ→∞) medication’s effect is better 

serving than their counterpart survival probability, Sexp 

(y|τ) in Equation (1) based on exponential distribution with 

no role for medication’s effect. 

Incidentally, the concept of survival function was 

originated in engineering context to assess the 

probability for a component to survive a given time 

without a failure. It is the engineering background in which 

the nomenclatures like hazard function was created. In the 

context of treating cancer patients with an intention to 

postpone a recurrence as much as possible, the survival 

function in Equation (4) makes more senseas it has a built-

in prolonging parameter to reflect the medication’s impact. 

Now, by differentiating the survival probability in 

Equation (4) with respect to y, the Probability Density 

Function (PDF) of the Prolonged Survival Exponential 

Distribution (PSED) in Equation (5a) below is obtained. 

The PDF of PSED is: 

 
y /(1 y)e

f (y , ) ,
(1 )

y 0, 0, 0

− τ+ ρ
ρ τ =

τ + ρτ

≥ τ > ρ ≥

  (5a) 

 

 When there is no medication’s effect (that is, ρ = 0), 

the PDF in Equation (5a) reduces to the PDF: 
 

y/f (y ) e / , y 0, 0− ττ = τ ≥ τ >  (5b) 

 
Of the exponential distribution as a particular case. 

An implication is then using exponential distribution for 

bladder or other cancer reoccurrence time data analysis 

amounts to preposterously assuming that the patients 

underwent an ineffective medication and it is a biased 

data analysis. Instead, shouldn’t the patients’ data guide 

the selection of an appropriate model? It is possible that 

in some instances, the collected data might reject PSED 

in Equation (5a) in favor of exponential distribution in 

Equation (5b). Details of the model selection between 

ED in Equation (5b) and PSED in Equation (5a) are 

discussed in a later part of this section using Wald’s 

likelihood ratio testing criterion. 

Now, several features of PSED in Equation (5a) are 

explored. First, its mean, median and variance are 

derived and discussed. The mean is in Equation (6a): 
 

mean
E(Y) (1 )

1

ρτ
µ = = τ +

+ ρτ
 (6a) 

 
The Taylor series expansion of the survival function 

SprolExp (y|ρ,τ) = 1-π yields the πth
 percentile y ( )

1
π

πτ
≈

+ ρτ
. 

The median is therefore median
2(1 )

τ
µ ≈

+ ρτ
. The PSED in 

Equation (5a) is positively skewed because the mean is 
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larger than the median since 1+4ρτ>0. The variance in 

Equation (6b) is: 

 

2 2

mean mean

[1 ( )(1 )
1 1

[ ( ) ]

ρτ ρτ
σ = τ + +

+ ρτ + ρτ

= τ τ + µ − τ µ

 (6b) 

 

Next, its Hazard Function (HF) in Equation (6c) is 

derived and explained. The HF for PSED in Equation 

(5a) is: 

 

prolExp

1

f (y , )
h(y , )

S (y , )

[ (1 )]
1 y

−

ρ τ
ρ τ =

ρ τ

ρτ
= τ +

+ ρ

  (6c) 

 
In the context of treating cancer patients, the term 

“hazard” is probably a misnomenclature, although this 

popular terminology refers reliability of an electronic 

component in engineering context. Instantaneously (that 

is, as y→0), the HF of PSED (5.1) is [τ(1+ρτ)]−1 
but it 

monotonically decreases to zero eventually (that is, when 

the recurrence time y→∞). Recall that the HF of 

exponential distribution in Equation (5b) is just τ−1
 and it 

is meaningless for cancer recurrences. With a stronger 

medication’s effect (that is,ρ→∞), the HF stabilizes 

at 1[ (1 )]
1 y

−τ
τ +

+
. Of course, the medication’s effect 

should have a cumulative impact. The Cumulative 

Hazard Function (CHF) of the PSED in Equation (5a) 

reflects it in Equation (7) below: 
 

y
1 1

0

2

CHF(y , ) [1 ] du
1 u

y y
ln(1 )

1 [y ]

y y
( )
1 [y ]

− −ρτ
ρ τ = τ +

+ ρ

ρ
= + −
τ + ρ + τ

ρ
≈ −
τ + ρ + τ

∫

 (7) 

  

The CHF converges asymptotically to
y

τ
, 0 or ∞ 

under no medication’s effect (that is, ρ = 0), initially 

(that is, y = 0) and eventually (that is, y = ∞) 

respectively. In the context of treating cancer with a 

medical aim to help the patient keep going on without a 

recurrence, it is appropriate to think of the function CHF 

in Equation (7) as the cumulative impact of the 

medication’s effect. On the assumption that a patient 

survived without a recurrence of cancer at a current time, 

the chance for s/he to have an extra residual time, 

without a recurrences u /

prolExp

u
[1 ]e S (y , )

(y 1)

− τρ
+ ρ τ
τ + ρ +

. 

Furthermore, the Mean Residual Life Function 

(MRLF) captures how much time (unconditionally) is 

left without a recurrence on the average. In our 

discussion of cancer patients with amedication’s effect, 

the MRLF of PSED in Equation (5a) is: 
 

prolExp

0
prolExp

u /

0

2

MRLF(y , )

S (y u , )
du

S (y , )

u
[1 ]e du

1 ( y)

1
1 (y )

∞

∞ − τ

ρ τ

+ ρ τ
=

ρ τ

ρ
= +

+ ρ τ +

ρτ
= +

+ ρ + τ

∫

∫
 (8) 

 
When the patient gets no medication’s effect (that 

is,ρ = 0), the MRLF in Equation (8) gives the baseline 

amount but it increases when the patient receives an 

effective medication’s effect. The gained time, 

unconditionally speaking, with no cancer recurrence 

is
2

1 (y )

ρτ

+ ρ + τ
. This gained time stabilizes at

2

(y )

τ

+ τ
under 

a stronger medication’s effect (that is, ρ→∞). 

In some instances, once a patient has survived a time 

d, the medical team might wonder how much additional 

time exists? Conditionally speaking, on the average for the 

patient to experience no cancer recurrence can be addressed 

as follows. This concept is the Mean Excess Time (MET). 

Panjer (2006) for details about its importance in making 

decisions. For PSED in Equation (5a), the MET is: 
 

prolExp

d

prolExp

y

d

d

S (y , )dy

E(Y d Y d)
S (d , )

y
(1 )e dy

1

d
(1 )e

1

(1 )
1 [ d]

∞

∞
−
τ

−
τ

ρ τ

− > =
ρ τ

ρ
+

+ ρτ
=

ρ
+

+ ρτ

ρτ
= τ +

+ ρ τ +

∫

∫
 (9) 

 
The MET in Equation (9) asymptotically approaches 

τ or (1 )
d

τ
τ +

τ +
as ρ = 0 or ρ = ∞ respectively.  
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However, in the initial time (that is, d = 0) or 

eventually (that is, d = ∞), the MET in Equation (9) is at 

an asymptotic level (1 )
1

ρτ
τ +

+ ρτ
or τ respectively. 

After the end of treatment time, the patients are 

advised to keep in contact with the medical team. 

Because of the patient’s migration to another location or 

the hospital’s administrative inability, such a follow up 

unfortunately terminates. The duration between the 

end of treatment time and the last contact time is 

called alimited follow-up window time and it is 

indicated by Y∧ u = Y if Y < u and u if Y≥u. See 

Blumenfeld (2010) for details about the role of 

follow-up window time to make up operational 

decisions. The Expected Limited Follow-Up Window 

Time (ELFWT) for PSED in Equation (5a) is:   

 

prolExp
0

y

u0

u

E(Y u)

yf (y , )dy uS (y , )

y y
(1 )e dy

(1 ) 1

u
u(1 )e

1

u
(1 ) u(1 )e .

1 1

∞

−
τ

∞

−
τ

−
τ

∧

= ρ τ + ρ τ

ρ
+

τ + ρτ + ρτ
=

ρ
+ +

+ ρτ

ρτ ρ
= τ + + +

+ρτ + ρτ

∫

∫  (10) 

 

The ELFWT is
u

ue
−
ττ + for exponential distribution 

in Equation (5a) with a substitution of ρ = 0 in 

Equation (10). Understandably, the ELFWT in 

Equation (10) increases once the medication’s effect 

is effective (that is, as ρ>0). Of course, the ELFWT 

varies from a patient to another. Hence, the spread of 

the follow-up window time in Equation (11) is 

necessary to understand the heterogeneity among the 

patientsand it is captured by its variance of prolonged 

exponential distribution in Equation (5a). It is: 

 

2

u u

2

u

var(Y u) [1 ( )(1 )]
1 1

u u
u (1 )e [1 (1 )e ]

1 1

u
2 u(1 )(1 )e

1 1

− −
τ τ

−
τ

ρτ ρτ
∧ = τ + +

+ρτ +ρτ

ρ ρ
+ + − +

+ρτ +ρτ

ρτ ρ
− τ + +

+ρτ +ρτ

 (11) 

Another useful concept is the risk for a cancer patient 

to experience a recurrence given the patient has survived 

a time yp. This concept is called Total Value at Risk 

(TVaRp). With the PSED in Equation (5a), the TVaRp is: 

 

p

p

p

p p

y

prolExp p

1

u
p

p
y

p

prolExp p

y
( )

p 2

TVaR (Y) E(Y Y y )

yf (y , )dy

S (y , )

VaR (u)du

1 p

(y y )f (y , )dy

y
S (y , )

y
(1 )[(1 )e ]

1

∞

∞

−
τ

= >

ρ τ
=

ρ τ

=
−

− ρ τ
= +

ρ τ

ρ
≈ τ + ρτ +

+ ρτ

∫

∫

∫

 (12) 

 

The TVaRp in Equation (12) is τ (1+ρτ) initially (that 

is, yp = 0) and zero eventually (that is, yp = ∞). However, 

the TVaRp is
p2y

e
−

ττ for exponential distribution in 

Equation (5b) by substituting ρ = 0 in Equation (12).  

In some patients, the cancer recurrence might be 

quicker than its usual time. Such patients receive special 

attention of the medical team. To such patients, the 

medical team might decide to apply additional remedial 

actions. To decide on such a remedial action, the PDF 

fY(1) (u) and its expected value EY(1) (u) of the minimal 

order statistic Y(1) are useful. That is: 
 

(1)

n 1

Y prolExp

2 nu /

f (u) n[S (u , )] f (u)

n [1 (n 1 u ) ]e
;u 0

[n (n 1)(n ) ]

−

− τ

= ρ τ

+ − + − τ ρ
≈ ≥

τ + − − τ ρ  

 
 For prolonged exponential distribution in Equation 

(5a) with mean in Equation (13): 
 

(1)Y

0

E(U) f (u)du

[1 ]
n n (n 1)(n )

∞

=

τ ρτ
= +

+ − − τ ρ

∫
 (13) 

 

Which is τ/n under no medication’s effect (that is, 

when ρ = 0) but increases to a stable amount: 

 

[1 ] / n
n (n 1)(n )]

τ
τ +

+ − − τ
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Under most effective medication’s effect (that is, ρ→∞).  
Furthermore, when a patient exhibits consequently 

two quicker cancer recurrences, it is a sign of 
deterioration. Such patients are of concern to the medical 
team. This deterioration is detected using Markov-Chain 
property. The Markov-chain property with PSED in 
Equation (5a) is echoed in the PDF fY(2) = u+w|Y(1) = u(w) of 
the second order statistic Y(2) = v = u +w given the first 
order statistic Y(1) = u where w≥0. It is: 

 ( 2) (1)Y u w Y u

prolExp n 2

prolExp

(n 1)w /

f (w)

S (v , ) f (v)
(n 1){ }

S (u , ) f (u)

n 1 [1 (n 2) w]
( ) e

[1 (n 2) ]

= + =

−

− − τ

ρ τ
= −

ρ τ

− + − ρ
≈

τ + − ρ

 (14) 

 
Whose mean is: 

 

( 2) (1)

Markovian

Y u w Y u

0

2

E (w u)

wf (w)dw

(n 2){1 (2 1) }
[1 ]

(n 1) 1 (n 2)

∞

= + =
=

τ − + ρτ − ρ
= +

− + − ρ

∫  

 

With no medication’s effect (that is, ρ = 0), the PDF 

in Equation (14) reduces to: 
 

( 2) (1)

(n 1)w /

Y u w Y u

n 1
f (w) ( )e− − τ

= + =

−
≈

τ
 

 
Whose mean is: 

 

MarkovianE (w u)
(n 1)

τ
=

−
 

 
Corresponding to exponential distribution in 

Equation (5b) by substituting ρ = 0. In this scenario of 
quicker cancer recurrence than the usual time, medical 
team would get alerted to seek a medical urgency. 
Consequently, the chance for the remaining time to be 
without a cancer recurrence changes and it is captured by 
the equilibrium distribution. Using PSED in Equation (5b), 
the equilibrium distribution in Equation (15) is: 

 

MBED

y

prolExp
0

prolExp
0

y / y/

H (y , )

S (u , )du

S (u , )du

y
(1 e ) {1 (1 )e }

(1 )

∞

− τ − τ

ρ τ

ρ τ
=

ρ τ

ρτ
= τ − + − +

+ ρτ τ

∫
∫

 (15) 

 With an intensity rate: 

 

prolExp

MBED prolExp
0

y / y/

S (u , )

H (y , ) S (u , )du

[1 (y )]

y
[(1 )(e 1) {e (1 }]

∞

τ τ

ρ τ

ρ τ ρ τ

+ ρ + τ
=
τ + ρτ − + ρτ − +

τ

∫
 (16)  

 

For exponential distribution in Equation (5b), the 

equilibrium distribution reduces to τ (1-e
-y/τ

) with 

intensity rate [τ (e
y/τ

-1)]
-1

 by substitution of ρ = 0 in 

Equation (16).  

To advance the medical knowledge, the medical team 

looks into patient records with a quicker or longer cancer 

recurrence. Ahsanullah (1995; 1978) for concepts and 

formulas to understand the role of record values in data 

analysis. The PDF flange-record (v) of the Longer Recorded 

Time (LRT), v for PSED in Equation (5a) is: 

 

record longer

n

prolExp

n v/

n 1

f (v)

{ lnS (v , )} f (v , )

n!

[1 (v )]v e
;v 0

n! (1 n )

−

− τ

+

− ρ τ ρ τ
=

+ ρ − τ
= ≥

τ + ρτ

 (17) 

 

From Equation (17), the mean and variance of the 

longer-record recurrence times are respectively: 

 

longer record
E (V) (n 1) [1 ]

1 n
−

ρτ
= + τ +

+ ρτ
 (18) 

And: 

 

longer record

2

Var (V)

(2 {n 1} )
(n 1) [1 ]

(1 n )(1 n )

−

ρτ + − ρτ
= + τ +

+ ρτ + ρτ

 (19) 

 

With these results, we may pose a question: When is 

alonger-recordcancer occurrence significant? The longer-

record recurrence time is significant when the p-value: 
 

2

v (n 1) [1 ]]
1 n

1 ( )
2 {n 1}

(n 1) [1 ( )( )]
1 n 1 n

ρτ
− + τ +

+ ρτ
−Φ

ρτ + − ρτ
+ τ +

+ ρτ + ρτ

 

 

Is small, where Φ (z) is the cumulative standard 

normal probability.  
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Likewise, the medical team is concerned about the 

patients with a quicker-record recurrence time also. The 

PDF fquicker-rcord (u) of the quicker recorded time, U is: 

 

quic ker record

u /

2

f (u)

[1 {(n 2) u} ]ue
;u 0

(1 n )

−

− τ+ − τ + ρ
= ≥

τ + ρτ

 (20) 

 

From Equation (20), the mean and variance of the 

quicker-record recurrence times are respectively:  

 

quic ker record
E (U) 2 (1 )

1 n
−

ρτ
= τ +

+ ρτ
 (21) 

 

And: 

 

quic ker record

2

Var (U)

2 1 {n 1}
2 [1 ( )( )]

1 n 1 n

−

ρτ + − ρτ
= τ +

+ ρτ + ρτ

 (22) 

 

We may pose another question: Is a quicker record 

cancer occurrence significant? It is so if the p-value: 

 

2

U 2 (1 )
1 n

( )
2 1 {n 1}

2 [1 ( )( )]
1 n 1 n

ρτ
− τ +

+ ρτ
Φ

ρτ + − ρτ
τ +

+ ρτ + ρτ

 

 

Is small with this knowledge about the quicker-

record, U and longer-record, V of bladder cancer 

recurrence times, their correlation ru,v is useful and it 

reveals medically valuable information. To compute 

it, the joint PDF fquicker-record,longer-record (u,v) of the 

quicker-recordandlonger-record cancer recurrence is 

necessary and it is: 
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 (23) 

 

Of course, their correlation ru,v captures their linear 

relationship. It is feasible to project the next longer-

record cancer recurrence based on an observedquicker-

recordcancer recurrence time using regression 

concept. For this purpose, from Equation (23), the 

product moment is found and it is: 
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u v u
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∞ ∞
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∫ ∫  

 
Hence, their correlation is: 

 

u,v

2 2

2
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 (24) 

 

The regression Equation, based on the correlation in 

Equation (24), the means in in Equations (18), (21) and 

variance in Equations  (19), (22) of both quicker-record and 

longer-record recurrence times, is in Equation  (25): 
 

next longer record recurrence

longer record

uv quic ker record

quic ker record

longer record

recurrences uv
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Ŷ

var (v)
r Y
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−
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−

−

=

+ −

 (25) 

 
Now, to estimate the parameters of prolonged 

exponential distribution in Equation (5a), consider a 

random sample y1, y2,…yn from prolonged exponential 

distribution in Equation (5a). The maximum likelihood 

method is selected over other methods because it 

possesses invariance property. The log likelihood 

function, In L (.) for prolonged exponential distribution 

in Equation (5a) is:  
 

1 2 n

2 n
2 2

i

i 1

ln L(y , y ,....., y )

n (y ) (n y )
2

ny
n ln

=

ρ
= ρ − τ + τ −

− − τ
τ

∑  (26) 

 

Then, the score functions ∂τ In L (y1, y2,…yn) and ∂ρ 
In L (y1, y2,…,yn) are derivative of the log likelihood 

function in Equation (26) with respect to the parameter τ 
and ρ respectively, where ∂z denotes the derivative. 

Equating the score functions to zero and solving them 
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simultaneously with their Taylor series expansions 

provides the Maximum Likelihood Estimators (MLE):  
 

2s
ˆ

y
τ =  (27) 

 
 And: 
 

2
1 1

2 2

y y
ˆ [( 1) 1]

s s

− −ρ = − −  (28) 

 

When 2 2
s y= , notice that the MLE in Equations (28) 

and (27) reduce to ˆ 0ρ = and
0

ˆ yτ = which is the MLE of 

parameter in exponential distribution in Equation (5b). 

In a clinical situation, the medical team might ponder 

over a question: Is the MLE of ρ̂ indicative of a significantly 

effective medication’s effect in the sense of prolonging the 

cancer recurrence in a patient? An answer to this question 

requires formulating a hypothesis testing methodology. For 

this purpose, the Wald (1943) likelihood ratio approach is 

resorted. The Wald’s approach is a powerful methodology 

and is summarized below. The null hypothesis H0: ρ = 0 

could be rejected in favor of an alternative 

hypothesis *

1
H : 0ρ = ρ ≠ using log-likelihood ratio: 

 

0 0

2
2

2 2

22

2

ˆ ˆ ˆln ln L( , ) ln L( 0, )

y
1 (1 )

y sn (1 ){1 }
ys

1 (1 )
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ρ=− Λ = ρ τ − ρ = τ

+ −
= − +

+ −

 (29)  

 
Which follows a non-central chi-squared distribution 

with one degrees of freedom (df) and the non-centrality 

parameter 0
ˆ ˆ ˆ ˆ/ var( )ρ=δ = ρ ρ , where ˆ ˆvar( )ρ is the MLE of 

diagonal element in the inverse of the variance-

covariance matrix of the MLEs. Stuart and Ord (1994) 

for definition and properties of the non-central chi 

squared distribution. Recall that the variance-covariance 

matrix of the MLE of the parameters is the inverse of the 

information matrix: 
 

2 2
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Where: 
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And: 

 
2 2c E( ln L) n (1 6 )ρρ= − ∂ = τ + ρτ . 

 

The determinant of the matrix I is: 

 
2 2D I ac b n (1 2 )= = − = ρτ + ρτ  

 

And 3ˆ ˆ ˆ ˆvar( ) 1 / nρ = ρτ . Hence, under null hypothesis, 

H0: ρ = 0, note that ˆ yτ =  and 

3

0 0 2
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s

ρ=δ = ρ ρ = . It is known that the non-

central chi squared distribution with one df and non-

centrality parameter δ approximately follows (1 )
1

δ
+

+ δ
 

times a central chi squared distribution with 
2(1 )

(1 2 )

+ δ

+ δ
df 

(Stuart and Ord, 1994) for details of this equivalence.  

This means that the null hypothesis H0: ρ = 0 will be 

rejected in favor of an alternative hypothesis H0: ρ>0 if:  
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where, the right side is the critical value based on the  

100 (1-a)
th

 percentile of the central chi squared 

distribution with 
2

0
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ˆ(1 2 )

ρ=

ρ=

+ δ

+ δ
df and a significance level a∈ 

(0, 1). We now write the p-value for rejecting the null 

hypothesis in favor of an alternative hypothesis and it is: 
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The statistical power of the test statistic in Equation 

(29) can be calculated with a selection of a specific value 

for ρ* in the alternative hypothesis. The statistical power 

is the probability of rejecting the null hypothesis H0: ρ = 

0 in favor of an alternative hypothesis H1: ρ = ρ* ≠ 0. 

Under the alternative hypothesis, the minus log 

likelihood ratio:  
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*
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Follows a non-central chi-squared distribution with 

one df and non-centrality parameter: 
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The previously mentioned results are now illustrated 

using bladder cancer recurrence times data in Andrews 

and Herzberg (1985). The patients within each group are 

compared in Table 2-5. The expected recurrence time 

based on prolonged exponential distribution in Equation 

(5a), the MLE of the medication’s effect’s and the p-

value are calculated using Equations (6a), (28) and (30). 

They are displayed in Table 1-5. The hypothesis H0: ρ = 

0 is rejected when p-value is small. Using LRT statistic 

in Equation (31) and power formula in Equation (32), 

the power, the probability of accepting hypothesis H1: 

ρ* = 1 is calculated and summarized in the Table 1-4. 

The power of LRT is excellent in all groups.   

The patients in pyridoxine group are more 

homogeneous than those in other two groups. But, the 

expected first order statistic is smaller in placebo group 

than in other two groups and it suggests the importance 

of medical medication’s effect to bladder cancer patients. 

The expected recurrence time for 2nd order statistic 

adjusted for the 1st order statistic (Table 2) reveals that 

the thiotepa medication’s effect delays it more. The 

correlation (Table 2) between record quicker and record 

longer bladder cancer recurrence time is indicative of no 

significant connection which is good.  

The sketch of expected recurrence time in terms τ for 

an estimated ρ̂ (Fig. 4a) and in terms of ρ for an 

estimated τ̂ (Fig. 4b) based on prolonged exponential 

distribution in Equation (5a) reveals that the recurrence 

is prolonged because of an effective medication’s effect 

(that is, as ρ̂ → ∞ ).The prolonging is moderate 

when τ̂ increases. The exponential distribution in 

Equation (5b) has no capability to illustrate the 

medication’s effect.   

The survival probability without a recurrence at a 

given time is sketched for each group (Blue curve for 

placebo, green curve for thiotepa and pink curve for 

pyridoxine) in Fig. 4a using exponential distribution in 

Equation (5b) and in Fig. 4b. Using prolonged 

exponential distribution in Equation (5a). Notice that 

prolonged exponential distribution in Equation (5a) but 

not exponential distribution in Equation (5b) clearly 

distinguishes pyridoxine and thiotepa groups. This finding 

advocates the critical role of prolonging parameter ρ. Let 

us scrutinize below how patients perform compared to 

each other within a group. 

1.2. Patients in Placebo Group 

The patients in placebo group are now compared 

using exponential distribution in Equation (5b) and 

prolonged exponential distribution in Equation (5a). The 

expected mean recurrence time using exponential 

distribution in Equation (5b) over-estimated for 3rd, 5th, 

6th and 7th patient and under-estimated for 4th patient, 

as this process does not take into account the impact of 

the medication’s effect Fig. 4c-4g. However, in almost 

all patients (except the first and fourth case), the 

prolonged exponential distribution in Equation (5a) is 

better than exponential distribution in Equation (5b) 

according to their p-values (Table 4). In the first and 

fourth patient, the model exponential distribution in 

Equation (5b) and the model prolonged exponential 

distribution in Equation (5b) are the same as their ρ̂ value 

is not small (Table 3).  
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The power of accepting hypothesis H1: ρ* =1 is 

excellent for all patients except it is moderately high for the 

sixth patient. The survival probability based on prolonged 

exponential distribution in Equation (5a) in terms of 

survival probability based on exponential distribution in 

Equation (5b) is sketched for patients in Fig. 5a-5c. The 

difference in survival probabilities is negligible when the 

configuration shows no convexity. The Fig. 5a shows no 

convexity confirming that the medication’s effect has no 

impact on 1st
 
patient. All other patients in placebo group 

received medication’ effect as their figures shows 

convexity.Now, patients in thiotepa group are compared 

using exponential distribution in Equation (5b) and 

prolonged exponential distribution in Equation (5a). The 

exponential distribution in Equation (5b) over-estimated 

the expected recurrence time for 1st and 2nd patient as it 

does not show medication’s effect. In 1st and 2nd patient, 

the prolonged exponential distribution in Equation (5a) fits 

better, according to their p-values (Table 5). In the third 

patient, the models exponential distribution in Equation 

(5b) and prolonged exponential distribution fit equally 

well as their ρ̂ value is negligible. 

 The power of accepting hypothesis H1: ρ* =1 is 

excellent for 2nd and 3rd but only moderately high for 

1st patient (Table 4). Consequently, any assessment 

of their survival probability could be different 

depending on whether exponential distribution in 

Equation (5b) or prolonged exponential distribution in 

Equation (5a) is selected. Their difference is 

negligible only when the configuration has no 

convexity. But, only the Fig. 5c shows no convexity 

confirming that the medication’s effect has no impact 

on 3rd patient. 

 Now, patients in the pyridoxine group are compared 

using exponential distribution in Equation (5b) and 

prolonged exponential distribution in Equation (5a). The 

exponential distribution in Equation (5b) over-estimated the 

expected recurrence time in all cases because it does not take 

into account the impact of drug in the medication’s effect.

 

Table 2. Comparison of three groups based on prolonged exponential distribution (5a) 
Group E [Y (1)] E [Y(2)|Y(1)]  Corr (U,V) 

Placebo 0.111 0.02 0.1791 

Thiotepa 0.223 0.09 0.2887 

Pyridoxine 0.042 0.01 0.1626 
 
Table 3. Summary of results for patients in placebo group 

 Expected recurrence Expected recurrence   p-value to test Power to accept 

Patient time with (5b) time with (5a) τ in (5a) ρ in (5a) H0: ρ = 0 H1: ρ = 1 

1 5.20 5.200 4.750 0.0220 0.33 1.00 
2 6.67 6.667 3.340 74.7010 0.00 0.94 
3 6.00 2.548 1.583 0.9845 2E-08 0.93 
4 10.60 15.850 13.710 0.0135 0.128 1.00 
5 5.78 3.321 1.981 1.0554 5.00E-09 0.99 
6 8.20 2.629 1.671 0.8044 6E-15 0.72 
7 6.13 6.125 4.405 0.1454 0.008 1.00 
 
Table 4. Summary of results in thiotepa Group (G2) 

 Expected recurrence Expected recurrence   p-value to test Power to accept 

Patient time with (5b) time with (5a) τ in (5a) ρ in (5a) H0: ρ = 0 H1: ρ = 1 

1 2.00 0.385 0.250 4.6667 4E-21 0.57 
2 5.29 4.391 2.378 2.3110 3E-10 0.93 
3 7.60 7.60 6.092 0.0540 0.109 1.00 
 
Table 5. Summary of results in pyridoxine Group (G3) 

 Expected recurrence Expected recurrence   p-value to test Power to accept 

Patient time with (5b) time with (5a) τ in (5a) ρ in (5a) H0: ρ = 0 H1: ρ = 1 

1 6.80 3.020 1.868 0.8617 8E-08 0.98 
2 5.00 0.609 0.400 2.7381 5E-76 1.00 
3 4.33 1.655 1.038 1.4061 1E-16 0.31 
4 4.67 1.701 1.071 1.3296 1E-18 0.04 
5 5.00 5.000 3.200 0.4018 5E-04 1.00 
6 6.13 5.136 2.773 2.0854 4E-12 0.95 
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 (a)  (b)  (c) 

 

         
 (d)  (e) (f) 

 

 
(g) 

 
Fig.  4. (a) Survival of Patient 1 in placebo (b) Survival of Patient 2 in placebo (c) Survival of Patient 3 in placebo (d) Survival of 

Patient 4 in placebo (e) Survival of Patient 5 in placebo (f) Survival of Patient 6 in G1 (g) Survival of Patient 7 in placebo 
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(a) (b) (c) 

 
Fig. 5. (a) Survival of Patient 1 in thiotepa (b) Survival of Patient 2 in thiotepa (c) Survival of Patient 1 in thiotepa 
 

       
 (a) (b) (c) 
 

   
 (d) (e)  (f) 
 

Fig. 6. (a) Survival of Patient 1 in pyridoxine (b) Survival of Patient 2 in pyridoxine (c) Survival of Patient 3 in pyridoxine (d) 

Survival of Patient 4 in pyridoxine (e) Survival of Patient 5 in pyridoxine (f) Survival of Patient 6 in pyridoxine 
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The prolonged exponential distribution in Equation (5a) 

implies that the medication’s effect has a significant 

impact in all patients, according to their p-values (Table 

5). The power of accepting hypothesis H1: ρ* =1 is 

excellent for 1st, 2nd, 5th and 6th, is moderate for 3rd, 

but is poor for 4th patient (Table 5). The survival 

probability based on prolonged exponential distribution 

in Equation (5a) in terms of survival probability based on 

exponential distribution in Equation (5b) is sketched for 

patients in Fig. 6a-6f. The difference in survival 

probabilities is negligible when the configuration shows 

no convexity.  

2. CONCLUSION 

The importance of configuring the impact of 

medication’s effect is witnessed in all three groups. The 

prolonged exponential distribution in Equation (5a) is 

versatile, compared to the exponential distribution in 

Equation (5b), to capture and test the significance of the 

medication’s effect to prolong the bladder cancer recurrence 

time. While not all patients exhibit same predicable 

recurrence time, their difference could be well explained 

using a regression methodology with covariates. The 

research work to develop regression methodology is 

underway to be reported in another article.   
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